(完整版)高中数学数列综合练习题

合集下载

(完整版)高二数学数列专题练习题(含答案),推荐文档

(完整版)高二数学数列专题练习题(含答案),推荐文档

高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。

b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

精选高中数学单元测试试题-数列专题完整题库(含答案)

精选高中数学单元测试试题-数列专题完整题库(含答案)

2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为_______ 2.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n 项an 等于 A.2n-5 B.2n-3 C.2n-1D.2n+13.某大楼有20层,有19人在第一层上了电梯,他们分别要去第2层到20层,每层一人,而电梯只允许停一次,可只使一人满意,其余18人都要上楼或下楼。

假设乘客每向下走一层不满意度为1,每向上走一层不满意度为2。

所有人不满意之和为S ,为使S 最小,电梯应停在第( )层。

A,15 B,14 C,13 D,12第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b +=+,则201011()2010i i i a b =+∑的值是 ▲ .5.1、各校(园):请各单位对照本单位实际,按马校长的要求做好校园安全工作。

马校长强调:近期安全要关注之处1、学生上下学安全,和家长定接送安全责任状,上学的时候有人值班校干带班。

2、校内各个区域的安全值班,重要的是有人带班和检查一下值班情况。

3、食堂食品和学生饮用水情况。

4、传达室的物品摆放情况和值班情况,不可以让人员随意进出学校。

5、进行特异体质学生调查,统计,跟踪分析一下。

6、对学生的安全教育情况,7、带领全体职工学习安全职责。

8、学校的线路情况如何。

9、楼梯口的安全值班情况。

10、保安的管理情况,不可以有超过七十岁的安保人员。

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

高中数学等比数列专项训练题(含答案)

高中数学等比数列专项训练题(含答案)

高中数学等比数列专项训练题(含答案)一、单选题1.设是等比数列,且。

则()A。

12 B。

24 C。

30 D。

322.记S_n为等比数列{a_n}的前n项和.若a_5–a_3=12,a_6–a_4=24,则A。

2n–1 B。

2–2^(1–n) C。

2–2n–1 D。

2^(1–n)–13.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()=()A。

3699块 B。

3474块 C。

3402块 D。

3339块4.在等差数列().A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项5.数列,则()中。

若,中。

.记,则数列A。

2 B。

3 C。

4 D。

56.设比()为等比数列的前___,已知。

则公A。

3 B。

4 C。

5 D。

67.在公比为2的等比数列{a_n}中,前n项和为S_n,且S_7–2S_6=1,则a_1+a_5=()A。

5 B。

9 C。

17 D。

338.已知正项等比数列,则n为()满足,若,A。

5 B。

6 C。

9 D。

109.已知数列成等差数列,则()1.缺少选项,无法回答。

2.缺少选项,无法回答。

3.答案为B。

根据等比数列的通项公式,第n项为$a_n=a_1q^{n-1}$,代入式中可得$\frac{a_1(q^n-1)}{q-1}=S_n$。

4.答案为D。

由于等比数列的公比为正数,所以只有选项D成立。

5.缺少选项,无法回答。

6.缺少选项,无法回答。

7.答案为A。

由于等比数列的通项公式为$a_n=a_1q^{n-1}$,所以$\frac{a_{n+1}}{a_n}=q$,即$a_{n+1}=a_nq$。

代入式中可得$\frac{a_1(q^{n+1}-1)}{q-1}=S_{n+1}$。

高中数学数列多选题专项训练100含解析

高中数学数列多选题专项训练100含解析

一、数列多选题1.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 2.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =答案:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确;∵,,故有,故B 正确; 该数【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 4.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.答案:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 5.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误.令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.6.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 7.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 8.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+答案:AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.9.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-,131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】 考查等差数列的有关量的计算以及性质,基础题.。

高中数学数列100题整理(数列题库)

高中数学数列100题整理(数列题库)
76.当q=2,n=3时,用列举法表示集合A.
77.设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.
37.若1和a的等差中项是2,则a的值为()A.4 B.3 C.1 D.﹣4
38.在等比数列{an}中,若an>0,且a3,a7是x2﹣32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=()A.27 B.36 C.18 D.9
39.已∈N*,则数列{an}的通项公式为()A.an=( )n﹣1B.an=( )nC.an= D.an=
21.已知数列{an}的前n项和Sn=2an﹣2n+1,若不等式2n2﹣n﹣3<(5﹣λ)an对∀n∈N*恒成立,则整数λ的最大值为( )A.3 B.4 C.5 D.6
22.已知数列{an}满足a1=10,且2an+1=2an﹣3,若ak•ak+1<0,则正整数k=( )A.6 B.7 C.8 D.9
已知数列 是等比数列,首项 ,公比 ,其前 项和为 ,且 , , 成等差数列.
73.求数列 的通项公式;
74.若数列 满足 , 为数列 的前 项和,且 对任意 恒成立,求实数 的最大值.
75.(2018•北京)设 是等差数列,且 , +a3=5 .
(Ⅰ)求 的通项公式;
(Ⅱ)求 + +…+ .
已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
23.已知由正数组成的等比数列{an}中,公比q="2," a1·a2·a3·…·a30=245,则a1·a4·a7·…·a28= ( ) A.25B.210C.215D.220

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

人教版高中数学必修5《数列》练习题(有答案)

人教版高中数学必修5《数列》练习题(有答案)

必修5 数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 .解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a aa a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。

1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于( ) A .15 B .30 C .31 D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .543. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++,要使得T n n 都成立,三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列.④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, .3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,若015=a ,则有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,若119=b ,则有等式成立.解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,则有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,若n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在本题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( )A .1B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( ) A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于 ( )A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a .二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析: 由a 1+a 2+…+a n =2n -1 ① n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2 又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列 ∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .解析一: ∵S 2n ≠2S n ,∴q ≠1 根据已知条件121(1)481(1)601n na q qa q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②②÷①得:1+q n =45即q n =41 ③ ③代入①得q a -11=64 ④解析二:∵{a n}为等比数列∴(S2n-S n)2=S n(S3n-S2n)20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).解析:当x=1时,S n=1+3+5+…+(2n-1)=n2当x≠1时,∵S n=1+3x+5x2+7x3+…+(2n-1)x n-1,①等式两边同乘以x得:xS n=x+3x2+5x3+7x4+…+(2n-1)x n.②21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.解析:∵a1a n=a2a n-1=128,又a1+a n=66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 则a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。

高中数学——数列综合测试

高中数学——数列综合测试

高中数学——数列综合测试时间120分钟 满分100分一、选择题(共10题,满分20分)1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( ) A. 21 B. 22 C. 2 D.2 2.已知等比数列{}n a 满足0,1,2n a n >= ,且25252(3)n n a a n -⋅=≥,则当1n ≥时,212322l o g l o g l o g n a a a -+++=( ) A. (21)n n - B. 2(1)n + C. 2n D. 2(1)n -3.已知为等差数列,,则等于( ) A. -1B. 1C. 3D.7 4.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于 ( ) A. 18 B. 24 C. 60 D. 905.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )A .13B .35C .49D . 636.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( )A .1B 53 C.- 2 D 3 7.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是( )A. 90B. 100C. 145D. 1908.等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( )A .38 B.20 C.10 D.99.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是 ( )A.21B.20C.19D.1810.古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。

新人教版高中数学选修二第一单元《数列》测试题(答案解析)(4)

新人教版高中数学选修二第一单元《数列》测试题(答案解析)(4)

