钢结构牛腿设计毕业设计

合集下载

井筒装备中钢结构牛腿的设计方法

井筒装备中钢结构牛腿的设计方法
,
f
=
1

。 s
x
150
15 0 2
.
罐 道 牛腿
4
:

I
字形 ( 图
:
3 )和 T

L
形 (图
3
.
) 两种


罐 道梁 ( 或罐 道牛腿 ) 层 间距
厘米
P
v 二
,
梯 子 梁 和 管子 梁 牛 腿

用一 根 短 角
垂 直力
2
.
P

/
4
公斤
提 升 容器对 罐 道 的 作 用力 在罐 道 梁
,

图 3
,
承受 一 侧 两 根 罐 道 的 正 面 水 平 力 和 另 一 侧 两
根罐 道 指 向 同 一 端 (
用时 (图
8 )

最 不 利 受 力状 态
分 别 计 算受 水平 荷 载 作 用
,
B
端 ) 的 侧 面 水平力 作
和受 垂 直 荷载 作用 时
v
罐 道 梁牛腿 在 纵 横 竖
: x

三 个方 向 ( 图 5 m b ) 的最 大 荷 载 N a
;
可 不 考 虑梁
式中
为 每 根罐 道 的 重 量

公斤
S
为 固定
的 扭 转 问题 )

同 一 根 罐道 的 牛 腿 个 数
.a
( 1 ) 纵 向最 大 荷 载发 生 在 罐 道 梁 同 时
奴 罐道 梁 牛 腿(
承 受 四根 罐道 指 向 同 一 端 ( B 端 ) 的 侧 面 水
牛 腿( 雄道

牛腿模板设计

牛腿模板设计

牛腿模板设计一、荷载设计值:(一) 砼重:24*(2.0*1.3*2.5+2.5*1.3/2)=195KN(二) 钢筋重:4.4*(2.0*1.3*2.5+2.5*1.3/2)=35.75 KN (三) 振捣砼时产生荷载:垂直面取4.0kN/m 2*3.25=13 KN (四) 模板自重:取组合钢模板1.1kN/m 2*3.25=4.35 KN (五) 工字钢自重: 0.381*3*1.8=2.06KN设计荷载值为:195+35.75+13+4.35+2.06=250.16KN预埋三根I a25 工字钢,则每根工字钢承受的均布荷载 q=250.16/3/1.3=64.14KN/m二、最大弯矩、剪力、挠度计算公式 最大剪力公式:Q=1.3q 最大弯矩公式:M=1.32 q /2最大挠度公式:W=qa 3l*(2+a/l)/(8*EI)工字钢Q235A :抗拉、抗压和抗弯强度设计值:215N/mm 2 抗剪强度设计值:125N/ mm 2三、抗弯验算:Mx =1.32 q /2=1.3*1.3*64.14/2=54.2KN/m 工字钢I a25 查表得:Wx=402cm 3σ=M/W=64.14*106/402*103=159.55N/mm 2≤f=215N/mm 2 四、剪力验算:Q=1.3*64.14=83.38KN ≤{f}=125N/mm 2 五、挠度验算:W=qa 3l*(2+1.3/3)/(8*2.1*105+5020*104)=64.14*13003*3000*(2+1.3/3)/(8*2.1*105*5020*104) =12.2mm说明在荷载作用下,距离闸墩边1.3m处部位最大挠度为12.2mm,起拱按1/1000计算, 故立模时,起拱量为12.2+1300*1/1000=13.5mm。

