函数与导数例高考题汇编(含答案)

合集下载

2018年高考真题汇编(函数与导数)

2018年高考真题汇编(函数与导数)

函数与导数1 .【2018年浙江卷】函数【解析】分析:先研究函数的奇偶性』再研究雷数在G")上的符号,即可判断选择详解;令= 2圍血滋,因为^ e =刃*血2(—x) = —2罔血Zx = —fG()p所以fOO = 2團血2耳力奇画数’排除选项止出因为工匸$町时『f@) < 0,所以曲穩选项J选D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.c = b眉2. 【2018年理天津卷】已知il=lo^^in2, 2 ,则a, b, c的大小关系为A. u > b>cB.b>u> e C c> b> a D.c> a> b【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果b = ln2 = -^―e (0A)c= 3詰=和g* > Sg声详解:由题意结合对数函数的性质可知: "忆吆>1, 5慾, 2据此可得:•本题选择D选项.点睛:对于指数幕的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幕的底数或指数不相同,不能直接利用函数的单调性进行比较•这就必须掌握一些特殊方法•在进行指数幕的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断•对于不同底而同指数的指数幕的大小的比较,利用图象法求解,既快捷,又准确.龙兰0*3. 【2018年理新课标I卷】已知函数I曲乩北〉心饥巧二“/) + +a .若g (x)存在2个零点,则a的取值范围是A. [ - 1, 0)B. [0 , +R)C. [ - 1 , +R)D. [1 , +R)【答案】C【解析】分析;首先根据存在2个零点,得到方程f CO十""哨两个亀将其转化为金〉二-覽-口有两个解,即直线y =-第-诣曲^二fCO有两个交点”根据題中所给的函数解析式,画出函数f何的團像(将町4掉A再画出直绳=-补并将其上下移动』从图中可臥发现走丄时/龊7=-電-口与曲线y=f^>有两个玄点'从而求得结果.详解:画出函数的图像,7■-了在y轴右侧的去掉,再画出直线卜:讨,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程■有两个解,也就是函数有两个零点,此时满足,即• ,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果4. 【2018年理新课标I卷】设函数兀心--,若$叩为奇函数,则曲线:在点’ 处的切线方程为A.卜「阙B. H" - '■ - -IC."划D.【答案】D【解析】分析;利用奇函数偶此项系数为零求得"X进而得到的解析式,再对“)求导得出桩戋的斜率©进而求得切线方程.详解;因豹画数雇苛函数J 解得"二4所以』⑴二卯1,门>)二阪y 所臥厂◎二九代町二g所汰曲线y二厲刃在点(啦处的切线方程为y-m))二比建简可得y二知故选D点睛:该题考查的是有关曲线卜在某个点凤煮強;;|处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得帀,借助于导数的几何意义,结合直线方程的点斜式求得结果•5. 【2018年全国卷川理】设“=』0目仇2°収,方=衍的帖,贝UA. N + bunbcOB.C. u + bcOca/iD. kb<OCQ +市【答案】B1 i I 11【解析】分析:求出-= io^^ 2t-=lo^.32,得到- +二的范围,进而可得结果。

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。

高考数学联考试题分类大汇编4函数与导数试题

高考数学联考试题分类大汇编4函数与导数试题

卜人入州八九几市潮王学校精品解析:2021年高考数学最新联考试题分类大汇编〔3〕函数与导数试题解析一、选择题:〔5〕(东城区2021年1月高三考试文科〕设0x>,且1x x b a <<,那么〔A 〕01b a <<<〔B 〕01a b <<<〔C 〕1b a <<〔D 〕1a b << 【答案】C【解析】因为0x>,且1x x b a <<,所以1b a <<。

8.(西城区2021年1月高三期末考试理科)点(1,1)A --.假设曲线G 上存在两点,B C ,使ABC △为正三角形,那么称G 为Γ型曲线.给定以下三条曲线:①3(03)y x x =-+≤≤;②22(20)y x x =--≤≤;③1(0)y x x=->. 其中,Γ型曲线的个数是〔〕 〔A 〕0〔B 〕1〔C 〕2〔D 〕3【答案】C 【解析】对于①,3(03)y x x =-+≤≤的图像是一条线段,记为,BB '如图〔1〕所示,从的图象是圆222xy +=在第二象限的局部,如图〔2〕所示,显然,无论点B 、C 在何处,△ABC 都不可能为正三角形,所以②不是Γ型曲线。

对于③,1(0)y x x=->表示双曲线在第四象限的一支,如图〔3〕所示,显然,存在点B,C ,使△ABC 为正三角形,所以③满足;xyy=-x+3 O AB 'C '综上,Γ型曲线的个数为2,应选C. 7.(2021年3月区高三一模文科)某工厂消费的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A .从第二年开场,商场对A 种产品征收销售额的%x 的管理费〔即销售100元要征收x 元〕,于是该产品定价每件比第一年增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,那么x 的最大值是 A.2B.6.5C.8.8D.10 【答案】D【答案】C3.(西城区2021年4月高三第一次模拟文)假设2log 3a =,3log 2b =,41log 3c =,那么以下结论正确的选项是〔D 〕 〔A 〕a c b << 〔B 〕c a b << 〔C 〕b c a <<〔D 〕c b a <<〔8〕(东城区2021年4月高考一模理科)函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩假设方程()f x x a =+有且只有两个不相等的实数根,那么实数a 的取值范围是〔A 〕(),1-∞〔B 〕(],1-∞〔C 〕()0,1〔D 〕[)0,+∞【答案】A〔8〕(东城区2021年4月高考一模文科)设集合1[0,)2A =,1[,1]2B =,函数 1,,()22(1),.x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩假设0x A ∈,且0[()]f f x A ∈,那么0x 的取值范围是 〔A 〕(41,0]〔B 〕(21,41]〔C 〕(21,41)〔D 〕[0,83] 【答案】C“函数y =f (x )在R 上单调递减〞的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件【答案】A8.(2021年3月丰台区高三一模文科)定义在R 上的函数()y f x =满足(2)()f x f x +=,当11x -<≤时,3()f x x =.假设函数()()log a g x f x x=-至少有6个零点,那么a 的取值范围是(A)(1,5)(B)1(0,)[5,)5+∞ (C)1(0,][5,)5+∞(D)1[,1)(1,5]5二、填空题:〔11〕(东城区2021年1月高三考试文科〕函数3,0,()(1),0,x x f x f x x ≤⎧=⎨->⎩那么5()6f 的值是. 【答案】12-【解析】55111()(1)()3()66662f f f =-=-=-=- 〔13〕(东城区2021年1月高三考试文科〕对于函数()lg 21f x x =-+①(2)f x +是偶函数;②()f x 在区间(),2-∞上是减函数,在区间()2,+∞上是增函数; ③(2)()f x f x +-在区间()2,+∞上是增函数..【答案】①②【解析】:函数()f x 和(2)f x +的图像如下列图,由图像可知①②正确;函数2(2)()lg lg 2lglg 122x f x f x x x x x +-=--==+--,由复合函数的单调性法那么,可知函数(2)()f x f x +-在区间()2,+∞上是减函数。