一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.已知数列{}n a 满足21n n n a a a ++=+,*,n N ∈.若564316a a +=,则129a a a ++⋅⋅⋅+=( )A .16B .28C .32D .483.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .724.朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包善钢琴,故朱载堉被誉为“钢琴理论的鼻担”.“十二平均律"是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率为3f ,第九个音频率9f ,则93f f 等于( ) ABCD5.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T6.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项7.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .08.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13nS n = C .13(1)n a n n =--D .{}3n S 是等比数列9.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( ) A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 10.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③B .①②C .①③D .①④11.设等差数列{}n a 的前n 项和为n S ,若130S >,140S <,则n S 取最大值时n 的值为( ) A .6B .7C .8D .1312.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.14.已知数列{}n a 的前n 项和为n S ,且满足:11a =,22a =,()*211n n n S a a n +++=-∈N ,则n S =______.15.已知正项数列{}n a ,满足()*12nn n a a n N +⋅=∈,且()20201232020321a a a a ++++<-,则首项1a 的取值范围是______.16.数列{}n a 的前n 项和n S 满足22n n S a =-,则数列{}n a 的通项公式n a =______.17.已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.18.设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201620171a a >,20162017011a a -<-,给出下列结论:①01q <<;②2016201810a a ->;③2016T 是数列{}n T 中的最大项;④使1n T >成立的最大自然数等于4031;其中正确结论的序号为______.19.已知数列{}n a 为等差数列,其前n 项和为n S ,且675S S S >>,给出以下结论:①0d <;②110S >;③120S >;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确的有______.(写出所有正确结论的序号)20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.在①35a =,2526a a b +=;②22b =,3433a a b +=;③39S =,4528a a b +=三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =,___________;求数列{}n a 、{}n b 的通项公式.22.已知等差数列{}n a 满足:2414,a a +=613a =.{}n a 的前n 项和为n S (1)求n a 及n S (2)令211n n b a =- (*n N ∈),数列{}n b 的前n 项和为n T ,求证:1184n T ≤< 23.在①{}n a 是等比数列,且11a =,其中1a ,21a +,31a +成等差数列;②数列{}n a 中,12a =,且()13212n n S S n n n --=-;③11a =,120n n a a ++=.这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由. 已知数列{}n a 和等差数列{}n b 满足___________,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)注:如果选择多个条件分别解答,按第一个解答计分. 24.在数列{}n a 中,已知11a =,121n n a a n +=++. (1)求数列{}n a 的通项公式; (2)设141n n b a =-,求数列{}n b 的前20项和20T .25.已知正项等比数列{}n a 满足2139nn a +=⋅,3log n n b a =,且n b ,n c ,4n +成等差数列.(1)求数列{}n c 的通项公式;(2)求数列()1n n c n b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前100项和100T .26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =.(1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式. (2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列nn ba⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.C解析:C 【分析】由21n n n a a a ++=+,分别求出3456789,,,,,,a a a a a a a 关于12,a a 的表达式, 再利用564316a a +=,即可求解 【详解】由21n n n a a a ++=+可得,321a a a =+,432212a a a a a =+=+5432132a a a a a =+=+,6542153a a a a a =+=+,7652185a a a a a =+=+, 87621138a a a a a =+=+,987212113a a a a a =+=+, ∴129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,564316a a +=,21214(32)3(53)16a a a a ∴+++=,即21271716a a +=, ∴129212154342(2717)32a a a a a a a ++⋅⋅⋅+=+=⨯+=故选:C 【点睛】关键点睛,利用递推式21n n n a a a ++=+,求得129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,再利用564316a a +=,求得21271716a a +=,进而求解,主要考查学生的数学运算能力,属于中档题3.A解析:A【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.4.A解析:A 【分析】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,推导出1122q =,由此能求出93f f 的值. 【详解】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,则12131=a a q ,且1312=a a ,1122∴=q ,86912316191232⎛⎫=∴==== ⎪⎝⎭q q f q a a f a a 故选:A . 【点睛】关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将13个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.5.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾,若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.6.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.7.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①,当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .8.C解析:C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 1113S a ==,113S =,公差3d =,所以133(1)3nn n S =+-=,所以13n S n=,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.9.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1.∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.10.B解析:B 【分析】利用等差数列的前n 项和的性质可得正确的选项. 【详解】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确; 111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B. 【点睛】本题考查等差数列的性质, 考查等差数列前n 项和的性质.11.B解析:B 【解析】分析:首先利用求和公式,根据题中条件130S >,140S <,确定出780,0a a ><,从而根据对于首项大于零,公差小于零时,其前n 项和最大时对应的条件就是10n n a a +≥⎧⎨≤⎩,从而求得结果.详解:根据130S >,140S <,可以确定11371147820,0a a a a a a a +=>+=+<,所以可以得到780,0a a ><,所以则n S 取最大值时n 的值为7,故选B.点睛:该题考查的是有关等差数列的前n 项和最大值的问题,在求解的过程中,需要明确其前n 项和取最大值的条件10n n a a +≥⎧⎨≤⎩,之后就是应用题的条件,确定其相关项的符号,从而求得结果.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。

2022秋新教材高中数学习题课一等差数列等比数列的综合新人教A版选择性必修第二册

2022秋新教材高中数学习题课一等差数列等比数列的综合新人教A版选择性必修第二册

习题课(一) 等差数列、等比数列的综合一、选择题1.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=( )A.2n-1B.n-1C.n-1D.解析:选B 因为a n+1=S n+1-S n,所以由S n=2a n+1,得S n=2(S n+1-S n),整理得3S n=2S n+1,所以=,所以数列{S n}是以S1=a1=1为首项,为公比的等比数列,故S n =n-1.2.已知数列{a n},a1=2,a n+1-2a n=0,b n=log2a n,则数列{b n}的前10项和等于( )A.130 B.120 C.55 D.50解析:选C 在数列{a n}中,a1=2,a n+1-2a n=0,即=2,所以数列{a n}是以2为首项,2为公比的等比数列.所以a n=2×2n-1=2n.所以b n=log22n=n.则数列{b n}的前10项和为1+2+…+10=55.故选C.3.[多选]已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<9,则k可以是( )A.9 B.8 C.7 D.6解析:选AB ∵S n=n2-9n,∴当n≥2时,a n=S n-S n-1=2n-10.又a1=S1=-8,符合上式.∴a n=2n-10(n∈N*),∴5<2k-10<9,解得7.5<k<9.5,∴k=8或9.故选A、B.4.在数列{a n}中,已知S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值为( )A.13 B.-76 C.46 D.76解析:选B ∵S15=(-4)×7+(-1)14(4×15-3)=29,S22=(-4)×11=-44,S31=(-4)×15+(-1)30(4×31-3)=61,∴S15+S22-S31=29-44-61=-76.5.已知数列{a n}是递增的等比数列,且a4a6-2a+a2a4=144,则a5-a3=( ) A.6 B.8 C.10 D.12解析:选D ∵{a n}是递增的等比数列,∴由a4a6-2a+a2a4=144,a5-a3>0可得a-2a3a5+a=144,(a5-a3)2=144,∴a5-a3=12,故选D.6.已知各项均不为0的等差数列{a n}满足a3-2a+3a7=0,数列{b n}是等比数列,且b6=a6,则b1b7b10等于( )A.1 B.2 C.4 D.8解析:选D 根据等差数列的性质,得a3+a7=2a5,a5+a7=2a6.又a3-2a+3a7=0,所以2a5+2a7-2a=0,即2a6=a,解得a6=2或a6=0(舍去),所以b6=a6=2,则b1b7b10=b2b6b10=b=8.二、填空题7.对于项数为m(m≥3)的有穷数列{a n},若存在项数为m+1的等比数列{b n},使得b k<a k<b k+1,其中k=1,2,…,m,则称数列{b n}为{a n}的“等比分割数列”.已知数列7,14,38,60,则该数列的一个“等比分割数列”可以是______.(写出满足条件的一个各项为整数的数列即可)解析:取一个首项为6,公比为2的数列即满足b k<a k<b k+1,其中k=1,2,…,m.答案:6,12,24,48,968.已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1·b n=0.若b n=3n-1,则数列{a n}的前n项和S n=________.解析:因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0,所以-=2,所以数列是以=1为首项,2为公差的等差数列,故=2n-1.由b n=3n-1,得a n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1×30+3×31+5×32+…+(2n-1)×3n-1,3S n=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,两式相减得-2S n=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.答案:(n-1)3n+1三、解答题9.已知数列{a n}的前n项和为S n,a n=3S n+1(n∈N*).(1)求a1,a2;(2)求数列{a n}的通项公式.解:(1)由a n=3S n+1,得a n+1=3S n+1+1,两式相减,得a n+1-a n=3(S n+1-S n)=3a n+1,即=-.又a1=3S1+1=3a1+1,得a1=-,所以a2=-×=.(2)由(1)知,数列{a n}是首项为-,公比为-的等比数列,所以a n=×n-1=n.10.已知公差不为0的等差数列{a n}的首项a1=a,a≠0,前n项和为S n,且,,成等比数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为A n,若A2 021=,求实数a的值.解:(1)设等差数列{a n}的公差为d,由2=·,即a=a1·a4,得(a1+d)2=a1(a1+3d).因为d≠0,所以d=a1=a,所以a n=a+(n-1)a=na.(2)因为S n==,所以=,所以A n=+++…+=+++…+=.又A2 019==,所以a=2.11.(2021·全国乙卷)设{a n}是首项为1的等比数列,数列{b n}满足b n=.已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式.(2)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n<.解:(1)设等比数列{a n}的公比为q.∵a1,3a2,9a3成等差数列,∴6a2=a1+9a3,即6q=1+9q2,解得q=.∴a n=n-1,∴b n==n n.(2)证明:由(1)得,S n====-×n-1.T n=1×1+2×2+3×3+…+n n, ①则T n=1×2+2×3+3×4+…+n n+1. ②①-②,得T n=1+2+3+…+n-n n+1=-n n+1=-×n,∴T n=-×n.∵=-×n-1=-×n,且3+2n>3,∴当n为正整数时,T n<.。

精选高中数学数列多选题专项训练100含答案

精选高中数学数列多选题专项训练100含答案

一、数列多选题1.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2-B .1-C .1D .2答案:ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立, 由12+n 递减,且1223n<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.2.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .65答案:ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 4.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =答案:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC5.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.6.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.7.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S =,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22答案:AD运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.8.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21答案:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.9.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =答案:ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 10.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >答案:ABD 【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确. 【详解】根据题意可知数列为递增解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD.【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