钢牛腿设计及工程实例

钢牛腿设计及工程实例

f
tw * hw * f v 59.79<f wf 160 N / mm2 ,满足抗剪承载力要求。 4*0.7* h f *(hw 20)
3. 结语
本工程牛腿上部钢梁承担有 31.8m 钢桁架栈桥支座, 大跨度栈桥为其下的道 路提供了通行便利,自 2009 年竣工后使用效果很好。设计中优先选择了抗弯能 力显著的“工”形作为牛腿端部截面,实现了截面的优化设计。而且通过文中的 对比不难发现,当柱外竖向荷载偏心较小,即牛腿端部弯矩很小时,可考虑采用 抗剪能力突出的“π ”形截面。 钢牛腿在工业建筑中应用普遍,但是计算过程较为繁琐,因此目前多采用经 验设计。如果将本文中的计算步骤转化为 excel 表格辅助计算,则可以极大提高 计算速度,同时有助于比较得出优化方案,减少钢材浪费。
1 Wn1 42.2<215N / mm2 ,上翼缘抗弯满足。
下翼缘外边缘的正应力 σ2
2 Wn 2 51.07<215N / mm2 ,下翼缘抗弯满足。
截面形心轴处的剪应力 τ
= VS / Itw 72.95< 120 N / mm2 ,截面抗剪满足。
腹板下端的剪应力τ
1
1 VS1 / Itw 57.68N / mm2
腹板下端的折算应力
(12 312 ) 111.24< 1.1*215N / mm2 ,满足承载力要求。
2.3 焊缝连接验算 考虑牛腿端部内力向柱传递时,原则上端部弯矩全部由牛腿翼缘承担,端部 剪力全部由腹板承担。牛腿腹板与柱的连接,除对端部剪力进行验算外,尚应以 腹板净截面面积的抗剪承载力设计值的 1/2 来确定。 基于以上假定,牛腿的上、下翼缘与柱连接采用完全焊透的对接焊缝,当焊 缝质量等级为一、二级时,焊缝与钢材为等强连接,焊缝强度可不必验算;当质 量等级为三级时,对接焊缝抗拉强度设计值低于钢材本身,尚需验算焊缝的抗拉 强度。 本工程按三级对接焊缝验算抗拉。牛腿腹板与柱连接采用通长双面贴角焊 缝,焊脚尺寸 hf=12mm。

大跨度钢筋混凝土箱梁端牛腿设计任务书

大跨度钢筋混凝土箱梁端牛腿设计任务书

大跨度钢筋混凝土箱梁端牛腿设计任务书、基本资料牛腿尺寸见附图示。

荷载:汽车荷载:公路—I级挂梁为13M跨实心板,80cm板厚,10cm桥面铺装;桥面全宽8.0M,牛腿用C30砼,HRB335级钢筋,四氟板式橡胶支座,卩=0.05、设计计算内容牛腿截面强度验算:(一)竖截面I —I的验算1 •按偏心受拉构件验算截面强度;2•按受弯构件验算抗弯抗剪强度;(二)最弱斜截面验算(按偏心受拉截面)(三)45°斜截面验算(按轴心受拉截面)三、要求1•按计算值配置:水平、竖直、斜向钢筋,并画出配筋示意图。

2•提交详细计算书及配筋示意图,最好为打印件。

pop}I "13. 2周内完成。

50 L 700 I 50PS0图1 牛腿尺寸图(cm)牛腿设计计算书1、横向分布系数的计算可将挂梁假定为由两片相等的实心板梁组成(矩形板)1.1、杠杆原理法:汽车荷载:m oq「q )(1.7069 1.0862 0.6379 0.0172)=1.72412 21.2、用偏压法计算:抗弯惯性矩:bh3 1230.8 4.012= 0.1706666抗扭惯性矩:由%=%.8 =5可查表得:c = 0.293.I矩形-0.29 4 0.8 -0.59392计算修正系数12I ti二nl 矩形,n=2,取G=0.425E, '、a i= 2 22= 8m2121 . nl GI矩形12EP11122a i2a12=0.1611 ,2 13 0.425E0.593921 -12E 汉0.1706666 汉8 -0.5 0.1611 0.5=0.58= 0.5—0.1611 0.5=0.42da rui也A c寸r? ...--Ji0-58 cjB ,n十 _一_-・_ 一_一_-—H■―L-.-”一=——4——--1 1m cq q (0.6931 0.5938 0.5220 0.4228) = 1.11582、内力计算:2.1、恒载内力计算:恒载集度取板的一半计算行车道板(容重25kN/m2)g^ 0.8 4.0 25kN/m = 80kN/m混凝土铺装(容重24kN/m2)g p =0.07 4.0 24kN / m =6.72kN / m沥青表面处理(容重22kN/m 2)g l = 0.03 4.0 22kN / m = 2.64kN / m 一块板上的恒载集度g^g b g p g^(80 6.72 2.64) = 89.36kN /m由行车道板和铺装层产生的内力:1 1支点剪力:Q;。