天津历年高考理科数学试题及答案汇编十二函数和导数

天津历年高考理科数学试题及答案汇编十二函数和导数

天津历年高考理科数学试题及答案汇编十二函数和导数(2008-2018)试题1、7.(5分)(2008天津)设函数的反函数为f﹣1(x),则()A.f﹣1(x)在其定义域上是增函数且最大值为1B.f﹣1(x)在其定义域上是减函数且最小值为0C.f﹣1(x)在其定义域上是减函数且最大值为1D.f﹣1(x)在其定义域上是增函数且最小值为02、8.(5分)(2008天津)已知函数,则不等式x+(x+1)f(x+1)≤1的解集是()A.B.{x|x≤1} C.D.3、9.(5分)(2008天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin),b=f(cos),c=f(tan),则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c4、16.(4分)(2008天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.5、4.(5分)(2009天津)设函数f(x)=x﹣lnx(x>0),则y=f(x)()A.在区间(,1),(l,e)内均有零点B.在区间(,1),(l,e)内均无零点C.在区间(,1)内无零点,在区间(l,e)内有零点D.在区间(,1)内有零点,在区间(l,e)内无零点6、8.(5分)(2009天津)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞) B.(1、7.(5分)(2008天津)设函数的反函数为f﹣1(x),则()A.f﹣1(x)在其定义域上是增函数且最大值为1B.f﹣1(x)在其定义域上是减函数且最小值为0C.f﹣1(x)在其定义域上是减函数且最大值为1D.f﹣1(x)在其定义域上是增函数且最小值为02、8.(5分)(2008天津)已知函数,则不等式x+(x+1)f(x+1)≤1的解集是()A.B.{x|x≤1} C.D.3、9.(5分)(2008天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin),b=f(cos),c=f(tan),则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c4、16.(4分)(2008天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.5、4.(5分)(2009天津)设函数f(x)=x﹣lnx(x>0),则y=f(x)()A.在区间(,1),(l,e)内均有零点B.在区间(,1),(l,e)内均无零点C.在区间(,1)内无零点,在区间(l,e)内有零点D.在区间(,1)内有零点,在区间(l,e)内无零点6、8.(5分)(2009天津)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞) B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7、10.(5分)(2009天津)0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数恰有3个,则()A.﹣1<a<0 B.0<a<1 C.1<a<3 D.2<a<38、2.(5分)(2010天津)函数f(x)=2x+3x的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9、8.(5分)(2010天津)若函数f(x)=,若f(a)>f(﹣a),则实数a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞) C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)10、16.(4分)(2010天津)设函数f(x)=x2﹣1,对任意x∈[,+∞),f()﹣4m2f (x)≤f(x﹣1)+4f(m)恒成立,则实数m的取值范围是.11、7.(5分)(2011天津)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b12、8.(5分)(2011天津)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.x3A.0B.1C.2D.314、14.(3分)(2012天津)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.x0.5A.1B.2C.3D.4(x)的解集为A,若,则实数a的取值范围是().B..D.17、14.(5分)(2013天津)设a+b=2,b>0,则当a= 时,取得最小值.18、4.(5分)(2014天津)函数f(x)=log(x2﹣4)的单调递增区间为()恰有4个互异的实数根,则实数a的取值范围为.20、7.(5分)(2015天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,21、8.(5分)(2015天津)已知函数f (x )=,函数g (x )=b ﹣f. (,+∞) B . (﹣∞,) C . (0,) D .(,2) 所围成的封闭图形的面积为 .23、8.(5分)(2016天津)已知函数f (x )=(a >0,且a≠1)在R 上单调递减,且关于x 的方程|f (x )|=2﹣x 恰好有两个不相等的实数解,则a 的取值范围是( )A .(0,]B .[,]C .[,]∪{}D .[,)∪{}24、13.(5分)(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a 满足f (2|a ﹣1|)>f (﹣),则a 的取值范围是 . 25、6.(5分)(2017天津)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a=g (﹣log 25.1),b=g (20.8),c=g (3),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <b <a C .b <a <c D .b <c <a26、8.(5分)(2017天津)已知函数f (x )=,设a ∈R ,若关于x 的不等式f (x )≥|+a|在R 上恒成立,则a 的取值范围是( ) A .[﹣,2] B .[﹣,] C .[﹣2,2] D .[﹣2,]27、12.(5分)(2017天津)若a ,b ∈R ,ab >0,则的最小值为 .28、(5) (5分)(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为(A) a b c >>(B) b a c >>(C) c b a >>(D) c a b >>29、(13) (5分)(2018天津)已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 .30、(14) (5分)(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 . 解答题1、20.(12分)(2008天津)已知函数,其中a ,b ∈R .(Ⅰ)若曲线y=f (x )在点P (2,f (2))处的切线方程为y=3x+1,求函数f (x )的解析式;(Ⅱ)讨论函数f (x )的单调性; (Ⅲ)若对于任意的,不等式f (x )≤10在上恒成立,求b 的取值范围.2、20.(12分)(2009天津)已知函数f (x )=(x 2+ax ﹣2a 2+3a )e x(x ∈R ),其中a ∈R . (Ⅰ)当a=0时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)当时,求函数f (x )的单调区间和极值.3、21.(14分)(2010天津)已知函数f (x )=xe ﹣x(x ∈R ) (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)已知函数y=g (x )的图象与函数y=f (x )的图象关于直线x=1对称,证明:当x >1时,f (x )>g (x );(Ⅲ)如果x 1≠x 2,且f (x 1)=f (x 2),证明x 1+x 2>2.4、19.(14分)(2011天津)已知a >0,函数f (x )=lnx ﹣ax 2,x >0.(f (x )的图象连续不断)(Ⅰ)求f (x )的单调区间; (Ⅱ)当时,证明:存在x 0∈(2,+∞),使;(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f (α)=f (β),证明.5、20.(2012天津)已知函数f (x )=x ﹣ln (x+a )的最小值为0,其中a >0.(1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值; (3)证明:(n ∈N *).6、20.(14分)(2013天津)已知函数f (x )=x 2lnx . (Ⅰ)求函数f (x )的单调区间;(Ⅱ)证明:对任意的t >0,存在唯一的s ,使t=f (s ).(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为s=g (t ),证明:当t >e 2时,有.7、20.(14分)(2014天津)设f (x )=x ﹣ae x(a ∈R ),x ∈R ,已知函数y=f (x )有两个零点x 1,x 2,且x 1<x 2.(Ⅰ)求a 的取值范围; (Ⅱ)证明:随着a 的减小而增大;(Ⅲ)证明x 1+x 2随着a 的减小而增大.8、20.(14分)(2015天津)已知函数f (x )=nx ﹣x n ,x ∈R ,其中n ∈N •,且n≥2. (Ⅰ)讨论f (x )的单调性;(Ⅱ)设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证:对于任意的正实数x ,都有f (x )≤g(x ); (Ⅲ)若关于x 的方程f (x )=a (a 为实数)有两个正实数根x 1,x 2,求证:|x 2﹣x 1|<+2.9、20.(14分)(2016天津)设函数f (x )=(x ﹣1)3﹣ax ﹣b ,x ∈R ,其中a ,b ∈R . (1)求f (x )的单调区间;(2)若f (x )存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (3)设a >0,函数g (x )=|f (x )|,求证:g (x )在区间[0,2]上的最大值不小于. 10、20.(14分)(2017天津)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3﹣3x 2﹣6x+a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数. (Ⅰ)求g (x )的单调区间;(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且∈[1,x 0)∪(x 0,2],满足|﹣x 0|≥.11、(20)(14分) (2018天津)已知函数()xf x a =,()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.