高中数学第4章数列1_4综合拔高练苏教版选择性必修第一册

高中数学第4章数列1_4综合拔高练苏教版选择性必修第一册

综合拔高练五年高考练考点1 等差数列及其应用 1.(2020全国Ⅱ,4,5分,)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块 2.(2020浙江,7,4分,)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且a1a ≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式不可能成立的是 ( )A.2a 4=a 2+a 6B.2b 4=b 2+b 6C.a 42=a 2a 8D.a 42=b 2b 83.(2019课标全国Ⅰ,9,5分,)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8n D.S n =12n 2-2n4.(2020新高考Ⅰ,14,5分,)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 . 5.(2020浙江,11,4分,)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{a (a +1)2}就是二阶等差数列.数列{a (a +1)2}(n ∈N *)的前3项和是 .6.(2019课标全国Ⅲ,14,5分,)记S n 为等差数列{a n }的前n 项和,若a 1≠0,a 2=3a 1,则a 10a 5= .7.(2019北京,10,5分,)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .8.(2019课标全国Ⅰ,18,12分,)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.考点2 等比数列及其应用 9.(2020全国Ⅰ,10,5分,)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A.12B.24C.30D.32 10.(2018北京,4,5分,)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为 ( ) A.√23f B.√223fC.√2512 fD.√2712f 11.(2019课标全国Ⅰ,14,5分,)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= .12.(2020全国Ⅲ文,17,12分,)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.13.(2019课标全国Ⅱ,19,12分,)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.考点3数列的综合问题14.(2020江苏,11,5分,)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知数列{a n+b n}的前n项和S n=n2-n+2n-1(n∈N*),则d+q的值是.15.(2020全国Ⅰ,16,5分,)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=.16.(2020新高考Ⅰ,18,12分,)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.考点4数学归纳法*17.(2020全国Ⅲ理,17,12分,)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.三年模拟练应用实践1.(多选)(2020江苏盐城高二期末,)设d,S n分别为等差数列{a n}的公差与前n项和,若S10=S20,则下列判断中正确的有()A.当n=15时,S n取最大值B.当n=30时,S n=0C.当d>0时,a10+a22>0D.当d<0时,|a10|>|a22|2.(多选)(2020江苏苏州实验中学高二月考,)已知等差数列{a n }的首项为1,公差d =4,前n 项和为S n ,则下列结论成立的有( )A.数列{a aa}的前10项和为100B.若a 1,a 3,a m 成等比数列,则m =21C.若∑a =1a1a a a a +1>625,则n 的最小值为6D.若a m +a n =a 2+a 10,则1a +16a 的最小值为2512 3.(2020四川南充西南大学实验学校高一月考,)已知数列{log a b n }(a >0且a ≠1)是首项为2,公差为1的等差数列,若数列{a n }是递增数列,且满足a n =b n lg b n ,则实数a 的取值范围是( )A.(23,1) B.(2,+∞)C.(23,1)∪(1,+∞) D.(0,23)∪(1,+∞) 4.(2020山东济宁实验中学高二上期中,)古代埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都可写成若干个单分数和的形式.例如25=13+115,可这样理解:有两个面包,要平均分给5个人,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如22a -1(n ≥3,n ∈N *)的分数的分解:25=13+115,27=14+128,29=15+145,按此规律,22a -1=(n ≥3,n ∈N *).5.(2021河南豫南九校高二联考,)已知数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,其中a 1=1,3S n =(n +m )a n (m ∈R),且a n b n =15.若对任意n ∈N *,λ>T n 恒成立,则实数λ的最小值为 .6.(2021上海交通大学附属中学高三月考,)已知等差数列{a n }(公差不为零)和等差数列{b n },如果关于x 的方程2 021x 2-(a 1+a 2+…+a 2021)x +b 1+b 2+…+b 2021=0有实数解,那么以下 2 021个方程x 2-a 1x +b 1=0,x 2-a 2x +b 2=0,x 2-a 3x +b 3=0,……,x 2-a 2 021x +b 2 021=0中,无实数解的方程最多有个.7.(2021浙江宁波宁海中学高三二模,)已知{|a n |}是首项和公差均为1的等差数列,S n 为数列{a n }的前n 项和,记m n 为|S n |的所有可能取值中的最小值,则m 1+m 2+…+m 2 020= .a n+1,②a n+1=a n+2,③8.(2021江苏南京三校高三期中联考,)在下列三个条件①a n+1=12S n=2a n-1中选择一个补充在题中横线处,并作答.设数列{a n}的前n项和为S n,a1=1,对任意的n∈N*,都有,等比数列{b n}中,对任意的n∈N*,都有b n>0,2b n+2=b n+1+3b n,且b1=1,问:是否存在k∈N*,使得对任意的n∈N*,都有a n b k≤a k b n?若存在,试求出k的值;若不存在,请说明理由.9.(2020天津耀华中学高二上期中,)在数列{a n}中,已知a1=1,其前n项和为S n,且对任意的正整数n,都有2S n=(n+1)a n成立.(1)求数列{a n}的通项公式;(2)已知关于n 的不等式a 3-2a 3·a 4-2a 4·…·a a -2a a <√2a +1对一切n ≥3,n ∈N *恒成立,求实数a 的取值范围;(3)已知c n =(11+a a)2,数列{c n }的前n 项和为T n ,试比较T n 与23的大小并证明.迁移创新10.(2019北京高考,)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a a 1<a a 2<…<a a a ,则称新数列a a 1,a a 2,…,a a a 为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列. (1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为a a 0,长度为q 的递增子列的末项的最小值为a a 0.若p <q ,求证:a a 0<a a 0;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列的末项的最小值为2s -1,且长度为s 且末项为2s -1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.4.1~4.4综合拔高练五年高考练1.C由题意可设每层有n个环,则三层共有3n个环,∴每一环扇面形石板的块数构成以a1=9为首项,9为公差的等差数列{a n},且项数为3n.不妨设上层扇面形石板总数为S1,中层总数为S2,下层总数为S3,∴S3-S2=[9(2a+1)×a+a(a-1)2×9]-9(n+1)×n+a(a-1)2×9=9n2=729,解得n =9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+27×262×9=27×9+27×13×9=27×14×9=3402(块).故选C .2.D 对于A,a 2,a 4,a 6成等差数列,故A 成立;对于B,由b n +1=S 2n +2-S 2n =a 2n +2+a 2n +1,可得b n +1-b n =a 2n +2+a 2n +1-(a 2n +a 2n -1)=a 2n +2-a 2n +a 2n +1-a 2n -1=4d ,故{b n }是等差数列,则b 2,b 4,b 6也成等差数列,故B 成立;对于C,a 42=(a 1+3d )2=a 12+6a 1d +9d 2,a 2a 8=(a 1+d )·(a 1+7d )=a 12+8a 1d +7d 2,所以a 42-a 2a 8=2d 2-2a 1d =2d (d -a 1),当d =a 1时,a 42=a 2a 8成立;对于D,a 42=(a 1+a 2+12a )2=(2a 1+13d )2=4a 12+52a 1d +169d 2,b 2b 8=(a 1+a 2+4d )(a 1+a 2+28d )=(2a 1+5d )(2a 1+29d )=4a 12+68a 1d +145d 2,所以a 42-b 2b 8=24d 2-16a 1d =8d 2(3-2·a1a )≥8d 2>0,所以a 42≠b 2b 8,故D 不可能成立.故选D .3.A 设{a n }的公差为d ,依题意得,4a 1+4×32d =0①,a 1+4d =5②,联立①②,解得a 1=-3,d =2.所以a n =2n -5,S n =n 2-4n.故选A . 4.答案 3n 2-2n解析 ∵数列{2n -1}的项为1,3,5,7,9,11,13,…, 数列{3n -2}的项为1,4,7,10,13,…, ∴数列{a n }是首项为1,公差为6的等差数列, ∴a n =1+(n -1)×6=6n -5, ∴数列{a n }的前n 项和S n =(1+6a -5)×a2=3n 2-2n.5.答案 10 解析 数列{a (a +1)2}的前三项依次为1×22=1,2×32=3,3×42=6,∴所求和为1+3+6=10. 6.答案 4解析 设等差数列{a n }的公差为d , ∵a 2=3a 1,∴a 2=a 1+d =3a 1,∴d =2a 1, ∴S 10=10a 1+10×92d =100a 1,S 5=5a 1+5×42d =25a 1,又∵a 1≠0,∴a10a 5=4.7.答案 0;-10解析 解法一:设等差数列{a n }的公差为d , ∵a 2=-3,S 5=-10, ∴{a 1+a =-3,5a 1+5×42a =-10, 即{a 1+a =-3,a 1+2a =-2,解得{a 1=-4,a =1,∴a 5=a 1+4d =0,S n =na 1+a (a -1)2d =-4n +a 2-a 2=12(n 2-9n )=12(a -92)2-818,∵n ∈N *,∴n =4或n =5时,S n 取最小值,最小值为-10. 解法二:设等差数列{a n }的公差为d ,易得S 5=5(a 1+a 5)2=5a 3,∵S 5=-10,∴a 3=-2,又a 2=-3,∴d =1,∴a 5=a 3+2d =0,∴(S n )min =S 4=S 5=-10.8.解析 (1)设{a n }的公差为d. 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n. (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =a (a -9)a2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }. 9.D 设等比数列{a n }的公比为q , 故a 2+a 3+a 4=q (a 1+a 2+a 3), 又a 2+a 3+a 4=2,a 1+a 2+a 3=1, ∴q =2,∴a 6+a 7+a 8=q 5(a 1+a 2+a 3)=25=32,故选D .10.D 由题意知,十三个单音的频率依次构成首项为f ,公比为√212的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=√2712f ,故选D .11.答案1213解析 设{a n }的公比为q ,由a 42=a 6,得a 42=a 4·q 2,∴a 4=q 2.又∵a 4=a 1·q 3,∴a 1·q 3=q 2,又a 1=13,∴q =3.由等比数列求和公式可知S 5=13×(1-35)1-3=1213.12.解析 (1)设{a n }的公比为q ,则a n =a 1q n -1. 由已知得{a 1+a 1a =4,a 1a 2-a 1=8,解得{a 1=1,a =3.所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1.故S n =a (a -1)2.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0, 解得m =-1(舍去)或m =6.13.解析 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12a -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12a +n -12,b n =12[(a n +b n )-(a n -b n )]=12a -n +12.14.答案 4 解析易知q ≠1,则{a n +b n }的前n 项和S n =na 1+a (a -1)2d +a 1(1-a a )1-a =a 2n 2+(a 1-a 2)n -a 11-a q n +a 11-a=n 2-n +2n-1, ∴a2=1,q =2,即d =2,q =2,∴d +q =4. 15.答案 7解析 令n =2k (k ∈N *),则有a 2k +2+a 2k =6k -1(k ∈N *), ∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41, ∴前16项的所有偶数项和S 偶=5+17+29+41=92, ∴前16项的所有奇数项和S 奇=540-92=448, 令n =2k -1(k ∈N *),则有a 2k +1-a 2k -1=6k -4(k ∈N *).∴a2k+1-a1=(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k+1-a2k-1)=2+8+14+…+6k-4=a(2+6a-4)=k(3k-1)(k∈2N*),∴a2k+1=k(3k-1)+a1(k∈N*),∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13=102+a1,a15=140+a1,∴前16项的所有奇数项和S奇=a1+a3+…+a15=8a1+2+10+24+44+70+102+140=8a1+392=448.∴a1=7.16.解析(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8,(舍去),q2=2.解得q1=12由题设得a1=2,所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.17.