钢牛腿设计施工图 TD-T07-02

钢牛腿设计施工图 TD-T07-02
fgdffd Байду номын сангаас fgdffd 说 明 (一)2004通用图2TD-T01-02页2004通用图TD-T07-02页3牛腿选用表 (表一)2004通用图4TD-T07-02页目 录牛腿选用表通用图20041页TD-T07-02校核:组长:专业(主任)工程师:设计制图:TD-T07-02目 录目录钢 牛 腿 图 集 设计院说明牛腿材料表编制2~35~641说 明一 一般说明及使用范围1. 本图集为联接在混凝土构件上的钢牛腿施工图.二 设计依据:1. <<建筑结构荷载规范>>(GB 50009-2001)2. <<混凝土结构设计规范>>(GB 50010-2002)竖向力设计值(kN)牛腿编号GN1515GN1525GN2020GN2025GN2030GN2035GN2040GN2525GN2530GN2535GN2540GN3030GN3035GN3040GN1520钢 牛 腿 图 集TD-T07-02 设计院编制2004施工图例7~83. <<钢结构设计规范>>(GB 50017-2003)三 计算方法:1. 计算假定在牛腿顶面上仅作用有竖向力,且其作用点距柱边为牛腿外伸长度.2/3C,C2. 计算方法是在给定钢牛腿的尺寸,预埋件和焊缝尺寸情况下,分别计算在钢牛腿正应力控制下,预埋件控制下和牛腿焊缝控制下的竖向力设计值,并取其中的最小值为钢牛腿竖向力设计值.3. 正应力计算:由GB50017-2003Mxγx知 竖向力对钢牛腿截面的上下顶点分别计算ixW和nxW<fM=2/3C F·F<xγfWnx2/3Ciγ,求得两个 值,F取最小值为正应力控制下的钢牛腿竖向力设计值.4. 预埋件计算:在剪力和弯矩共同作用下, 由GB 50010-2002sA>rαVαvfy+

钢牛腿设计

钢牛腿设计

钢牛腿设计
一、钢结构部分设计软件(工字型截面和钢牛腿受力计算)
二、牛腿荷载值计算(竖向压力计算值KN)
1、吊车(大车自重)/2=t
2、吊车(小车自重)x1=t
3、吊车最大起重量x1= t
4、吊车梁及梁上附件:
每延长m重量x最大榀间距=t
5、轨道重量:
每延长m重量x最大榀间距=t
以上5项相加之和x1.4系数/0.098t = (竖向压力值)KN
三、牛腿几何尺寸确定原则:
1、牛腿翼缘板,宽度和厚度:
取相邻两钢柱的翼缘板较小的宽度和厚度数值。

2、牛腿腹板厚度:
取相邻两钢柱的腹板较小的厚度数值。

3、牛腿竖向劲板和柱横向加劲板的厚度和宽度:
厚度取牛腿翼缘板厚,宽度取(牛腿宽-牛腿腹板厚度)/2
四、钢牛腿受力计算界面
1、牛腿信息输入:写入翼缘板宽度,厚度
腹板宽度,厚度
腹板高度可以假定一个数值。

2、荷载:
1)填入计算好的竖向压力设计值()KN
20.65m.
3、
出现判断情况界面
4、调整腹板高度达到经济,安全合理的数值。

钢结构毕业设计牛腿设计

钢结构毕业设计牛腿设计

第一章 牛腿设计5.1 荷载计算根据吊车梁的设计,吊车梁截面面积22125.4410A mm =⨯, Q235钢的密度为37850/kg m ,吊车梁自重为4785010125.4410984.704/N m -⨯⨯⨯=,轨道自重为430/N m 由吊车最大轮压引起的支座反力标准值为: .max 139(10.453)201.967k D kN =⨯+=牛腿根部支座反力影响线示意图则牛腿根部承受的剪力:3.max 1.2(984.704430)107.5 1.4295.486k V D kN -=⨯+⨯⨯+=5.2 截面选择牛腿选用600500400810BH -⨯⨯⨯ 偏心距为450e mm =外伸长度为200d mm =,截面高度600h mm =, 截面宽度400b mm = ,翼缘板厚度 10f t mm =,腹板厚度8w t mm =,力作用点处截面为537400810BH ⨯⨯⨯。