答案1、解:∵为减函数,由复合函数单调性知f(x)为增函数,∴f﹣1(x)单调递增,排除B、C;又f﹣1(x)的值域为f(x)的定义域,∴f﹣1(x)最小值为0故选D2、解:依题意得所以故选:C.3、解:,因为,又由函数在区间[0,+∞)上是增函数,所以,所以b<a<c,故选A4、解:∵log a x+log a y=c,∴=c∴xy=a c得,单调递减,所以当x∈[a,2a]时,所以,因为有且只有一个常数c符合题意,所以2+log a2=3,解得a=2,所以a的取值的集合为{2}.故答案为:{2}5、解:由题得,令f′(x)>0得x>3;令f′(x)<0得0<x<3;f′(x)=0得x=3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x=3处有极小值1﹣ln3<0;又,,.故选C.6、解:由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f (a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选C7、解:由题得不等式(x﹣b)2>(ax)2即(a2﹣1)x2+2bx﹣b2<0,它的解应在两根之间,因此应有 a2﹣1>0,解得a>1或a<﹣1,注意到0<b<1+a,从而a>1,故有△=4b2+4b2(a2﹣1)=4a2b2>0,不等式的解集为或(舍去).不等式的解集为,又由0<b<1+a得,故,,这三个整数解必为﹣2,﹣1,02(a﹣1)<b≤3 (a﹣1),注意到a>1,并结合已知条件0<b<1+a.故要满足题设条件,只需要2(a﹣1)<1+a<3(a﹣1),即2<a<3即可,则b>2a﹣2b<3a﹣3又0<b<1+a故 1+a>2a﹣23a﹣3>0解得1<a<3,综上2<a<3.故选:D.8、解:由,以及及零点定理知,f(x)的零点在区间(﹣1,0)上,故选B.9、解:由题意.故选C.10、解:依据题意得在上恒定成立,即在上恒成立.令g(x)=,g′(x)=,∵,∴g′(x)>0∴当时,函数取得最小值,所以,即(3m2+1)(4m2﹣3)≥0,解得或,故答案为:(﹣∞,﹣]∪[,+∞).11、解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.12、解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.13、解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f(1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.14、解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)15、解:函数f(x)=2x|log0.5x|﹣1,令f(x)=0,在同一坐标系中作出y=()x.与y=|log0.5x|,如图,由图可得零点的个数为2.故选B.16、解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.17、解:∵a+b=2,b>0,∴=,(a<2)设f(a)=,(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a)=﹣+,f′(a)==,当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,取得最小值.同样地,当0<a<2时,得到当a=时,取得最小值.综合,则当a=﹣2时,取得最小值.故答案为:﹣2.18、解:令t=x2﹣4>0,可得 x>2,或 x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.19、解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x ﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)20、解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);∵0<log23<log25;∴c<a<b.故选:C.21、解:∵g(x)=b﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x),由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<0,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.即h(x)=,作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当b=时,h(x)=b,有两个交点,当b=2时,h(x)=b,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=b恰有4个根,则满足<b<2,故选:D.22、解:先根据题意画出图形,得到积分上限为1,积分下限为0 直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=()|01=﹣=∴曲边梯形的面积是.故答案为:.23、解:y=loga(x+1)+在[0,+∞)递减,则0<a<1,函数f(x)在R上单调递减,则则:;解得,;由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故选:C.24、解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在区间(0,+∞)上单调递减,则f(2|a﹣1|)>f(﹣),等价为f(2|a﹣1|)>f(),即﹣<2|a﹣1|<,则|a﹣1|<,即<a<,故答案为:(,)25、解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.26、解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值,则﹣≤a≤①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.故选:A.27、解:a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案:4.28、解:a=>1,0<b=ln2<1,c= =>=a,则 a,b,c 的大小关系 c>a>b,故选:D.29、解:a,b∈R,且 a﹣3b+6=0,可得:3b=a+6,则128ab= =≥2 =,当且仅当 =.即 a=﹣3 时取等号.函数的最小值为:.故答案为:.30、解:当 x≤0 时,由 f(x)=ax 得 +2ax+a=ax,得 +ax+a=0,得 a(x+1)=﹣,得 a=﹣,设 g(x)=﹣,则 g′(x)=﹣ =﹣,由 g(x)>0 得﹣2<x<﹣1 或﹣1<x<0,此时递增,由 g(x)<0 得 x<﹣2,此时递减,即当 x=﹣2 时,g(x)取得极小值为 g(﹣2)=4,当 x>0 时,由 f(x)=ax 得﹣x 2 +2ax﹣2a=ax,得﹣ax+2a=0,得 a(x﹣2)=x 2 ,当 x=2 时,方程不成立,当 x≠2 时,a=设 h(x)= ,则 h′(x)= =,由 h(x)>0 得 x>4,此时递增,由 h(x)<0 得 0<x<2 或 2<x<4,此时递减,即当 x=4 时,h(x)取得极小值为 h (4)=8,要使 f(x)=ax 恰有 2 个互异的实数解,则由图象知 4<a<8,故答案为:(4,8)解答题1、解:(Ⅰ)解:,由导数的几何意义得f'(2)=3,于是a=﹣8.由切点P(2,f(2))在直线y=3x+1上可得﹣2+b=7,解得b=9.所以函数f(x)的解析式为.(Ⅱ)解:.当a≤0时,显然f'(x)>0(x≠0).这时f(x)在(﹣∞,0),(0,+∞)上内是增函数.当a>0时,令f'(x)=0,解得.0 ﹣0 +值所以f(x)在,内是增函数,在,(0,)内是减函数.综上,当a≤0时,f(x)在(﹣∞,0),(0,+∞)上内是增函数;当a>0时,f(x)在,内是增函数,在,(0,)内是减函数.(Ⅲ)解:由(Ⅱ)知,f(x)在上的最大值为与f(1)的较大者,对于任意的,不等式f(x)≤10在上恒成立,当且仅当,即,对任意的成立.从而得,所以满足条件的b的取值范围是.2、(Ⅰ)解:当a=0时,f(x)=x2e x,f'(x)=(x2+2x)e x,故f'(1)=3e,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e,f(1)=e,所以该切线方程为y﹣e=3e(x﹣1),整理得:3ex﹣y﹣2e=0.(Ⅱ)解:f'(x)=[x2+(a+2)x﹣2a2+4a]e x令f'(x)=0,解得x=﹣2a,或x=a﹣2.由知,﹣2a≠a﹣2.以下分两种情况讨论.①若a>,则﹣2a<a﹣2.当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,a﹣2)﹣2a (﹣2a,a﹣2)a﹣2 (a﹣2,+∞)函数f(x)在x=﹣2a处取得极大值f(﹣2a),且f(﹣2a)=3ae﹣2a.函数f(x)在x=a﹣2处取得极小值f(a﹣2),且f(a﹣2)=(4﹣3a)e a﹣2.②若a<,则﹣2a>a﹣2,当x变化时,f'(x),f(x)的变化情况如下表:函数f(x)在x=a﹣2处取得极大值f(a﹣2),且f(a﹣2)=(4﹣3a)e a﹣2,函数f(x)在x=﹣2a处取得极小值f(﹣2a),且f(﹣2a)=3ae﹣2a.3、解:(Ⅰ)解:f′(x)=(1﹣x)e﹣x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表)+0 ﹣所以f(x)在(﹣∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=.(Ⅱ)证明:由题意可知g(x)=f(2﹣x),得g(x)=(2﹣x)e x﹣2令F(x)=f(x)﹣g(x),即F(x)=xe﹣x+(x﹣2)e x﹣2于是F'(x)=(x﹣1)(e2x﹣2﹣1)e﹣x当x>1时,2x﹣2>0,从而e2x﹣2﹣1>0,又e﹣x>0,所以f′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e﹣1﹣e﹣1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1﹣1)(x2﹣1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1﹣1)(x2﹣1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1﹣1)(x2﹣1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2﹣x2),所以f(x2)>f(2﹣x2),从而f(x1)>f(2﹣x2).因为x2>1,所以2﹣x2<1,又由(Ⅰ)可知函数f(x)在区间(﹣∞,1)内是增函数,所以x1>2﹣x2,即x1+x2>2.4、解:(I),令.(0,)(,+∞))+0 ﹣f(x)增极大值减所以,f(x)的单调递增区间是的单调递减区间是.(II)证明:当.由(I)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令.由于f(x)在(0,2)内单调递增,故.取.所以存在x0∈(2,x'),使g(x0)=0,即存在.(说明:x'的取法不唯一,只要满足x'>2,且g(x')<0即可)(III)证明:由f(α)=f(β)及(I)的结论知,从而f(x)在[α,β]上的最小值为f(a).