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n,①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1,②①-②得-S n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1,所以S n=(2n-1)2n+1+2.知识拓展解决数列的求和问题,首先要得到数列的通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法,等差或等比数列的求和用公式法;(2)裂项相消法,形如a n =1a (a +a )(k ≠0),可裂项为a n =1a ·(1a -1a +a);(3)错位相减法,形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法,形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.三年模拟练1.BC 因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d.对选项A,因为无法确定a 1和d 的正负,所以无法确定S n 是否有最大值,故A 错误. 对选项B,S 30=30a 1+30×292d =30×(-292a )+15×29d =0,故B 正确.对选项C,a 10+a 22=2a 16=2(a 1+15d )=2(-292a +15a )=d >0,故C 正确.对选项D,a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d , 因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,所以|a 10|<|a 22|,故D 错误. 故选BC .2.AB 由已知可得a n =4n -3,S n =2n 2-n ,a a a =2n -1,则数列{aaa }为等差数列,则其前10项和为10×(1+19)2=100,故A 正确; 若a 1,a 3,a m 成等比数列,则a 32=a 1·a m ,所以a m =81,即a m =4m -3=81,解得m =21,故B 正确; 因为1aa a a +1=14(14a -3-14a +1),所以∑a =1a1a a a a +1=141-15+15-19+…+14a -3-14a +1=a 4a +1>625,解得n >6,因为n ∈N *,所以n 的最小值为7,故C 错误;由等差数列的性质可知m +n =12,所以1a +16a =112(1a +16a )(m +n )=1121+a a +16aa+16≥112×(17+2×4)=2512,当且仅当a a =16aa,即n =4m =485时取等号,因为m ,n ∈N *,所以n =4m =485不成立,故D 错误.故选AB.3.D 由题意得log a b 1=2,log a b n +1-log a b n =log a a a +1a a=1, ∴b 1=a 2,a a +1a a=a ,∴{b n }是以a 2为首项,a 为公比的等比数列,∴b n =a n +1.∵a n =b n lg b n ,∴a n =a n +1lg a n +1=(n +1)a n +1·lg a ,∵{a n }为递增数列,∴a n +1-a n >0,即[(n +2)a -(n +1)]a n +1·lg a >0.①当a >1时,lg a >0,a n +1>0,∴(n +2)a -(n +1)>0,即a >a +1a +2=1-1a +2,∵1a +2>0,∴1-1a +2<1,∴只需a >1即可满足[(n +2)a -(n +1)]a n +1·lg a >0.②当0<a <1时,lg a <0,a n +1>0,∴(n +2)a -(n +1)<0,即a <1-1a +2,∵1a +2≤13,∴1-1a +2≥23,∴只需0<a <23即可满足[(n +2)a -(n +1)]a n +1·lg a >0.综上所述,实数a 的取值范围为(0,23)∪(1,+∞),故选D .4.答案1a +12a 2-a解析 由题意得,25=13+115, 即22×3-1=13+13×(2×3-1),27=14+128,即22×4-1=14+14×(2×4-1),29=15+145,即22×5-1=15+15×(2×5-1), 由此归纳出22a -1=1a +1a (2a -1)(n ≥3,n ∈N *).又1a +1a (2a -1)=2a -1+1a (2a -1)=22a -1,结论成立,∴22a -1=1a +12a 2-a . 解题模板由数列的前几项归纳其通项公式时,首先要分析项的结构,然后探究结构中的各部分与项的序号n 之间的函数关系,进而求得通项公式. 5.答案 25解析 当n =1时,3S 1=3a 1=(1+m )a 1,解得m =2.当n ≥2时,由{3a a =(a +2)a a ,3a a -1=(a -1+2)a a -1得(n -1)a n =(n +1)a n -1,即a a a a -1=a +1a -1.由累乘法可得a a a 1=a (a +1)2, 又a 1=1,所以a n =a (a +1)2,由a n b n =15,得b n =25a (a +1)=25(1a -1a +1), 所以T n =251-12+(12-13)+…+(1a -1a +1)=25(1-1a +1)<25.因为对任意n ∈N *,λ>T n 恒成立,所以λ≥25,故实数λ的最小值为25. 6.答案 1010解析 设等差数列{a n }的公差为d 1,d 1≠0,等差数列{b n }的公差为d 2,则a 1+a 2+…+a 2021=2021a 1011,b 1+b 2+…+b 2021=2021b 1011, 所以原方程可变为2021x 2-2021a 1011x +2021b 1011=0,由该方程有实数解可得(-2021a 1011)2-4×20212b 1011≥0,即a 10112≥4b 1011.要使方程x 2-a i x +b i =0(i ∈N *,i ≤2021)无解, 则需Δ=(-a i )2-4b i =a a 2-4b i <0(i ∈N *,i ≤2021).设y 1=a a 2=[a 1+(a -1)a 1]2,y 2=4b i =4[b 1+(i -1)d 2](i ∈N *,i ≤2021),易得y 1的图象为开口向上的抛物线的一部分,y 2的图象为直线的一部分, 又i =1011时,y 1≥y 2,所以满足y 1<y 2的i 的取值最多可有1010个, 即无实数解的方程最多有1010个. 7.答案 1010解析 因为{|a n |}是首项和公差均为1的等差数列,所以|a n |=1+n -1=n , 根据等差数列的性质,对任意p ,q ,r ,s ∈N *,若p +q =r +s ,则|a p |+|a q |=|a r |+|a s |, 所以存在满足p +q =r +s ,有a p +a q =-(a r +a s ). 当n =4k 时,S 4k =a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k ,为使|S 4k |取得最小值,只需a 2+a 3=-(a 1+a 4),a 5+a 8=-(a 6+a 7),……,a 4k -3+a 4k =-(a 4k -2+a 4k -1), 此时S 4k =k (a 1+a 2+a 3+a 4)=0,即|S 4k |的最小值m 4k =0; 当n =4k +1时,S 4k +1=a 1+(a 2+a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1),为使|S 4k +1|取得最小值,同n =4k 时,只需S 4k +1=a 1+k (a 2+a 3+a 4+a 5)=a 1, 此时S 4k +1=a 1,即|S 4k +1|的最小值m 4k +1=1; 当n =4k +2时,S 4k +2=a 1+a 2+(a 3+a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1+a 4k +2),为使|S 4k +2|取得最小值,同n =4k 时,只需S 4k +2=a 1+a 2+k (a 3+a 4+a 5+a 6)=a 1+a 2, 此时S 4k +1=a 1+a 2,当a 1=1,a 2=-2时,可使|S 4k +2|取得最小值m 4k +2=1; 当n =4k +3时,S 4k +3=a 1+a 2+a 3+(a 4+a 5+a 6+a 7+a 8+…+a 4k -3+a 4k -2+a 4k -1+a 4k +a 4k +1+a 4k +2+a 4k +3),为使|S 4k +3|取得最小值,同n =4k 时,只需S 4k +3=a 1+a 2+a 3+k (a 4+a 5+a 6+a 7)=a 1+a 2+a 3,当a 1=1,a 2=2,a 3=-3时,可使|S 4k +3|取得最小值m 4k +3=0.所以m n 以4为周期,因此m 1+m 2+…+m 2020=505×(m 1+m 2+m 3+m 4)=1010.8.解析 设等比数列{b n }的公比为q.因为对任意的n ∈N *,都有2b n +2=b n +1+3b n , 所以2q 2=q +3,解得q =-1或q =32.因为对任意的n ∈N *,都有b n >0,所以q >0,从而q =32.又b 1=1,所以b n =(32)a -1.假设存在k ∈N *,使得对任意的n ∈N *,都有a n b k ≤a k b n ,即a a a a≤aa a a.记c n =aa a a,n ∈N *.下面分别选择①②③作为条件进行研究.选择①.因为a n +1=12a n +1,所以a n +1-2=12(a n -2). 又a 1=1,所以a 1-2=-1≠0,所以a n -2≠0,从而a a +1-2a a -2=12, 所以数列{a n -2}是以a 1-2=-1为首项,12为公比的等比数列,则a n -2=-(12)a -1,即a n =2-(12)a -1,所以c n =a a a a =2a -13a -1,从而a a +1a a=2a +1-13(2a -1).由2a +1-13(2a-1)≤1得2n≥2,解得n ≥1,当n =1时,c 1=c 2,当n >1时,c n +1<c n ,所以当n 的值为1或2时,c n 取得最大值,即aa a a取得最大值.所以对任意的n ∈N *,都有a a a a≤a 2a 2=a1a 1,即a n b 1≤a 1b n ,a n b 2≤a 2b n ,所以存在k 的值为1或2,使得对任意的n ∈N *,都有a n b k ≤a k b n . 选择②.因为a n +1=a n +2,所以a n +1-a n =2,所以数列{a n }是以1为首项,2为公差的等差数列,又a 1=1,所以a n =1+2(n -1)=2n -1, 所以c n =a a a a =(2n -1)(23)a -1>0,从而a a +1a a=2(2a +1)3(2a -1).由2(2a +1)3(2a -1)≤1得2n ≥5,解得n ≥52,当n ≤2时,c n +1>c n ,当n ≥3时,c n +1<c n , 又c 2=2,c 3=209,所以当n =3时,c n 取得最大值,即aa a a取得最大值.所以对任意的n ∈N *,都有a a a a≤a3a 3,即a n b 3≤a 3b n .所以存在k 的值为3,使得对任意的n ∈N *,都有a n b k ≤a k b n . 选择③.因为S n =2a n -1,所以S n +1=2a n +1-1,从而a n +1=S n +1-S n =2a n +1-1-(2a n -1)=2a n +1-2a n ,即a n +1=2a n . 又a 1=1>0,所以a n >0,且a a +1a a=2, 从而数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1, 所以c n =a a a a =(43)a -1>0,从而a a +1a a =43>1,所以c n +1>c n ,所以不存在满足题意的k. 9.解析 (1)∵2S n =(n +1)a n ,① ∴当n ≥2时,2S n -1=na n -1,② ①-②并化简,得2a n =(n +1)a n -na n -1, 即(n -1)a n =na n -1(n ≥2), 又a 1=1≠0,∴a n ≠0,∴a a a a -1=aa -1(n ≥2), ∴a 2a 1=21,a 3a 2=32,……,a a a a -1=a a -1, ∴a n =a 2a 1·a 3a 2·…·a a a a -1·a 1=21·32·…·aa -1·1=n , 经检验,当n =1时,a 1=1也满足上式, ∴a n =n.(2)由(1)知a n =n ,设f (n )=a 3-2a 3·a 4-2a 4·…·a a -2a a·√2a +1(n ≥3,n ∈N *), 则f (n +1)-f (n )=a 3-2a 3·a 4-2a 4·…·a a -2a a ·(a a +1-2a a +1·√2a +3-√2a +1) =a 3-2a 3·a 4-2a 4·…·a a -2a a ·(a -1)√2a +3-(a +1)√2a +1a +1=a 3-2a 3·a 4-2a 4·…·a a -2a a ·√2a 3-a 2-4a +3-√2a 3+5a 2+4a +1a +1<0, ∴f (n )在n ≥3,n ∈N *上单调递减, ∴f (n )max =f (3)=√73,∴a >f (3)=√73,即实数a 的取值范围是(√73,+∞). (3)T n <23.证明如下:∵a n =n ,∴c n =(11+a a)2=(11+a )2=1a 2+2a +1<1a (a +2)=12(1a -1a +2),∴T n =c 1+c 2+c 3+…+c n =14+c 2+c 3+…+c n <14+1212-14+(13-15)+(14-16)+…+(1a -1a +2) =14+12(12+13-1a +1-1a +2) =23-12(1a +1+1a +2)<23, 即T n <23.10.解析 (1)1,3,5,6.(答案不唯一)(2)证明:设长度为q 且末项为a a 0的一个递增子列为a a 1,a a 2,…,a a a -1,a a 0. 由p <q ,得a a a ≤a a a -1<a a 0.因为{a n }的长度为p 的递增子列末项的最小值为a a 0, 且a a 1,a a 2,…,a a a 是{a n }的长度为p 的递增子列, 所以a a 0≤a a a .所以a a 0<a a 0. (3)由题设知,所有正奇数都是{a n }中的项.先证明:若2m 是{a n }中的项,则2m 必排在2m -1之前(m 为正整数). 假设2m 排在2m -1之后.设a a 1,a a 2,…,a a a -1,2m -1是数列{a n }的长度为m 且末项为2m -1的递增子列,则a a 1,a a 2,…,a a a -1,2m -1,2m 是数列{a n }的长度为m +1且末项为2m 的递增子列,与已知矛盾.再证明:所有正偶数都是{a n }中的项.假设存在正偶数不是{a n }中的项,设不在{a n }中的最小的正偶数为2m.因为2k 排在2k -1之前(k =1,2,…,m -1),所以2k 和2k -1不可能在{a n }的同一个递增子列中. 又{a n }中不超过2m +1的数为1,2,…,2m -2,2m -1,2m +1,所以{a n }的长度为m +1且末项为2m +1的递增子列个数至多为2×2×2×…×2⏟ (a -1)个×1×1=2m -1<2m,与已知矛盾.最后证明:2m 排在2m -3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m -3之前,则{a n }的长度为m +1且末项为2m +1的递增子列的个数小于2m,与已知矛盾.综上,数列{a n }只可能为2,1,4,3,…,2m -3,2m ,2m -1,…. 经验证,数列2,1,4,3,…,2m -3,2m ,2m -1,…符合条件. 所以a n ={a +1,a 为奇数,a -1,a 为偶数.主编点评本题通过对数列中新概念的理解,考查逻辑推理、知识的迁移应用能力,重点考查逻辑推理、数学抽象的核心素养,渗透数学应用与创新意识,以及由特殊到一般的分类整合思想.。