牛腿牛腿节点示意图则:295.4860.45132.97M V e kN m =⋅=⨯=⋅5.3截面特性牛腿根部截面示意图牛腿根部截面:2230010(600210)810640A mm =⨯⨯+-⨯⨯= 3324411600108(600210)23001030010()1212265227.4710x I mm -⎡⎤=⨯⨯-⨯+⨯⨯⨯+⨯⨯⎢⎥⎣⎦=⨯43365227.471021742.49106002x x I W mm y ⨯===⨯ 233600101600103001081233.1010222S mm --⎛⎫⎛⎫=⨯⨯+⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭ 3316001030010885102S mm -⎛⎫=⨯⨯=⨯ ⎪⎝⎭ 5.4 强度验算5.4.1抗弯强度6223132.9710 5.82/215/1.0521742.4910x nx M N mm f N mm W σγ⨯===<=⨯⨯ 5.4.2抗剪强度3224295.486101233.1069.83/125/65227.47108v x w VS N mm f N mm I t τ⨯⨯===<=⨯⨯ 5.4.3 腹板计算高度边缘处折算应力6214132.971060021059.12/65227.47102nx M y N mm I σ⨯-⨯=⋅=⨯=⨯ 32295.4861088550.11/65227.478x w VS N mm I t τ⨯⨯===⨯ σ和τ的最不利组合出现在腹板边缘,因此验算公式为: 222222359.12350.11105.2/215/N mm f N mm στ+=+⨯=<=∴满足要求。

牛腿节点设计结果

牛腿节点设计结果

牛腿节点竖向恒载: Pd= 15.24
牛腿节点竖向活载: PL= 0.00
吊车最大轮压反力: Dmax= 264.04
荷载作用点到柱边距离: e= 475.00
NODE.OUT
****** 轻钢门式刚架施工图设计 STMJW.EXE ******
设计时间: 1/21/2009
牛腿腹板折算应力: 141.42 <= 310.*1.1 , 满足
柱腹板边缘处折算应力: 186.50 <= 310.*1.1 , 满足
满足: 牛腿设计满足!
满足: 牛腿设计满足!
============================================================
牛腿节点号: 4
牛腿所连接的柱号: 4
柱左侧牛腿:
荷载作用点位置的牛腿截面剪应力: 179.74 <= 180. , 满足
牛腿腹板折算应力: 141.42 <= 310.*1.1 , 满足
柱腹板边缘处折算应力: 186.50 <= 310.*1.1 , 满足
设计荷载 P = 1.2*Pd + 1.4(PL+Dmax) = 406.23
牛腿根部截面正应力: 88.48 <= 310. , 满足
荷载作用点位置的牛腿截面剪应力: 179.74 <= 180. , 满足
满足: 牛腿设计满足!
============================================================
牛腿节点号: 3
牛腿所连接的柱号: 3
柱右侧牛腿:
荷载作用点到柱边距离: e= 475.00

牛腿结构设计

牛腿结构设计

牛腿设计 NIUT-1(工程名称:****工程)执行规范:混凝土结构设计规范(GB 50010-2002)===================================================================1 设计资料:1.1 已知条件:混凝土强度等级:C25, f tk=1.78N/mm2, f c=11.90N/mm2纵筋级别: HRB400, f y=360N/mm2箍筋级别: HPB235, f y=210N/mm2弯筋级别: HRB400, f y=360N/mm2牛腿类型:_双牛腿牛腿尺寸: b=400mm h=800mm h1=270mm c=600mm上柱宽度: H2=600mm 下柱宽度: H1=600mm牛腿顶部竖向力值: F1vk=437.04kN F2vk=437.04kNF1v=590.00kN F2v=590.00kNa1=250.00mm a2=250.00mm牛腿顶部水平力值: F1hk=20.74kN F2hk=20.74kNF1h=28.00kN F2h=28.00kN1.2 计算要求:1.斜截面抗裂验算2.正截面抗弯计算3.水平箍筋/弯起钢筋面积计算2 计算过程2.1 斜截面抗裂验算=509.83kN F vk437.04kN>=满足要求!2.2 正截面抗弯计算纵筋计算配筋量:纵筋实配: 4E20 A s=1257mm2(ρ=0.41%)>729mm2满足要求.2.3 水平箍筋/弯起钢筋面积计算水平箍筋面积计算计算箍筋用量(牛腿上部2/3h0范围): 取承受竖向力的受拉钢筋截面积一半318mm2.箍筋实配: d8@150牛腿上部2/3h0范围内: A sh=402mm2>318mm2满足要求.弯起钢筋面积计算计算弯筋用量: 取承受竖向力的受拉钢筋截面积一半318mm2.弯筋实配: 2E20A sb=628mm2(ρ=0.21%)>318mm2满足要求.---------------------------------------------------------------------------------------------------------------------1:30实际配筋简图。