又由β﹣α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故从而.5、(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n6、解:(Ⅰ)由题意可知函数的定义域为(0,+∞),求导数可得f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1),令f′(x)=0,可解得x=,(0,)(,+∞)﹣ 0 +f(x)单调递减极小值单调递增所以函数f(x)的单调递减区间为(0,),单调递增区间为(,+∞)(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)﹣t,x∈[1,+∞),由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=﹣t<0,h(e t)=e2t lne t﹣t=t (e2t﹣1)>0,故存在唯一的s∈(1,+∞),使得t=f(s)成立;(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,从而====,其中u=lns,要使成立,只需,即2<,即2<2+,只需,变形可得只需0<lnu<,当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立,另一方面,令F(u)=lnu﹣,u>1,F′(u)=,令F′(u)=0,可解得u=2,当1<u<2时,F′(u)>0,当u>2时,F′(u)<0,故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2﹣1<0,故有F(u)=lnu﹣<0,即lnu<,综上可证:当t>e2时,有成立.7、解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;x)、f(x)的变化情况如下表:,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:①f(﹣lna)>0;②存在s1∈(﹣∞,﹣lna),满足f(s1)<0;③存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f(x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.8、(本题满分为14分)解:(Ⅰ)由f(x)=nx﹣x n,可得f′(x)=n﹣nx n﹣1=n(1﹣x n﹣1),其中n∈N•,且n≥2.下面分两种情况讨论:(1)当n为奇数时,令f′(x)=0,解得x=1,或x=﹣1,当x变化时,f′(x),f(x)﹣+ ﹣(2)当n为偶数时,当f′(x)>0,即x<1时,函数 f(x)单调递增;当f′(x)<0,即x>1时,函数 f(x)单调递减;所以,f(x)在(﹣∞,1)单调递增,在(1,+∞)上单调递减;(Ⅱ)证明:设点P的坐标为(x0,0),则x0=n,f′(x0)=n﹣n2,曲线y=f(x)在点P处的切线方程为y=f′(x0)(x﹣x0),即g(x)=f′(x0)(x﹣x0),令F(x)=f(x)﹣g(x),即F(x)=f(x)﹣f′(x0)(x﹣x0),则F′(x)=f′(x)﹣f′(x0).由于f′(x)=﹣nx n﹣1+n在(0,+∞)上单调递减,故F′(x)在(0,+∞)上单调递减,又因为F′(x0)=0,所以当x∈(0,x0)时,F′(x)>0,当x∈(x0,+∞)时,F′(x)<0,所以F(x)在∈(0,x0)内单调递增,在(x0,+∞)上单调递减,所以对应任意的正实数x,都有F(x)≤F(x0)=0,即对于任意的正实数x,都有f(x)≤g(x).(Ⅲ)证明:不妨设x1≤x2,由(Ⅱ)知g(x)=(n﹣n2)(x﹣x0),设方程g(x)=a的根为,可得=,由(Ⅱ)知g(x2)≥f(x2)=a=g(),可得x2≤.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx,当x∈(0,+∞),f(x)﹣h(x)=﹣x n<0,即对于任意的x∈(0,+∞),f(x)<h(x),设方程h(x)=a的根为,可得=,因为h(x)=nx在(﹣∞,+∞)上单调递增,且h()=a=f(x1)<h(x1),因此<x1,由此可得:x2﹣x1<﹣=,因为n≥2,所以2n﹣1=(1+1)n﹣1≥1+=1+n﹣1=n,故:2=x0.所以:|x2﹣x1|<+2.9、解:(1)函数f(x)=(x﹣1)3﹣ax﹣b的导数为f′(x)=3(x﹣1)2﹣a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1﹣时,f′(x)>0,当1﹣<x<1+,f′(x)<0,可得f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+);(2)证明:f′(x0)=0,可得3(x0﹣1)2=a,由f(x0)=(x0﹣1)3﹣3x0(x0﹣1)2﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,f(3﹣2x0)=(2﹣2x0)3﹣3(3﹣2x0)(x0﹣1)2﹣b=(x0﹣1)2(8﹣8x0﹣9+6x0)﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,即为f(3﹣2x0)=f(x0)=f(x1),即有3﹣2x0=x1,即为x1+2x0=3;(3)证明:要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得g(x1)﹣g(x2)≥.当a≥3时,f(x)在[0,2]递减,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(0)﹣f(2)=2a﹣2≥4>,递减,成立;当0<a<3时,f(1﹣)=(﹣)3﹣a(1﹣)﹣b=﹣﹣a+a﹣b=﹣a﹣b,f(1+)=()3﹣a(1+)﹣b=﹣a﹣a﹣b=﹣﹣a﹣b,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(2)﹣f(0)=2﹣2a,若0<a≤时,f(2)﹣f(0)=2﹣2a≥成立;若a>时,f(1﹣)﹣f(1+)=>成立.综上可得,g(x)在区间[0,2]上的最大值不小于.10、(Ⅰ)由f(x)=2x4+3x3﹣3x2﹣6x+a,得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:(﹣1,)(,+∞)所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),所以h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g (x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x 0,2]时,H′2(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )>H 2(x 0)=0,可得得H 2(m )<0即h (x 0)<0,. 所以,h (m )h (x 0)<0. (Ⅲ)对于任意的正整数p ,q ,且,令m=,函数h (x )=g (x )(m ﹣x 0)﹣f (m ).由(Ⅱ)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点; 当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点. 所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(﹣x 0)﹣f ()=0.由(Ⅰ)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2),于是|﹣x 0|=≥=.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而≠x 0,故f ()≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1. 所以|﹣x 0|≥.所以,只要取A=g (2),就有|﹣x 0|≥.11、(I )解:由已知,()ln x h x a x a =-,有()ln ln xh x a a a '=-.令()0h x '=,解得x =0.由a >1,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数()h x 的单调递减区间(,0)-∞,单调递增区间为(0,)+∞.(II )证明:由()ln x f x a a '=,可得曲线()y f x =在点11(,())x f x 处的切线斜率为1ln x a a .由1()ln g x x a '=,可得曲线()y g x =在点22(,())x g x 处的切线斜率为21ln x a. 因为这两条切线平行,故有121ln ln x a a x a=,即122(ln )1x x a a =.两边取以a 为底的对数,得212log 2log ln 0a x x a ++=,所以122ln ln ()ln ax g x a+=-. (III )证明:曲线()y f x =在点11(,)x x a 处的切线l 1:111ln ()x x y a a a x x -=⋅-. 曲线()y g x =在点22(,log )a x x 处的切线l 2:2221log ()ln a y x x x x a-=⋅-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1和l 2重合.学*科网即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解,由①得1221(ln )x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a -+++=. ③ 因此,只需证明当1ee a ≥时,关于x 1的方程③有实数解.设函数12ln ln ()ln ln ln xxa u x a xa a x a a=-+++,即要证明当1e e a ≥时,函数()y u x =存在零点.2()1(ln )x u x a xa '=-,可知(,0)x ∈-∞时,()0u x '>;(0,)x ∈+∞时,()u x '单调递减,又(0)10u '=>,1(ln )2110(ln )a u a a ⎡⎤'=-<⎢⎥⎣⎦,故存在唯一的x 0,且x 0>0,使得0()0u x '=,即0201(ln )0x a x a -=.由此可得()u x 在0(,)x -∞上单调递增,在0(,)x +∞上单调递减. ()u x 在0x x =处取得极大值0()u x .因为1ee a ≥,故ln(ln )1a ≥-, 所以0000002012ln ln 12ln ln 22ln ln ()ln 0ln ln (ln )ln ln x x a a a u x a x a a x x a a x a a a+=-+++=++≥≥.下面证明存在实数t ,使得()0u t <. 由(I )可得1ln x a x a ≥+, 当1ln x a>时, 有2212ln ln 12ln ln ()(1ln )(1ln )(ln )1ln ln ln ln a a u x x a x a x a x x a a a a≤+-+++=-++++,所以存在实数t ,使得()0u t <因此,当1ee a ≥时,存在1(,)x ∈-∞+∞,使得1()0u x =.所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.。