高中数学《数列综合》

高中数学《数列综合》

数列综合一、填空题1. 若5lim 3nn nn a →∞+存在,则实数a 的取值范围为2. 设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q = .3. 若等比数列{}n a 的公比1q q <满足,且24344,3,a a a a =+=则12lim()n n a a a →∞+++=___________.4. 已知公差为d 的等差数列{}n a 的前n 项和为n S ,若533S S =,则53aa = 5. 已知}{n a 是首项为32的等比数列,n S 是其前n 项和,且646536=S S ,则数列|}log {|2n a 前10项和为_______________.6. 计算:=+++∞→712)6(lim32n n n n _. 7. 设数列{}n a 的前n 项和为n S ,22|2016|n S n a n(0a >),则使得1n n a a +≤(n ∈*N )恒成立的a 的最大值为 .8. 已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前n 项和n S =___________.9. 在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为__________________. 10. 数列1212312341213214321⋅⋅⋅,,,,,,,,,,,则98是该数列的第 项. 11.12. 数列}{n a 是等差数列,2a 和2014a 是方程01652=+-x x 的两根,则数列}{n a 的前2015项的和为__________13. 在等差数列{}n a 中,1352469,15,a a a a a a ++=++= 则数列{}n a 的前10项的和等于_____.14. 已知数列的各项均为正整数,对于,有135,为奇数,为偶数2n n n nn n a a a a a +⎧+⎪=⎨⎪⎩其中k 为使1n a +为奇数的正整数. 若存在, 当n >m 且n a 为奇数时,na 恒为常数p ,则p 的值为15. 已知数列{}n a 满足181a =,1311log ,2,(*)3,21n n n a a n k a k N n k ---+=⎧=∈⎨=+⎩,则数列{}n a 的前n 项和n S 的最大值为 . 16. 设1()33xf x =+,利用课本中推倒等差数列前n 项和的公式的方法,可求得(5)(4)(0)(5)(6)f f f f f -+-+++++的值为17. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________18. 已知数列{}n a 中,若10a =,2i a k =*1(,22,1,2,3,)k k i N i k +∈≤<=,则满足2100i i a a +≥的i的最小值为19. 已知数列()1212:,,,0,3n n A a a a a a a n ≤<<<≥具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题:①数列0,1,3,5,7具有性质P ;②数列0,2,4,6,8具有性质P ; ③若数列A 具有性质P ,则10a =; ④若数列()123123,,0a a a a a a ≤<<具有性质P ,则1322a a a +=。

(压轴题)高中数学选修二第一单元《数列》测试题(答案解析)(4)

(压轴题)高中数学选修二第一单元《数列》测试题(答案解析)(4)