钢筋混凝土牛腿的设计

钢筋混凝土牛腿的设计

(4)牛腿顶面承受竖向力所需的水平钢筋和承受水平 拉力所需的锚筋组成的受力钢筋总截面面积:
As
1.65 3 a h0 f y
s d Fv f t bh0
1.2
d Fh
fy
牛腿中承受竖向力所需的水平箍筋总截面面积:
1 s d Fv f t bh0 Ash 1.65 3 a h0 f yh
(2)牛腿外形尺寸还应满足以下要求: 牛腿外边缘高度 h1>h/3 ,且不应小于 200mm 。 吊车梁外边缘至牛腿外缘的距离不应小于 100mm。
(3)牛腿顶面在竖向力设计值Fv作用下,局部受
压应力不应超过0.90fc,否则应采取加大受压面积,
提高混凝土强度等级或配置钢筋网片等有效措施。
三、牛腿的配筋计算与构造
牛腿的破坏形态有两种,两种配筋方法也有两
种。
1、剪跨比 a/h0>0.2(13.8.2 条)
(1)这种破坏在为斜压杆的三角
形桁架。
(2)纵向受力钢筋由两部分组成:
承受竖向力Fv 所需的受拉钢筋
承受水平拉力 Fh 所需的锚筋
用《混凝土结构设计规范》(GBJ10-89)中的有关
条文,规定当a/h0<0.3时取a/h0=0.3进行配筋计算, 这往往造成牛腿顶部纵向受力钢筋用量过多的不合 理现象。
(3)在DL/T 5057-2009修编时,进行了专题研 究,进行了
36个独立牛腿小剪跨比(0.3,0.2,0.1,0)的
加载试验,
(1)牛腿截面出现斜裂缝时的荷载降低。
(2)牛腿的极限承载能力也降低。 (3)有水平拉力作用的牛腿与仅有竖向力作用的 牛腿的破坏规律相似,仍然是两种破坏。

牛腿设计

牛腿设计

图 35 加劲肋示意图
截面类型属 b 类截面,查表得 满足要求。

满足要求。
3、5 焊缝验算 ,腹板上竖向焊缝得有效面积为:
焊缝最外边缘得截面模量为: 翼缘与腹板连接处得截面模量为:
在弯矩作用下角焊缝最大应力为:
3、6 加劲肋设计
图 34 焊缝计算简图
取加劲肋。 外伸长度为,且宜大于,故取为; 宽度,故取宽度为。 布置如左图: 3、7 稳定性验算
A=(90+90)×6+(100×2+6)×8=27、28
图 31 牛腿根部支座反力影响线示意
根据吊车梁设计,吊车梁截面面积,Q235 钢得密度为,吊车梁自重,轨道自重, 由吊车最大轮压引起得支座反力标准值为:

则牛腿根部承受剪力为:
3、2 截面选择 牛腿选用 力作用点处截面为
=36、04KN
牛腿剖面示意图
3、3 截面特性
牛腿根部截面:
A=300×10×2+(45020)×6
第三章 牛腿设计
3、1 设计资料 厂房跨度,柱间距为,吊车荷载,轮 距,行车宽度,最大轮压 P=85KN, 偏心距,外伸长,牛腿型号,材料 Q235,截面高,截面宽,翼缘厚,腹 板厚,力得作用点处截面为。焊条 采用 E43 系列,手工焊。连接焊缝 采用沿周边围焊,转角处连续施焊, 没有起弧落弧所引起得焊口缺焊, 且假定剪孔仅由牛腿腹板焊缝承 图 受,并对工字型翼缘端部绕转部分 焊缝忽略不计。
=55