2024全国高考真题数学汇编:导数在研究函数中的应用

2024全国高考真题数学汇编:导数在研究函数中的应用

2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。

2021年高考数学专题分类汇编:函数、导数、导数及应用(含答案)

2021年高考数学专题分类汇编:函数、导数、导数及应用(含答案)

函数、导数、导数及应用一.选择题(共13小题)1.(2021•浙江)已知函数f(x)=x2+,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)﹣B.y=f(x)﹣g(x)﹣C.y=f(x)g(x)D.y=2.(2021•甲卷)下列函数中是增函数的为()A.f(x)=﹣x B.f(x)=()x C.f(x)=x2D.f(x)=3.(2021•甲卷)设f(x)是定义域为R的奇函数,且f(1+x)=f(﹣x).若f(﹣)=,则f()=()A.﹣B.﹣C.D.4.(2021•乙卷)设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+15.(2021•甲卷)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=()A.﹣B.﹣C.D.6.(2021•上海)下列函数中,在定义域内存在反函数的是()A.f(x)=x2B.f(x)=sin x C.f(x)=2x D.f(x)=17.(2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(≈1.259)A.1.5B.1.2C.0.8D.0.68.(2021•浙江)若实数x,y满足约束条件,则z=x﹣y的最小值是()A.﹣2B.﹣C.﹣D.9.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+10.(2021•乙卷)若x,y满足约束条件则z=3x+y的最小值为()A.18B.10C.6D.411.(2021•乙卷)设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a212.(2021•乙卷)设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b13.(2021•新高考Ⅰ)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a二.填空题(共8小题)14.(2021•浙江)已知a∈R,函数f(x)=若f(f())=3,则a=.15.(2021•新高考Ⅰ)已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=.16.(2021•新高考Ⅰ)函数f(x)=|2x﹣1|﹣2lnx的最小值为.17.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=.18.(2021•上海)若方程组无解,则=.19.(2021•上海)不等式<1的解集为.20.(2021•甲卷)曲线y=在点(﹣1,﹣3)处的切线方程为.21.(2021•上海)在无穷等比数列{a n}中,(a1﹣a n)=4,则a2的取值范围是.三.解答题(共8小题)22.(2021•甲卷)已知函数f(x)=|x﹣2|,g(x)=|2x+3|﹣|2x﹣1|.(1)画出y=f(x)和y=g(x)的图像;(2)若f(x+a)≥g(x),求a的取值范围.23.(2021•上海)已知函数f(x)=﹣x.(1)若a=1,求函数的定义域;(2)若a≠0,若f(ax)=a有2个不同实数根,求a的取值范围;(3)是否存在实数a,使得函数f(x)在定义域内具有单调性?若存在,求出a的取值范围.24.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>x1+.(注:e=2.71828⋯是自然对数的底数)25.(2021•甲卷)设函数f(x)=a2x2+ax﹣3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.26.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<+<e.27.(2021•乙卷)已知函数f(x)=ln(a﹣x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=.证明:g(x)<1.28.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.29.(2021•甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.参考答案与试题解析一.选择题(共13小题)1.(2021•浙江)已知函数f(x)=x2+,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)﹣B.y=f(x)﹣g(x)﹣C.y=f(x)g(x)D.y=【解答】解:由图可知,图象关于原点对称,则所求函数为奇函数,因为f(x)=x2+为偶函数,g(x)=sin x为奇函数,函数y=f(x)+g(x)﹣=x2+sin x为非奇非偶函数,故选项A错误;函数y=f(x)﹣g(x)﹣=x2﹣sin x为非奇非偶函数,故选项B错误;函数y=f(x)g(x)=(x2+)sin x,则y'=2x sin x+(x2+)cos x>0对x∈恒成立,则函数y=f(x)g(x)在上单调递增,故选项C错误.故选:D.2.(2021•甲卷)下列函数中是增函数的为()A.f(x)=﹣x B.f(x)=()x C.f(x)=x2D.f(x)=【解答】解:由一次函数性质可知f(x)=﹣x在R上是减函数,不符合题意;由指数函数性质可知f(x)=()x在R上是减函数,不符合题意;由二次函数的性质可知f(x)=x2在R上不单调,不符合题意;根据幂函数性质可知f(x)=在R上单调递增,符合题意.故选:D.3.(2021•甲卷)设f(x)是定义域为R的奇函数,且f(1+x)=f(﹣x).若f(﹣)=,则f()=()A.﹣B.﹣C.D.【解答】解:由题意得f(﹣x)=﹣f(x),又f(1+x)=f(﹣x)=﹣f(x),所以f(2+x)=f(x),又f(﹣)=,则f()=f(2﹣)=f(﹣)=.故选:C.4.(2021•乙卷)设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+1【解答】解:因为f(x)==,所以函数f(x)的对称中心为(﹣1,﹣1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x﹣1)+1,该函数的对称中心为(0,0),故函数y=f(x﹣1)+1为奇函数.故选:B.5.(2021•甲卷)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=()A.﹣B.﹣C.D.【解答】解:∵f(x+1)为奇函数,∴f(1)=0,且f(x+1)=﹣f(﹣x+1),∵f(x+2)偶函数,∴f(x+2)=f(﹣x+2),∴f[(x+1)+1]=﹣f[﹣(x+1)+1]=﹣f(﹣x),即f(x+2)=﹣f(﹣x),∴f(﹣x+2)=f(x+2)=﹣f(﹣x).令t=﹣x,则f(t+2)=﹣f(t),∴f(t+4)=﹣f(t+2)=f(t),∴f(x+4)=f(x).当x∈[1,2]时,f(x)=ax2+b.f(0)=f(﹣1+1)=﹣f(2)=﹣4a﹣b,f(3)=f(1+2)=f(﹣1+2)=f(1)=a+b,又f(0)+f(3)=6,∴﹣3a=6,解得a=﹣2,∵f(1)=a+b=0,∴b=﹣a=2,∴当x∈[1,2]时,f(x)=﹣2x2+2,∴f()=f()=﹣f()=﹣(﹣2×+2)=.故选:D.6.(2021•上海)下列函数中,在定义域内存在反函数的是()A.f(x)=x2B.f(x)=sin x C.f(x)=2x D.f(x)=1【解答】解:选项A:因为函数是二次函数,属于二对一的映射,根据函数的定义可得函数不存在反函数,A错误,选项B:因为函数是三角函数,有周期性和对称性,属于多对一的映射,根据函数的定义可得函数不存在反函数,B错误,选项C:因为函数的单调递增的指数函数,属于一一映射,所以函数存在反函数,C正确,选项D:因为函数是常数函数,属于多对一的映射,所以函数不存在反函数,D错误,故选:C.7.