一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .473.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .724.朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包善钢琴,故朱载堉被誉为“钢琴理论的鼻担”.“十二平均律"是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率为3f ,第九个音频率9f ,则93f f 等于( )ABCD5.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1126.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a a b b ++的值为( ) A .14924B .7914C .165D .51107.已知函数()()633,7,,7.x a x x f x ax -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( ) A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭8.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .16010.等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1B .6:1C .7:1D .9:111.已知等比数列{}141,1,8n a a a ==,且12231n n a a a a a a k ++++<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-二、填空题13.已知等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,若对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立,则B A -的最小值为______.14.有一个数阵排列如下: 1 2 4 7 11 16 22…… 3 5 8 12 17 23………… 6 9 13 18 24……………… 10 14 19 25…………………… 15 20 26………………………… 21 27……………………………… 28…………………………………… ………………………………………则第40行从左至右第6个数字为______.15.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 16.设数列{}n a 的前n 项和为n S ,若()*11111n n n n N S S a +⎛⎫-=∈ ⎪⎝⎭,且112a =-,则20191S =_______.17.已知数列{}n a 的首项11a =,函数321()(cos)2n n n f x x a a x π+=+--为奇函数,记n S 为数列{}n a 的前n 项和,则2020S 的值为__.18.已知正项等比数列满足:,若存在两项使得,则的最小值为 .19.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.20.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.三、解答题21.设数列{}n a 满足12a =,12nn n a a +-=;数列{}n b 前n 项和为n S ,且()2132n S n n =-. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111nn n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n k T n >-+都成立,求实数k 的取值范围. 23.已知数列{}n a 是递增的等比数列,前3项和为13,且13a +,23a ,35a +成等差数列,(1)求数列{}n a 的通项公式;(2)数列{}n b 的首项11b =,其前n 项和为n S ,且 ,若数列{}n c 满足n n n c a b =,{}n c 的前n 项和为n T ,求n T 的最小值.在如下三个条件中任意选择一个,填入上面横线处,并根据题意解决问题. ①34n n S b +=;②()122n n b b n -+≥= ;③()152n n b b n -=-≥. 注:如果选择多个条件分别解答,只按第一个解答计分.24.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N . (1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T .25.已知数列}{n a 满足11a =,)(121n n a a n N *+=+∈.(1)求数列}{na 的通项公式.(2)设n b n =,求数列1n n b a ⎧⎫⎪⎨⎬+⎪⎭⎩的前n 项和n S .26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------,所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.B解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.3.A解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =,所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.4.A解析:A 【分析】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,推导出1122q =,由此能求出93f f 的值. 【详解】依题意13个音的频率成等比数列,记为{}n a ,设公比为q , 则12131=a a q ,且1312=a a ,1122∴=q ,86912316191232⎛⎫=∴==== ⎪⎝⎭q q f q a a f a a 故选:A . 【点睛】关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将13个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.5.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=.21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B .【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;6.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.B解析:B 【分析】由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a a n -⎧--≤=⎨>⎩()n N *∈且数列{}n a 为递增数列, 得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.8.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.9.A解析:A【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.10.C解析:C 【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m -=, 故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937SS =. 故选:C. 【点睛】本题考查等比数列前n 项和性质的运用,难度一般,利用性质结论计算即可.11.D解析:D 【分析】设等比数列{}n a 的公比为q ,由11a =,418a =,可得318q =,解得q .可得n a .可得1124n n na a +=⨯.利用等比数列的求和公式及其数列的单调性即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,418a =, 318q ∴=,解得12q =. 11111()()22n n n a --=⨯=.12111111()()()22224n n n n n n a a --+∴===⨯.12231211(1)111212442()2(1)144434314n n n n na a a a a a +-∴++⋯+=++⋯⋯+=⨯=-<-. 12231n n a a a a a a k +++⋯+<,23k. k ∴的取值范围是:2,3⎡⎫+∞⎪⎢⎣⎭.故选:D . 【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.12.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.二、填空题13.【分析】根据等比数列的求和公式由题中条件得到讨论为奇数和为偶数两种情况分别判定其单调性得出最大值和最小值进而可求出结果【详解】因为等比数列的首项为2公比为其前项和记为所以当为奇数时显然单调递减因为所解析:94【分析】根据等比数列的求和公式,由题中条件,得到n S ,讨论n 为奇数和n 为偶数两种情况,分别判定其单调性,得出最大值和最小值,进而可求出结果. 【详解】因为等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,所以121331331112322313nn n n S ⎡⎤⎛⎫⨯--⎢⎥⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==--=-⋅-⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭, 当n 为奇数时,331223n nS ⎛⎫=+⋅ ⎪⎝⎭,显然单调递减,因为*n N ∈,所以13312223n S S ≤=+⋅=, 又33132232nn S ⎛⎫=+⋅> ⎪⎝⎭,所以322n S <≤;当n 为偶数时,331223n nS ⎛⎫=-⋅ ⎪⎝⎭,显然单调递增,因为*n N ∈,所以233142293n S S ≥=-⋅=, 又33132232nn S ⎛⎫=-⋅< ⎪⎝⎭,所以4332n S ≤<,综上,对任意的*n N ∈,都有423n S ≤≤,所以436n S ≤≤,11324n S ≤≤,则31142n S -≤-≤-, 所以31143642n n S S -≤-≤-,即13111342n n S S ≤-≤, 因此对任意的*n N ∈,都有13111342n n S S ≤-≤; 为使对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立, 只需112B ≥,134A ≤, 所以B A -的最小值为11139244-=. 故答案为:94. 【点睛】 关键点点睛:求解本题的关键在于根据等比数列的求和公式求出n S 后,利用分类讨论的方法,根据n S 的单调性,求n S 的最值,进而即可求解.14.1030【分析】利用观察法和累加法得到进而求解即可【详解】第1行从左至右第6个数字:第2行从左至右第6个数字:;第3行从左至右第6个数字:;第4行从左至右第6个数字:;第5行从左至右第6个数字:;…解析:1030 【分析】利用观察法和累加法得到()17895n a a n -=+++++,进而求解即可【详解】第1行从左至右第6个数字:116a = 第2行从左至右第6个数字:223a =; 第3行从左至右第6个数字:331a =; 第4行从左至右第6个数字:440a =; 第5行从左至右第6个数字:550a =; ……………………………………;第n 行从左至右第6个数字:n a ; 利用累加法得:21324311()()()()(2316)(3123)()n n n n a a a a a a a a a a ---+-+-++-=-+-++-,()17895n a a n -=+++++,()()175162n n n a -++⎡⎤⎣⎦=+得,4039521639261610302a ⨯=+=⨯+= 故答案为:1030 【点睛】关键点睛:解题的关键在于观察得到,21324311()()()()(2316)(3123)()n n n n a a a a a a a a a a ---+-+-++-=-+-++-最后,使用累加法求出数列的通项n a ,属于中档题15.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+, 所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<,所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.16.【分析】用代入已知等式得变形可得说明是等差数列求其通项公式可得的值【详解】整理可得则即所以是以为公差的等差数列又则故答案为:【点评】本题考查数列递推式考查等差数列的判定训练了等差数列通项公式的求法是 解析:2020-【分析】用11n n n a S S ++=-,代入已知等式,得11n n n n S S S S ++-=⋅,变形可得1111n nS S +-=-,说明1n S ⎧⎫⎨⎬⎩⎭是等差数列,求其通项公式,可得20191S 的值.【详解】11n n n a S S ++=-,1111111n n n n nS S a S S ++⎛⎫∴-== ⎪-⎝⎭,整理可得11n n n n S S S S ++-=⋅, 则111111n n n n n n S S S S S S +++-=-=,即1111n nS S +-=-, 所以,1n S ⎧⎫⎨⎬⎩⎭是以1-为公差的等差数列,又11112S a ==-, ()()()12111nn n S ∴=-+-⋅-=-+,则201912020S =-. 故答案为:2020-. 【点评】本题考查数列递推式,考查等差数列的判定,训练了等差数列通项公式的求法,是中档题.17.1010【分析】利用是奇函数推出推出函数的周期然后转化求解即可【详解】解:因为是奇函数所以如此继续得故答案为:1010【点睛】本题考查数列的函数的特征数列的周期性的应用考查转化思想以及计算能力是中档题解析:1010. 【分析】利用()f x 是奇函数,推出1cos 2a n n a a π+=+,推出函数的周期,然后转化求解即可. 【详解】解:因为()f x 是奇函数,()()f x f x -=-,所以1(cos)02n n n a a π+-+=,1cos 2a n n a a π+=+, 11a =,21cos12a a π=+=,322cos 02a a π=+=,433cos02a a π=+=, 如此继续,得4n n a a +=.20201234505()50521010S a a a a =+++=⨯=. 故答案为:1010. 【点睛】本题考查数列的函数的特征,数列的周期性的应用,考查转化思想以及计算能力,是中档题.18.