80
S=300×10×220

6×215×215/2=798 、
68
3、4 强度验算
3、4、1 抗弯强度
M x Wx
36.04106 1.05 822.02 103

牛腿设计

牛腿设计

大跨度钢筋混凝土箱梁梁端牛腿设计一、基本资料牛腿尺寸见附图所示。

荷载:汽车荷载:公路I 级,荷载组合=1.2恒载+1.4汽车荷载挂梁为13m 跨实心板,80cm 板厚,10cm 桥面铺装桥面全宽:8.0m (双车道),牛腿用30#砼(C30),II 级钢筋,四氟板式橡胶支座,05.0=μ 二、设计计算内容牛腿截面强度验算:计算支座外力R 和H 恒载为:()kN R 8.579231.0813258.081341=⨯⨯⨯+⨯⨯⨯=恒 汽车荷载为: ()()kN R 086.40021315.10112122.11124.01q m y P m 1k i k k k =⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯⨯⨯+=Ω++=∑ξμ)(汽车则荷载组合为:kN R R R 88.1255086.4004.18.5792.14.12.1=⨯⨯+⨯=+=汽车恒组合 支座摩阻力为:kN R R 79.6288.125505.005.0=⨯=⨯=组合摩汽车制动力为:kN l q P R k k 85.34%10)(1=⨯+=kN R 5.8221652== kN R 5.82=∴制取综上所述:支座外力R =1255.88kN ,H =82.5kN(一) 竖截面I-I 的验算作用于竖截面I-I 的内力为:kN H N 5.820===ϑkNR Q 88.12550===ϑm kN h H M ⋅=⎪⎭⎫ ⎝⎛+⨯+⨯=++==70.40705.0265.05.823.088.1255)2(Re 0εϑ 1. 按偏心受拉构件验算截面根据题意,知截面尺寸为mm b 8253002/350350'=++=,h =650mm ,计算纵向力kN N j 5.82=,弯矩m kN M j ⋅=70.407,mPa R a 5.17=,mPa R R g g 340'==,取a=a ’=40mm, 则偏心距为:mm a h mm N M e j j28540265024942105.821070.407360=-=->=⨯⨯== 属于大偏心受拉的情况。

钢牛腿设计

钢牛腿设计

钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t120腹板宽ts14下翼缘宽bf2400下翼缘厚t220腹板高度hw660荷载竖向压力设计值F=950kN柱边与竖向压力距离e=0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)连接,腹板和柱的连接采用角焊缝连接。

二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+ts*hw=25240mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=336.83mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=3442370.3mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=2150780621mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6201245.5mm3Wn2=In/(hw+t1+0.5*t2-y)=6089938mm3下翼缘外边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=108.61N/mm2<125 N/mm2,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=6455513.4mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=2745357mm3腹板下端的正应力σ1σ1= M/W’n2=73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(It w)=86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=167.10N/mm2<1.1*215 N/mm2三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。

钢牛腿设计

钢牛腿设计

钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t20腹板宽ts14下翼缘宽bf2400下翼缘厚t20腹板高度hw660荷载竖向压力设计值F=950柱边与竖向压力距离0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(m10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+t25240mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf336.83mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y3442370mm3净截面的惯性矩In(0.5*hw+0.5*t1-y)腹板中心距与y的距离In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a =2.15E+09mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6E+06mm3Wn2=In/(hw+t1+0.5*######mm3下翼缘外边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力τ108.61N/mm2<215 N/mm2 ,满足要求τ=VS/(Itw)截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t6E+06mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2745356.577mm3腹板下端的正应力σ1σ1= M/W’n73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(Itw86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=######N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。