(2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(≈1.259)A.1.5B.1.2C.0.8D.0.6【解答】解:在L=5+lgV中,L=4.9,所以4.9=5+lgV,即lgV=﹣0.1,解得V=10﹣0.1===≈0.8,所以其视力的小数记录法的数据约为0.8.故选:C.8.(2021•浙江)若实数x,y满足约束条件,则z=x﹣y的最小值是()A.﹣2B.﹣C.﹣D.【解答】解:由约束条件作出可行域如图,立,解得A(﹣1,1),化目标函数z=x﹣为y=2x﹣2z,由图可知,当直线y=2x﹣2z过A时,直线在y轴上的截距最大,z有最小值为﹣1﹣.故选:B.9.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+【解答】解:对于A,y=x2+2x+4=(x+1)2+3≥3,所以函数的最小值为3,故选项A错误;对于B,因为0<|sin x|≤1,所以y=|sin x|+,当且仅当,即|sin x|=2时取等号,因为|sin x|≤1,所以等号取不到,所以y=|sin x|+>4,故选项B错误;对于C,因为2x>0,所以y=2x+22﹣x=,当且仅当2x=2,即x=1时取等号,所以函数的最小值为4,故选项C正确;对于D,因为当x=时,,所以函数的最小值不是4,故选项D错误.故选:C.10.(2021•乙卷)若x,y满足约束条件则z=3x+y的最小值为()A.18B.10C.6D.4【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由z=3x+y,得y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,直线在y轴上的截距最小,z有最小值为3×1+3=6.故选:C.11.(2021•乙卷)设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【解答】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.12.(2021•乙卷)设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 【解答】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)﹣(﹣1),0<x<1,令=t,则1<t<∴x=,∴g(t)=2ln()﹣t+1=2ln(t2+3)﹣t+1﹣2ln4,∴g′(t)=﹣1==﹣>0,∴g(t)在(1,)上单调递增,∴g(t)>g(1)=2ln4﹣1+1﹣2ln4=0,∴f(x)>0,∴a>c,同理令h(x)=ln(1+2x)﹣(﹣1),再令=t,则1<t<∴x=,∴φ(t)=ln()﹣t+1=ln(t2+1)﹣t+1﹣ln2,∴φ′(t)=﹣1=<0,∴φ(t)在(1,)上单调递减,∴φ(t)<φ(1)=ln2﹣1+1﹣ln2=0,∴h(x)<0,∴c>b,∴a>c>b.故选:B.13.(2021•新高考Ⅰ)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a【解答】解:函数y=e x是增函数,y′=e x>0恒成立,函数的图象如图,y>0,即取得坐标在x轴上方,如果(a,b)在x轴下方,连线的斜率小于0,不成立.点(a,b)在x轴或下方时,只有一条切线.如果(a,b)在曲线上,只有一条切线;(a,b)在曲线上侧,没有切线;由图象可知(a,b)在图象的下方,并且在x轴上方时,有两条切线,可知0<b<e a.故选:D.二.填空题(共8小题)14.(2021•浙江)已知a∈R,函数f(x)=若f(f())=3,则a=2.【解答】解:因为函数f(x)=,所以,则f(f())=f(2)=|2﹣3|+a=3,解得a=2.故答案为:2.15.(2021•新高考Ⅰ)已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=1.【解答】解:函数f(x)=x3(a•2x﹣2﹣x)是偶函数,y=x3为R上的奇函数,故y=a•2x﹣2﹣x也为R上的奇函数,所以y|x=0=a•20﹣20=a﹣1=0,所以a=1.故答案为:1.16.(2021•新高考Ⅰ)函数f(x)=|2x﹣1|﹣2lnx的最小值为1.【解答】解:函数f(x)=|2x﹣1|﹣2lnx的定义域为(0,+∞).当0<x时,f(x)=|2x﹣1|﹣2lnx=﹣2x+1﹣2lnx,此时函数f(x)在(0,]上为减函数,所以f(x)≥f()=﹣2×+1﹣2ln=2ln2;当x>时,f(x)=|2x﹣1|﹣2lnx=2x﹣1﹣2lnx,则f′(x)==,当x∈(,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴当x=1时f(x)取得最小值为f(1)=2×1﹣1﹣2ln1=1.∵2ln2=ln4>lne=1,∴函数f(x)=|2x﹣1|﹣2lnx的最小值为1.故答案为:1.17.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=9.【解答】解:f(x)=3x+=3x+1+﹣1≥﹣1=5,所以a=9,经检验,3x=2时等号成立.故答案为:9.18.(2021•上海)若方程组无解,则=0.【解答】解:对于方程组,有,当D≠0时,方程组的解为,根据题意,方程组无解,所以D=0,即,故答案为:0.19.(2021•上海)不等式<1的解集为(﹣7,2).【解答】解:<1⇒<0⇒<0,解得,﹣7<x<2.故答案为:(﹣7,2).20.(2021•甲卷)曲线y=在点(﹣1,﹣3)处的切线方程为5x﹣y+2=0.【解答】解:因为y=,(﹣1,﹣3)在曲线上,所以y′==,所以y′|x=﹣1=5,则曲线y=在点(﹣1,﹣3)处的切线方程为:y﹣(﹣3)=5[x﹣(﹣1)],即5x﹣y+2=0.故答案为:5x﹣y+2=0.21.(2021•上海)在无穷等比数列{a n}中,(a1﹣a n)=4,则a2的取值范围是(﹣4,0)∪(0,4).【解答】解:∵无穷等比数列{a n},∴公比q∈(﹣1,0)∪(0,1),∴a n=0,∴(a1﹣a n)=a1=4,∴a2=a1q=4q∈(﹣4,0)∪(0,4).故答案为:(﹣4,0)∪(0,4).三.解答题(共8小题)22.(2021•甲卷)已知函数f(x)=|x﹣2|,g(x)=|2x+3|﹣|2x﹣1|.(1)画出y=f(x)和y=g(x)的图像;(2)若f(x+a)≥g(x),求a的取值范围.【解答】解:(1)函数f(x)=|x﹣2|=,g(x)=|2x+3|﹣|2x﹣1|=.画出y=f(x)和y=g(x)的图像;(2)由图像可得:f(6)=4,g()=4,若f(x+a)≥g(x),说明把函数f(x)的图像向左或向右平移|a|单位以后,f(x)的图像不在g(x)的下方,由图像观察可得:a≥2﹣+4=∴a的取值范围为[,+∞).23.(2021•上海)已知函数f(x)=﹣x.(1)若a=1,求函数的定义域;(2)若a≠0,若f(ax)=a有2个不同实数根,求a的取值范围;(3)是否存在实数a,使得函数f(x)在定义域内具有单调性?若存在,求出a的取值范围.【解答】解:(1)当a=1时,f(x)=,由|x+1|﹣1≥0,得|x+1|≥1,解得x≤﹣2或x≥0.∴函数的定义域为(﹣∞,﹣2]∪[0,+∞);(2)f(ax)=,f(ax)=a⇔,设ax+a=t≥0,∴有两个不同实数根,整理得a=t﹣t2,t≥0,∴a=,t≥0,当且仅当0≤a<时,方程有2个不同实数根,又a≠0,∴a的取值范围是(0,);(3)当x≥﹣a时,f(x)=﹣x=,在[,+∞)上单调递减,此时需要满足﹣a≥,即a,函数f(x)在[﹣a,+∞)上递减;当x<﹣a时,f(x)=﹣x=,在(﹣∞,﹣2a]上递减,∵a<0,∴﹣2a>﹣a>0,即当a时,函数f(x)在(﹣∞,﹣a)上递减.综上,当a∈(﹣∞,﹣]时,函数f(x)在定义域R上连续,且单调递减.24.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>x1+.