【详解】存在两项使得比较可得当时有最小值为【点睛】本题考查了基本不等式;等比数列的通项基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误的真正原因是对其前提一正二定三相等的忽视要利用基本不 解析:【详解】7652a a a =+,25552a q a q a ∴=+,220q q ∴--=,2q ∴=,存在两项使得12m n a a a =,214m n a a a ∴=,24m n q +-∴=,4m n ∴+=,,比较可得当时,有最小值为. 【点睛】本题考查了基本不等式;等比数列的通项.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.19.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =, 所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯- 【点睛】本题考查由递推公式求数列的通项公式,属于中档题.20.【分析】直接利用递推关系式求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:正项数列的前项和为①则②②-①得:整理得:当时解得:所以:数列是以1为首项1为公差的等差数列则所以:则:数列的 解析:20212020-【分析】直接利用递推关系式求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:正项数列{}n a 的前n 项和为n S ,22()n nn S a a n N *=+∈①, 则221112n n n n n a a a a a +++=-+-②,②-①得:221112n n n n n a a a a a +++=-+-,整理得:11n n a a +-=,当1n =时,21112S a a =+,解得:11a =,所以:数列{}n a 是以1为首项,1为公差的等差数列. 则11n a n n =+-=,所以:2(1)22n n n n nS ++==. 则:()()21111121nn n n n a c S n n +⎛⎫=-=-+ ⎪+⎝⎭, 数列{}n c 的前2019项的和为:201911111122320192020T ⎛⎫⎛⎫⎛⎫=-++++⋅⋅⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112020=--,20212020=-. 故答案为:20212020- 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,属于中档题.三、解答题21.(1)()*2n n a n N =∈,()*32n b n n N =-∈;(2)()110352n n T n +=+-⋅.【分析】(1)由12nn n a a +-=,得到()1122n n n a a n ---=≥,再利用累加法求解;根据()2132n S n n =-,利用通项和前n 项的的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)由(1)得()322nn n n c a b n ==⋅-,然后利用错位相减法求和.【详解】 (1)12n n n a a +-=,()1122n n n a a n --∴-=≥, ()()()112211n n n n n a a a a a a a a ---∴=-+-++-+122222n n --=++++()()121222212n n n --=+=≥-,又12a =满足上式,()*2n n a n N ∴=∈.数列{}n b 中()2132n S n n =-, ∴当2n ≥时,()()()2211133113222n n n b S S n n n n n -⎡⎤=-=-----=-⎣⎦, 又当1n =时,111b S ==,满足上式.()*32n b n n ∴=-∈N .(2)由(1)得()322nn n n c a b n ==⋅-,()()211242352322n n n T n n -∴=⨯+⨯++-⋅+-⋅①,()()23121242352322n n n T n n +∴=⨯+⨯++-⋅+-⋅②,①-②得()()23123222322n n n T n +-=++++--⋅()()2112122332212n n n -+-=+⨯--⋅-()110532n n +=-+-⋅, ()110352n n T n +∴=+-⋅.【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.22.(1)3nn a =;(2)1,8⎛⎫+∞ ⎪⎝⎭.【分析】(1)由1(2)n n n a S S n -=-≥得出n a 的递推关系,结合1a 得{}n a 等比数列,从而得通项公式;(2)用裂项相消法求得和n T ,不等式可变形为()11231n n k -+>-,令()11()231n n f n ++=-,再用作差法得出()f n 的单调性,得最大项,从而得k 的取值范围. 【详解】(1)因为数列{}n a 的前n 项和n S 满足()()231n n S a n N *=-∈,所以当2n ≥时,()11231n n S a --=-, 两式相减得:1233n n n a a a -=-,即13(2)nn a a n ,又1n =时,()11231S a =-,解得:130a =≠,所以数列{}n a 是以3为首项,3为公比的等比数列,从而3nn a =(2)由(1)知:()()()()113113131nn n n n n n a b a a ++==----111123131n n +⎛⎫=- ⎪--⎝⎭, 所以,12n n T b b b =+++1223111111112313131313131n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦11112231n +⎛⎫=- ⎪-⎝⎭, 对任意的n *∈N ,不等式141n kT n >-+都成立,即11111223141n k n +⎛⎫->-⎪-+⎝⎭, 化简得:()11231n n k -+>-,令()11()231n n f n ++=-,因为()()()()1211221(21)31(1)()023*********n n n n n n n n f n f n +++++++--⋅-+-=-=<---⋅-, 故()f n 单调递减, 所以max 1[()](1)8f n f ==,故18k >,所以,实数k 的取值范围是1,8⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,考查裂项相法法求和,数列不等式恒成立问题.数列求和方法有:公式法,错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等,用作差法确定数列的单调性求出数列的最大(小)项是求数列最值的常用方法.23.(1)13n n a -= ;(2)答案见解析.【分析】(1)设数列{}n a 的公比为q ,根据题意得12321313635a a a a a a ++=⎧⎨=+++⎩,解得3q =,进而得13n n a -=.(2)选①,由n a 与n S 的关系即可求得数列{}n b 是以11b =为首项,14为公比的等比数列,故()114n n b -=,进而得()134n n n n c a b -==,由于0n c >,故n T 的最小值为111T c ==;选择②,由题知21n b n =-,()1213n n c n --⋅=,由于1()2130n n c n -=⋅-> ,故()111n minT T c ===;选择③,由题知()115n n b -=-,故()135n n c -=-,()53185nn T ⎡⎤=--⎢⎥⎣⎦,由于当n 为奇数时,58n T >;当n 为偶数时,58n T <,此外()53185nn T ⎡⎤=--⎢⎥⎣⎦在n 为偶数时单调递增,故当2n =时,()min 51628255n T =⨯=.【详解】(1)设数列{}n a 的公比为q ,则由前3项和为13,且13a +,23a ,35a +成等差数列,得12321313635a a a a a a ++=⎧⎨=+++⎩,所以132103a a a +=⎧⎨=⎩ 所以3310q q +=,即231030q q -+= ,解得13q =或3q =又因为{}n a 是递增的等比数列,且10a >,所以1q >,所以3q =,所以13n n a -=.(2)选择①因为34n n S b +=,所以()11342n n S b n --+=≥,两式相减得11()(3)0n n n n S S b b ---+-=,即()1402n n b b n -=≥-, 所以()1124n n b b n -=≥,所以数列{}n b 是以11b =为首项,14为公比的等比数列, 故()114n n b -=,因此()134n n n n c a b -==.由0n c >恒成立,故{}n T 为单调递增数列, 所以n T 的最小值为111T c ==. 选择②由()122n n b b n -+≥=知{}n b 是以11b =为首项,2为公差的等差数列, 所以()12121n b n n =+-=-, 所以()1213n n n n c a b n --⋅==因为1()2130n n c n -=⋅-> ,故{}n T 为单调递增数列,所以()111n min T T c ===选择③由()152n n b b n -=-≥知{}n b 是以11b =为首项,15-为公比的等比数列, 所以()115n n b -=-,所以()135n n n n c a b -==-,所以()()31553138515nnn T --⎡⎤==--⎢⎥⎣⎦+, 当n 为奇数时,由于()305n-<,故58n T >; 当n 为偶数时,由于()305n->,故58nT <,由()53185nnT ⎡⎤=--⎢⎥⎣⎦在n 为偶数时单调递增, 所以当2n =时,()min 51628255n T =⨯=.【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.24.(1)2nn a =;(2)1(1)222n n n n T ++=+-. 【分析】(1)利用公式11,1=,2n n n S n a S S n -=⎧⎨-≥⎩求{}n a 的通项公式;(2)由题得2nn b n =+,再利用分组求和求数列{}n b 的前n 项和n T .【详解】解:(1)∵点(),n n a S 在直线22y x =-上,n *∈N , ∴22n n S a =-.当1n =时,1122a a =-,则12a =, 当2n 时,22n n S a =-,1122n n S a --=-. 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2等比数列,所以2nn a =.(2)2nn b n =+,()23(123)2222n n T n =+++⋯++++++,所以1(1)222n n n n T ++=+-. 【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列的通项特征选择合适的方法求解.25.(1)21nn a =-;(2))(1222nn S n ⎛⎫=-+⋅⎪ ⎭⎝.【分析】( 1)先化简已知)(1121n n a a ++=+,构造等比数列}{1n a +,求出数列{}n a 的通项公式;(2)先求出1122nn n n b nn a ⎛⎫==⋅⎪ +⎭⎝,再利用错位相减求出前n 项和n S .【详解】(1)∵)(121n n a a n N*+=+∈,∴)(1121n n aa ++=+,由已知10n a +≠,∴1121n n a a ++=+,∴}{1n a +是以112a +=为首项,以2为公比的等比数列,∴11222n nn a -+=⨯=,∴21n n a =-.(2)1122n n n n b nn a ⎛⎫==⋅⎪ +⎭⎝,12311111232222nn S n ⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⨯+⋅⋅⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,)(2211111112122222n n n S n n +⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⋅⋅⋅+-⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,∴1231111111222222n n n S n +⎛⎛⎛⎛⎛⎫⎫⎫⎫⎫=+++⋅⋅⋅+-⋅⎪⎪⎪⎪⎪ ⎭⎭⎭⎭⎭⎝⎝⎝⎝⎝,)(1111122111212212nn n n n ++⎡⎤⎛⎫-⎢⎥⎪ ⎭⎝⎢⎥⎛⎛⎫⎫⎣⎦=-⋅=-+⋅⎪⎪ ⎭⎭⎝⎝-,∴)(1222n n S n ⎛⎫=-+⋅⎪ ⎭⎝. 【点睛】本题主要考查由递推数列求通项,若数列{}·n n b c ,其中{}n b 是等差数列,{}n c 是等比数列,则采用错位相减法,意在考查学生对这些知识的掌握水平和分析推理能力. 26.(1)12n a n =;(2)证明见解析.【分析】 (1)212n n n S a a =+,*n N ∈.2n 时,利用1n n n a S S -=-,及其等差数列的通项公式即可得出.(2)11b =,12(2)n n n b b a n n --==,利用112211()()()n n n n n b b b b b b b b ---=-+-+⋯⋯+-+,及其裂项求和方法即可得出n T .进而证明结论. 【详解】解:(1)①当1n =时, 得211112S a a =+,211112a a a ∴=+ ∴112a =或0(舍去); ②当2n ≥时,211112n n n S a a ---=+, ∴221111122n n n n n n n a S S a a a a ---=-=+-- 221111022n n nn a a a a --∴---= ()()()111102n n n n n n a a a a a a ---∴-+-+= ()11102n n n n a a a a --⎛⎫∴+--= ⎪⎝⎭.又∵{}n a 各项为正, ∴1102n n a a ---=,112n n a a -∴-= ∴{}n a 为首项是12,公差是12的等差数列, ∴()1112n a a n d n =+-=. (2)由题得,1n n b b n --=121n n b b n --∴-=-┇323b b ∴-= 212b b ∴-=,所有式子相加,得1231n b b n n -=++⋅⋅⋅+-+()()212222n n n n -++-==. 又∵11b =,∴22n n nb +=,∴()212211211n b n n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴111111212231n T n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭1221211n n ⎛⎫=-=- ⎪++⎝⎭. 又∵10n +>, ∴2n T <. 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。