钢筋混凝土牛腿的设计

钢筋混凝土牛腿的设计
βs——受力钢筋配筋量调整系数,取βs =0.6~0.4,剪跨比 较大时取大值,剪跨比较小时取小值。
(5)牛腿中承受竖向力所需的水平箍筋均匀配
置在牛腿全高范围内。
(6)承受竖向力所需的顶部受拉钢筋的配筋率,
不应小于0.15%。
(7)水平箍筋宜采用HRB335,直径不应小于
8mm,间距在100~150mm之间,配箍率不应小于 0.15%
2、剪跨比 a/h0<0.2(13.8.3 条): (1)混凝土剪切破坏,顶部纵向受力钢筋达不到
抗拉强度。
(2)以纵向受力钢筋为水平拉杆,混凝土为斜压
杆的三角形桁架假定显然已不合理。
(3)牛腿承载力由顶部纵向受力钢筋、水平箍筋 与混凝土三者共同提供。牛腿应在全高范围内设 置水平钢筋。
9.7 双向板肋形结构的设计
用《混凝土结构设计规范》(GBJ10-89)中的有关
条文,规定当a/h0<0.3时取a/h0=0.3进行配筋计算, 这往往造成牛腿顶部纵向受力钢筋用量过多的不合 理现象。
(3)在DL/T 5057-2009修编时,进行了专题研 究,进行了
36个独立牛腿小剪跨比(0.3,0.2,0.1,0)的
加载试验,
(4)牛腿顶面承受竖向力所需的水平钢筋和承受水平 拉力所需的锚筋组成的受力钢筋总截面面积:
As
1.65 3 a h0 f y
s d Fv f t bh0
1.2
d Fh
fy
牛腿中承受竖向力所需的水平箍筋总截面面积:
1 s d Fv f t bh0 Ash 1.65 3 a h0 f yh
Fhk Fvk 1 0.5 Fvk
f tk bh0 0.5 a h0

钢结构课程设计3t牛腿标高5.1m

钢结构课程设计3t牛腿标高5.1m

8设计计算说明书一.设计题目:某机加工车间设计 二.设计资料: 1. 车间基本参数某公司因生产需要,拟在济南郊区建设一座单层单跨机加工车间(设计使用寿命50年),车间建筑平面,剖面图见下图图1 车间建筑平面图‘图2 车间建筑剖面示意图车间采用排架结构,下部为排架柱和钢筋混凝土独立基础,上部采用钢屋架结构,屋架与排架柱铰接,车间内设有一台A4工作制的软钩梁式吊车,屋架下弦距离牛腿顶面1.8m ,轨道高度130mm 。

排架柱采用混凝土实腹矩形,吊车梁采用工字形钢吊车梁,抗风柱为矩形截面钢筋混凝土柱。

车间屋面采用75mm 厚彩色夹芯钢板,屋面檩条为C 型钢(5.22070180⨯⨯⨯C )。

檩条间距约1.5m ,车间四周的围护墙,采用240mm 厚砖墙,内外各抹灰20mm 厚,纵墙塑钢窗洞口高为1.8m ,宽为2.4m ,上下共两层。

2. 车间荷载,材料自重,抗震设防等级 (1) 屋面活荷载标准值:0.52m kN (不上人屋面,无积灰荷载)(2) 基本风压:0.452m kN (3) 基本雪压:0.302m kN(4) 屋面75mm 厚夹芯钢板及檩条自重标准值:0.252m kN(5) 钢屋架及屋面支撑自重标准值:0.352m kN(6) 钢筋混凝土自重253mkN;砖及抹灰自重203mkN;回填土自重203m kN(7) 抗震设防等级:6度 3. 荷载组合(1) 钢屋架:为简化计算,屋面暂不考虑风荷载作用,首先计算一榀典型简支屋架的内力系数,然后计算在下述三种荷载标准值下的杆件内力:全跨永久荷载,全跨屋面活荷载,半跨屋面活荷载,然后进行内力组合。

(2) 排架柱:不考虑车间的空间作用,将钢屋架简化成刚度无穷大的水平横梁,两端与排架柱铰接连接,然后计算排架在各种荷载下的内力,最后进行内力组合。

4. 地质情况经过勘测,地表土为人工填土,1.2m 厚,不宜作为天然地基土,建议全部挖除;其下为粘土,地基承载力特征值kPa f ak 200=,压缩模量MPa E S 10=,适宜作为地基持力层,场地地下水静止水位埋深10.5m ,可不考虑水质对基础混凝土的侵蚀,最大冻土深度可按0.5m 考虑。