(注:e=2.71828⋯是自然对数的底数)【解答】解:(Ⅰ)f′(x)=a x lna﹣b,①当b≤0时,由于a>1,则a x lna>0,故f′(x)>0,此时f(x)在R上单调递增;②当b>0时,令f′(x)>0,解得,令f′(x)<0,解得,∴此时f(x)在单调递减,在单调递增;综上,当b≤0时,f(x)的单调递增区间为(﹣∞,+∞);当b>0时,f(x)的单调递减区间为,单调递增区间为;(Ⅱ)注意到x→﹣∞时,f(x)→+∞,当x→+∞时,f(x)→+∞,由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需即可,∴对任意b>2e2均成立,令,则a t﹣bt+e2<0,即e tlna﹣bt+e2<0,即,即,∴对任意b>2e2均成立,记,则,令g′(b)=0,得b=lna,①当lna>2e2,即时,易知g(b)在(2e2,lna)单调递增,在(lna,+∞)单调递减,此时g(b)≤g(lna)=lna﹣lna•ln1+e2lna=lna•(e2+1)>0,不合题意;②当lna≤2e2,即时,易知g(b)在(2e2,+∞)单调递减,此时=2e2﹣2e2[ln(2e2)﹣ln(lna)]+e2lna,故只需2﹣2[ln2+2﹣ln(lna)]+lna≤0,即lna+2ln(lna)≤2+2ln2,则lna≤2,即a≤e2;综上,实数a的取值范围为(1,e2];(Ⅲ)证明:当a=e时,f(x)=e x﹣bx+e2,f′(x)=e x﹣b,令f′(x)=0,解得x=lnb>4,易知+e2=e2﹣3b<e2﹣3e4=e2(1﹣3e2)<0,∴f(x)有两个零点,不妨设为x1,x2,且x1<lnb<x2,由,可得,∴要证,只需证,只需证,而,则,∴要证,只需证,只需证x2>ln(blnb),而f(ln(blnb))=e ln(blnb)﹣bln(blnb)+e2=blnb﹣bln(blnb)+e2<blnb﹣bln(4b)+e2=,∴x2>ln(blnb),即得证.25.(2021•甲卷)设函数f(x)=a2x2+ax﹣3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.【解答】解:(1)f′(x)=2a2x+a﹣==,x>0,因为a>0,所以﹣<0<,所以在(0,)上,f′(x)<0,f(x)单调递减,在(,+∞)上,f′(x)>0,f(x)单调递增.综上所述,f(x)在(0,)上单调递减,在(,+∞)上f(x)单调递增.(2)由(1)可知,f(x)min=f()=a2×()2+a×﹣3ln+1=3+3lna,因为y=f(x)的图像与x轴没有公共点,所以3+3lna>0,所以a>,所以a的取值范围为(,+∞).26.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<+<e.【解答】(1)解:由函数的解析式可得f'(x)=1−lnx−1=−lnx,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna−alnb=a−b,得,即,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令,,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2−x1>1,先证2<x1+x2,即证x2>2−x1,即证f(x2)=f(x1)<f(2﹣x1),令h(x)=f(x)−f(2−x),则h′(x)=f′(x)+f′(2−x)=−lnx−ln(2−x)=−ln[x(2−x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2﹣x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e﹣x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e﹣x1),令φ(x)=f(x)−f(e−x),x∈(0,1),则φ'(x)=−ln[x(e−x)],令φ′(x0)=0,x∈(0,x0),φ'(x)>0,φ(x)单调递增,x∈(x0,1),φ'(x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故,φ(1)=f(1)−f(e−1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1﹣lnx1)=x2(1﹣lnx2),又x1∈(0,1),故1﹣lnx1>1,x1(1﹣lnx1)>x1,故x1+x2<x1(1﹣lnx1)+x2=x2(1﹣lnx2)+x2,x2∈(1,e),令g(x)=x(1﹣lnx)+x,g′(x)=1﹣lnx,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1﹣lnx2)+x2<e,所以x1+x2<e,得证,则2<+<e.27.(2021•乙卷)已知函数f(x)=ln(a﹣x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=.证明:g(x)<1.【解答】(1)解:由题意,f(x)的定义域为(﹣∞,a),令t(x)=xf(x),则t(x)=xln(a﹣x),x∈(﹣∞,a),则t'(x)=ln(a﹣x)+x•=,因为x=0是函数y=xf(x)的极值点,则有t'(0)=0,即lna=0,所以a=1,当a=1时,t'(x)=,且t'(0)=0,因为t''(x)=,则t'(x)在(﹣∞,1)上单调递减,所以当x∈(﹣∞,0)时,t'(x)>0,当x∈(0,1)时,t'(x)<0,所以a=1时,x=0是函数y=xf(x)的一个极大值点.综上所述,a=1;(2)证明:由(1)可知,xf(x)=xln(1﹣x),要证,即需证明,因为当x∈(﹣∞,0)时,xln(1﹣x)<0,当x∈(0,1)时,xln(1﹣x)<0,所以需证明x+ln(1﹣x)>xln(1﹣x),即x+(1﹣x)ln(1﹣x)>0,令h(x)=x+(1﹣x)ln(1﹣x),则h'(x)=(1﹣x),所以h'(0)=0,当x∈(﹣∞,0)时,h'(x)<0,当x∈(0,1)时,h'(x)>0,所以x=0为h(x)的极小值点,所以h(x)>h(0)=0,即x+ln(1﹣x)>xln(1﹣x),故,所以.28.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.【解答】解:(1)f′(x)=3x2﹣2x+a,△=4﹣12a,①当△≤0,即时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R上单调递增;②当△>0,即时,令f′(x)=0,解得,令f′(x)>0,解得x<x1或x>x2,令f′(x)<0,解得x1<x<x2,∴f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减;综上,当时,f(x)在R上单调递增;当时,f(x)在单调递增,在单调递减.(2)设曲线y=f(x)过坐标原点的切线为l,切点为,则切线方程为,将原点代入切线方程有,,解得x0=1,∴切线方程为y=(a+1)x,令x3﹣x2+ax+1=(a+1)x,即x3﹣x2﹣x+1=0,解得x=1或x=﹣1,∴曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,a+1)和(﹣1,﹣a﹣1).29.(2021•甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解答】解:(1)a=2时,f(x)=,f′(x)===,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,故f(x)在(0,)上单调递增,在(,+∞)上单调递减.(2)由题知f(x)=1在(0,+∞)有两个不等实根,f(x)=1⇔x a=a x⇔alnx=xlna⇔=,令g(x)=,g′(x)=,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,又g(x)=﹣∞,g(e)=,g(1)=0,g(x)=0,作出g(x)的图象,如图所示:由图象可得0<<,解得a>1且a≠e,即a的取值范围是(1,e)∪(e,+∞).。