(完整)高中数学数列经典题型

(完整)高中数学数列经典题型

高中文科数学训练之数列制作人:肖良一,数列综合大题1.已知等比数列{}n a 中,113a ,公比13q .(I )n S 为{}n a 的前n 项和,证明:12nna S (II )设31323log log log n nb a a a L ,求数列{}n b 的通项公式.2.设等差数列n a 满足35a ,109a 。

(Ⅰ)求n a 的通项公式;(Ⅱ)求n a 的前n 项和n S 及使得n S 最大的序号n 的值。

3.已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;(II )求数列12n na 的前n 项和.4.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和n S . 5.已知数列n a 的前n 项和为n S ,且585n n S n a ,*n N证明:1n a 是等比数列;6. 已知数列n a n N 是等比数列,且130,2,8.na a a (1)求数列n a 的通项公式;(3)设1log 22n n a b ,求数列n b 的前100项和.7. 在等差数列n a 中,公差d0,且56a ,(1)求46a a 的值.(2)当33a 时,在数列n a 中是否存在一项m a (m 正整数),使得3a ,5a ,m a 成等比数列,若存在,求m 的值;若不存在,说明理由.8. 已知数列n n 2,n a =2n 1,n 为奇数;-为偶数;,求2n S .9.等差数列}{n a 的前n 项和记为n S ,已知50,302010a a . (1)求通项n a ;(2)若242nS ,求n ;(3)若20n n a b ,求数列}{n b 的前n 项和n T 的最小值.10.等差数列}{n a 中,n S 为前n 项和,已知75,7157S S . (1)求数列}{n a 的通项公式;(2)若n S b n n ,求数列}{n b 的前n 项和n T .11.等差数列}{n a 中,2,841a a .(1)求数列}{n a 的通项公式;(2)设||||||21n n a a a S ,求n S .12.已知数列{}n a 的前n 项和为n S ,设n a 是n S 与2的等差中项,数列{}n b 中,11b ,点1(,)n n P b b 在直线2y x 上.(1)求数列}{n a ,}{n b 的通项公式(2)求数列{}n b 的前n 项和为n B .13. 已知数列n a 的前n 项和为n S ,且585nn S n a ,*n N (1)证明:1n a 是等比数列;(2)求数列n S 的通项公式,并求出使得1n n S S 成立的最小正整数n . 14.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为n S ,满足56S S +15=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学数列综合练习题1、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .1762.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A .7B .5C .-5D .-73、已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N*,则S 10的值为( ) (A). -110(B). -90 (C). 90(D). 1104、设n S 为等差数列{}n a 的前n 项和,若241,5a a ==,则5S 等于( )A .7B .15C .30D .315.夏季高山上气温从山脚起每升高100 m 降低0.7 ℃,已知山顶的气温是14.1 ℃,山脚的气温是26 ℃.那么,此山相对于山脚的高度是( )A .1500 mB .1600 mC .1700 mD .1800 m 6、公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =,则10S 等于( )A .18B .24C .60D .907.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)8.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n值是( )A .9B .10C .11D .129、设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则55a b +=_________ 10.数列{}n a 的通项公式cos12n n a n π=+,前n 项和为n S ,则2012S =___________. 11、已知数列{}n a 满足:2,121==a a ,),2(2*11N n n a a a n n n ∈≥+=+-,数列{}n b 满足21=b ,n n n n b a b a 112++=.(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求证:数列⎭⎬⎫⎩⎨⎧n b n 为等比数列;并求数列{}n b 的通项公式.12.已知数列n a 满足)(2222*13221N n na a a a n n ∈=+⋅⋅⋅+++- (Ⅰ)求数列{}n a 的通项;(Ⅱ)若nn a nb =求数列{}n b 的前n 项n S 和13、数列}{n a 的前n 项和记为n S ,t a =1,点1(,)n n S a +在直线31y x =+上,N n *∈.(Ⅰ)当实数t 为何值时,数列}{n a 是等比数列?(Ⅱ)在(Ⅰ)的结论下,设41log n n b a +=,n n n c a b =+,n T 是数列{}n c 的前n 项和,求n T 。

14、设数列{}n a 满足10a =且1111.11n n a a +-=--(Ⅰ)求{}n a 的通项公式;(Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:15、等比数列{}na中,123,,a a a分别是下表第一、二、三行中的某一个数,且123,,a a a中的任(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足:(1)lnn n nb a a=+-,求数列{}nb的前n项和nS.高一数学数列综合练习题一1. B 在等差数列中,111111481111()16,882a a a a a a s ⨯++=+=∴==,答案为B2. D 472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-3、D解:a 7是a 3与a 9的等比中项,公差为-2,所以a 72=a 3•a 9,所以a 72=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10= 10×20+10×9/2×(-2)=110。

故选D4、B 由等差数列通项公式得:15,1,2,21551=-==+=S a d d5、C6、C 由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得1278a d +=则12,3d a ==-, 所以1019010602S a d =+=.故选C.7.B 29311771672161616432log 5a a a a a a q a =⇔=⇔=⇒=⨯=⇔=8.D 解析:设a 1=x ,且x ≠0,则S 3=x +1+1x ,由函数y =x +1x 的图像知:x +1x ≥2或x +1x ≤-2,∴y ∈(-∞,-1]∪[3,+∞). 9、C 因为*12121,log log 1()n n a a a n +==+∈N ,所以n n a a 21=+,12-=n n a ,12-=n n S ,则满足1025n S >的最小n 值是11; 10、C将数列分为第1组一个,第2组二个,…,第n 组n 个,(11),(12,21),(13,22,31),…,(1n ,2n -1,…,n 1),则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=5011、35(解法一)因为数列{},{}n n a b 都是等差数列,所以数列{}n n a b +也是等差数列.故由等差中项的性质,得()()()5511332a b a b a b +++=+,即()557221a b ++=⨯,解得5535a b +=.(解法二)设数列{},{}n n a b 的公差分别为12,d d ,因为331112111212(2)(2)()2()72()21a b a d b d a b d d d d +=+++=+++=++=, 所以127d d +=.所以553312()2()35a b a b d d +=+++=. 12、21n nS n =+因为)2()32)(1(,)12(11≥--=-=--n a n n S a n n S n n n n ,两式相减得)2()32()12(,1≥-=+-n a n a n n n ,求得12,1412+=-=n n S n a n n13. 21n -解析:设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-.14、3018由cos12n n a n π=+,可得2012(1021304120121)2012S =⨯-⨯+⨯+⨯++⨯+(24620102012)2012250320123018=-+-+-++=⨯+=15(1)由已知⎩⎨⎧=+=+.225,10211d a d a 解得41为公比的等比数列 16.(Ⅰ)112n n n a a a -+=+∴数列{}n a 为等差数列……3分又2,121==a a 所以21d a a =-211,=-=数列{}n a 的通项1(1)1(1)1n a a n d n n =+-=+-⨯=…………6分(Ⅱ)∵n a n =,∴n n b n nb )1(21+=+.∴n b n b n n ⋅=++211.所以数列⎭⎬⎫⎩⎨⎧n b n 是以121b =为首项,2q =为公比的等比数列…………10分1222n n nn b b n n -∴=⨯∴=⋅17(Ⅰ)2111==a n 时 22221321n a a a a n n =+⋅⋅⋅++- (1)时2≥n 21-22212321n a a a a n n =+⋅⋅⋅++-- (2)(1)-(2)得2121=-n n a 即n n a 21=又211=a 也适合上式∴n n a 21=(Ⅱ)2n n b n =⋅ nn n S 223222132⋅+⋅⋅⋅+⋅+⋅+⋅=13222)1(22212+⋅+⋅-+⋅⋅⋅+⋅+⋅=n n n n n S 111222221)21(2+++⋅--=⋅---=n n n n n n22)1(1+-=∴+n n n S18(Ⅰ)∵点1(,)n n S a +在直线31y x =+上∴1131,31,(1)n n n n a S a S n +-=+=+>...2分113()3,n n n n n a a S S a +--=-=, ∴14,1n n a a n +=>......4分 211313131,a S a t =+=+=+∴当t=1时,214,a a =数列}{n a 是等比数列。

.....6分(Ⅱ) 在(Ⅰ)的结论下, 14,n n a a +=14,n n a +=...........8分41log n n b a n +==,....9分14n n n n c a b n -=+=+, .....10分0111221...(41)(42) (4)41(1)(144...4)(123...)32n n n n n T c c c n n n n --=+++=++++++-+=+++++++++=+.......12分14、解:(I )由题设1111,11n n a a +-=--即1{}1n a -是公差为1的等差数列。

又1111,.11nn a a ==--故所以11.n a n =- (II )由(I )得n b ===, …………8分111 1.nnn k k k S b =====<∑∑ …………12分15、解:(I )当13a =时,不合题意;当12a =时,当且仅当236,18a a ==时,符合题意;当110a =时,不合题意。

因此1232,6,18,a a a ===所以公式q=3, 故123.n n a -=⋅(II )因为(1)ln n n n nb a a =+-111123(1)(23)23(1)[ln 2(1)ln 3]23(1)(ln 2ln 3)(1)ln 3,n n n n n n n n n n ----=⋅+-⋅=⋅+-+-=⋅+--+-所以21222(133)[111(1)](ln 2ln 3)[125(1)]ln 3,n n n n S n -=++++-+-++--+-+-++- 所以当n 为偶数时,132ln 3132n n nS -=⨯+- 3ln 31;2n n=+-当n 为奇数时,1312(ln 2ln 3)()ln 3132n n n S n --=⨯--+-- 13ln 3ln 2 1.2n n -=---综上所述,3ln 31,212n n n nn S n ⎧+-⎪⎪=⎨-⎪⎪⎩为偶数3-ln3-ln2-1,n 为奇数。

相关文档
最新文档