5 计算书牛腿的设计计算

5  计算书牛腿的设计计算

5 牛腿的设计计算5.1 牛腿所受作用力的设计值3431(38 6.09.810785088.410 6.09.8100.56) 4.6582D P ---=⨯⨯⨯+⨯⨯⨯⨯⨯+⨯=k Nmax max,221.051 1.05921128.866k D P ⎛⎫⎛⎫=+=⨯+= ⎪ ⎪⎝⎭⎝⎭kN max 1.2 1.4 1.2 4.658 1.4128.8185.91D V P D =+=⨯+⨯=kN185.910.3870.646M Ve ==⨯=kN·m图5-1 牛腿截面尺寸5.2 截面选择(截面如图5-1所示) 所需净截面抵抗矩为:6370.64610312.9391.0521510x nx x M W f γ⨯===⨯⨯cm 3 按经验公式得经济高度为:337307312.9393017.5e x h W =-=-=cm参照以上数据,考虑到截面高度大一些,更有利于增加刚度,初选截面高度为30h =cm 。

腹板厚度按负担支点处最大剪力需要得:31.5 1.5185.91107.44300125w w v V t h f ⨯⨯===⨯mm 按经验公式估算: 30 1.651111ww h t ===cm 选用腹板厚度为:10w t =mm依近似公式计算所需翼缘板面积:312.939 1.030 5.436306x w w w W t h bt h ⨯=-=-=cm 2 试选翼缘板厚度为:14t =mm ,翼缘板宽度为200mm ,翼缘得外伸宽度为: ()120010952b -==mm ,952356.1131314yf =<= 所以翼缘板得局部稳定可以保证。

使用变截面牛腿,端部截面高度为:200h =mm 。

5.3 强度验算20 1.42(30 1.42) 1.083.2A =⨯⨯+-⨯⨯=cm 2()()3311203020 1.030 1.4213137.55731212x I =⨯⨯-⨯-⨯-⨯=cm 4 13137.5573875.83715x x I W h ===cm 3 ,492.880S =cm 3` 正应力为:6370.6461076.821.05875.83710x x x M W σγ⨯===⨯⨯N/mm 2<215f =N/mm 2 剪应力为:64185.91492.8801069.7513137.55731010x w VS I t τ⨯⨯===⨯⨯N/mm 2<125v f =N/mm 2 强度满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构牛腿设计毕业设计
钢结构牛腿设计毕业设计
引言
在现代建筑设计中,钢结构被广泛应用于各种建筑物中,其优越的强度和耐久性使其成为许多工程项目的首选材料。

本篇文章将探讨钢结构牛腿设计的毕业设计项目,旨在展示钢结构在建筑设计中的应用和创新。

第一部分:钢结构的优势
钢结构作为一种重要的建筑材料,具有许多优势。

首先,钢材具有出色的强度和刚性,可以承受较大的荷载。

其次,钢材具有较高的耐腐蚀性,能够抵御恶劣环境的侵蚀。

此外,钢结构的施工速度快,能够节省时间和成本。

最后,钢结构还具有可塑性,可以实现各种复杂的形状和结构。

第二部分:钢结构牛腿设计的意义
钢结构牛腿设计是一项具有挑战性和创新性的毕业设计项目。

牛腿是建筑中的重要支撑结构,其设计需要考虑到荷载分布、结构强度和稳定性等因素。

钢结构的应用使得牛腿设计更加灵活和可行,为建筑师提供了更多的设计空间。

第三部分:设计过程
钢结构牛腿设计的过程包括以下几个步骤。

首先,需要进行荷载计算,确定牛腿所承受的荷载大小和分布情况。

其次,根据荷载计算结果,进行结构设计,确定牛腿的形状、尺寸和材料。

然后,进行结构分析,验证设计的合理性和稳定性。

最后,进行施工图设计,详细说明牛腿的构造和连接方式。

第四部分:案例分析
为了更好地理解钢结构牛腿设计的实际应用,我们可以分析一个具体的案例。

以一座大型体育馆为例,设计师需要设计一组牛腿来支撑屋顶结构。

通过荷载计算和结构分析,设计师确定了牛腿的形状为倒梯形,材料为高强度钢。

在施工图设计中,设计师详细说明了牛腿的连接方式和支撑结构。

最终,这组钢结构牛腿成功地支撑起了整个体育馆的屋顶。

结论
钢结构牛腿设计是一项具有挑战性和创新性的毕业设计项目。

通过合理的荷载计算、结构设计和施工图设计,钢结构牛腿能够有效地支撑建筑物的结构,并为建筑师提供更多的设计空间。

未来,随着科技的进步和建筑设计的发展,钢结构牛腿设计将继续发挥重要作用,为建筑师创造更多的可能性。

相关文档
最新文档