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数——大题——单调性4:1. (2022年山东临沂J15)已知函数ln ()(exx kf x k +=为常数,e 2.71828=…是自然对数的底数),曲线()y f x =在点(1,(1)f )处的切线与x 轴平行.2. (1)求k 的值;3. (2)求()f x 的单调区间;(①)(单调性,易;第三问,未;)4. (3)设2()()()g x x x f x =+',其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.5. (2022年山东威海三模J27)已知函数()2ln a f x x x x=-+. 6. (1)当34a =时,求()f x 的单调区间;(②)(单调性,中下;第二问,未;) 7. (2)若()f x 有两个极值点12,x x ,且12x x <,从下面两个结论中选一个证明.8. ①()()21212f x f x x x a-<--; ②()222ln 223f x a <+-.9. (2022年山东济宁三模J42)已知函数()()2ln e 1ln 1f x x a x a x =-----,a ∈R .10. (1(当0a =时,证明:()()()e 21f x x ≥--;(③)11. (2(若函数()f x 在()1,e 内有零点,求实数a 的取值范围.12. (单调性,最值,中下;第二问,未;)13. (2022年山东实验中学J46)已知函数()e sin xf x x =⋅.14. (1)求函数()f x 的单调区间;(④)15. (2)如果对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()f x kx ≥恒成立,求实数k 的取值范围;16. (3)设函数()()20152017e cos ,,22xF x f x x x ππ⎡⎤=+⋅∈-⎢⎥⎣⎦.过点1,02M π-⎛⎫ ⎪⎝⎭作函数()F x 的图象的所有切线,令各切点的横坐标构成数列{}n x ,求数列{}n x 的所有项之和S 的值. 17. (单调性,中下;第二问,未;)1.(2022年广东韶关二模J06)(本小题满分12分) 已知f(x)=e x.;(⑤)2.(1)求证:当x>0时,f(x)>1+x+x223.(2)若不等式f(x)≥2x ln x+mx+1,(其中m∈R)恒成立时,实数m的取值范围为(-∞,t],4.求证:t>23.(单调性,最值,切线放缩,中下;第二问,未;)20①【答案】(1)1k =;(2)()f x 在(0,1)递增,在(1,)+∞递减; (3)证明见解析. 【解析】【分析】(1)由题设求导函数()f x ',再由(1)0f '=求参数k 值. (2)由(1)得1ln ()e xx x xf x x --'=且,()0x ∈+∞,构造函数()1ln h x x x x =--,结合导数研究()h x 的符号,进而求()f x 的单调区间.(3)由题设只需证2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,由(2)易得21ln 1e x x x ---≤+,再构造()e (1)x m x x =-+并应用导数判断e ),(1xx +的大小关系,即可证结论. 【小问1详解】 由题设,1ln ()e xkx x xf x x --'=,,()0x ∈+∞,又()y f x =在(1,(1)f )处的切线与x 轴平行,即1(1)0ekf -'==, 1k ∴=.【小问2详解】 由(1)得:1ln ()e xx x xf x x --'=,,()0x ∈+∞,令()1ln h x x x x =--,,()0x ∈+∞,当(0,1)x ∈时,()0h x >,当(1,)x ∈+∞时,()0h x <,又e 0x >,(0,1)x ∴∈时,()0f x '>,(1,)x ∈+∞时,()0f x '<,()f x ∴在(0,1)递增,在(1,)+∞递减;【小问3详解】由2()()()g x x x f x =+',即1()(1ln )e xx g x x x x +=--,,()0x ∈+∞, 0x ∴∀>,22e ()1e 1ln (1e )1xg x x x x x --<+⇔--<++, 由(2),对于()1ln h x x x x =--,,()0x ∈+∞, ()ln 2h x x ∴'=--,,()0x ∈+∞,2(0,e )x -∴∈时()0h x '>,()h x 递增,2(e x -∈,)∞+时()0h x <,()h x 递减,22max ()(e )1e h x h --∴==+,即21ln 1e x x x ---≤+,设()e (1)xm x x =-+,则0()e 1e x x m x e '=-=-,(0,)x ∴∈+∞时()0m x '>,()m x 递增,即()(0)0m x m >=,则e 11x x >+, 综上,22e 1ln 1e (1e )1x x x x x----≤+<++,故0x ∀>,()21e g x -<+,得证. 【点睛】关键点点睛:第三问,应用分析法转化为证明2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,结合(2)中()h x 的单调性得到21ln 1e x x x ---≤+,再判断e ),(1x x +的大小关系.②【答案】(1)()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析 【解析】【分析】(1)首先求函数的导数,根据导数与函数单调性的关系,即可求解;(2)若选①,不等式转化为证明212121ln ln x x x x ax x -<=-,变形为证明2212111212lnx x x x x x x x <=1()2ln ,1h t t t t t=-+>,即可证明; 若选②,首先根据函数有两个极值点,证得212x <<,()2222222ln 33a f x a x x a x -=-+-,再变换为()2222222102ln 2333f x a x x x -=+-+,通过构造函数,利用导数,即可证明. 【小问1详解】22222()1(0)a x x af x x x x x-+-'=--=>, 当34a =时,2222232483(21)(23)4()44x x x x x x f x x x x -+--+--==--'=, 令()0f x '>,解得1322x <<;令()0f x '<,解得102x <<或32x >, 所以()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭.【小问2详解】证明①:由题意知,12,x x 是220x x a -+=的两根,则12122x x x x a +=⎧⎨=⎩,()()()()()122121211221212ln ln a x x x x x x f x f x x x x x x x ----+-=--, 将12x x a =代入得,()()()212121212ln ln 2f x f x x x x x x x --=---,要证明()()21212f x f x x x a -<--,只需证明()21212ln ln 22x x x x a--<--,即212121ln ln x x x x ax x -<=-, 因为120x x <<,所以210x x ->, 只需证明2212111212lnx x x x x x x x <= 21x t x =,则1t >,只需证明21ln t t t <-,即12ln 0(1)t t t t-+<>, 令1()2ln ,1h t t t t t=-+>,22221(1)()10t h t t t t--=--=<', 所以()h t 在(1,)+∞上单调递减,可得()(1)0h t h <=, 所以12ln 0(1)t t t t-+<>, 综上可知,()()21212f x f x x x a-<--.证明②:22222()1(0)a x x af x x x x x -+-'=--=>设2()2g x x x a =-+-,因为()f x 有两个极值点,所以Δ440(0)0a g =->⎧⎨<⎩,解得01a <<,因为(2)0,(1)10g a g a =-<=->, 所以212x <<,()2222222ln 33a f x a x x a x -=-+-,由题意可知22220x x a -+-=, 可得2222a x x =-+代入得,()2222222102ln 2333f x a x x x -=+-+, 令2210()2ln 2(12)33h x x x x x =+-+<<, 24102(1)(23)()333x x h x x x x--=+-=', 当31,,()02x h x ⎛⎫∈< ⎪⎝⎭',所以()h x 在31,2⎛⎫⎪⎝⎭上单调递减,当3,2,()02x h x ⎛⎫∈>⎪⎝⎭',所以()h x 在3,22⎛⎫ ⎪⎝⎭上单调速增,因为212x <<,所以()2max{(1),(2)}h x h h <, 由2(1),(2)2ln 223h h =-=-,可得()22ln8ln (2)(1)03e h h --=>,所以(2)(1)h h >,所以()2(2)h x h <, 所以()222ln 223f x a -<-,即()222ln 223f x a <+-.③【答案】(1)证明见解析;(2)e 21a -<< 【解析】【分析】(1)构造函数()()()()=e 21g x f x x ---,证得min ()0g x ≥即可; (2)根据零点存在性定理结合导函数与单调性、最值等关系进行判定. 小问1详解】证明:当0a =时,设()()()()=e 21(e 1)(ln 1)g x f x x x x ---=---,1()(e 1)x g x x-'=-,由()001g x x '<⇒<<,()01g x x '>⇒>,可得()g x 在()0,1单调递减,在()1,+∞单调递增,所以min ()(1)0g x g ==,则()0g x ≥,即()()()e 21f x x ≥--; 【小问2详解】函数()()2ln e 1ln 1f x x a x a x =-----,(1)0,(e)0f f ==,若函数()f x 在()1,e 内有零点,则函数()f x 在()1,e 内至少有两个极值点,即()f x '在()1,e 内至少有两个变号零点.2ln e 12ln e 1()1a x a x a x a f x x x x----++'=--=,等价于()2ln e 1h x x a x a =--++在()1,e 内至少有两个变号零点,22()1a x ah x x x-'=-=,()1,e x ∈,当12a ≤或e 2a ≥时,()0h x '≥或()0h x '≤恒成立,则()h x 在()1,e 上单调,不合题意;当122ea <<时,由()012h x x a '<⇒<<,()02e h x a x '>⇒<<,可得()h x 在(1,2)a 单调递减,在(2,e)a 上单调递增,所以当(1)0)(e)0(2)0h h h a >⎧⎪>⎨⎪<⎩时,()h x 在()1,e 内有两个变号零点且最多两个,即2e 01032ln 2e 10a a a a a -+>⎧⎪->⎨⎪--+<⎩,令2t a =,()1,e t ∈,设31()ln e 1()ln 0e 22F t t t t F t t t '=--+⇒=-=⇒=(e t ∈时,()0F t '>,()F t 单调递增,当)e,e t ∈时,()0F t '<,()F t 单调递减,所以max 3()(e)e e e e 1e e 102F t F ==+=+<,即32ln 2e 10a a a --+<在122ea <<上恒成立,所以e 21a -<<.此时()0h x =即()0f x '=有两个零点,设为121e x x <<<,当()11,x x ∈和()2,e x 时,()0f x '>,()f x 单调递增,当()12,x x x ∈时,()0f x '<,()f x 单调递减,所以1()(1)0f x f >=,2()(e)0f x f <=,则()f x 在()12,x x 上有零点,综上可得:e 21a -<<. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④【答案】(1)()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦(2)(],1-∞ (3)1008π【分析】(1)对函数求导()π2sin 4xf x e x ⎛⎫'=+ ⎪⎝⎭,求增区间需要导函数大于等于0,求减区间需要导函数小于等于0,分别解不等式即可;(2)令()()sin xg x f x kx e x kx =-=-,要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,对该函数求导,分类讨论研究函数单调性,进而得到结果;(3)求出函数()F x 过点1,02M π-⎛⎫⎪⎝⎭的切线方程,各切点的横坐标满足00πtan 22x x ⎛⎫=- ⎪⎝⎭,0x 为函数1tan y x =和2π22y x ⎛⎫=- ⎪⎝⎭的交点的横坐标,这两个函数图像均关于点π,02⎛⎫ ⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,从而根据对称性得出结果. (1)(()()πsin cos 2sin 4x xf x e x x e x ⎛⎫'=+=+ ⎪⎝⎭,增区间应满足:()0f x '>,22,4k x k k z ππππ≤+≤+∈减区间应该满足:()0f x '<,222,4k x k k z πππππ+≤+≤+∈(()f x 的增区间为()π3π2π,2π44k k k Z ⎡⎤-+∈⎢⎥⎣⎦;减区间为()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦.(2)令()()sin xg x f x kx e x kx =-=-要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,(()()sin cos xg x e x x k '=+-令()()sin cos x h x e x x =+,则()2cos 0xh x e x '=≥对π0,2x ⎡⎤∈⎢⎥⎣⎦恒成立,(()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则()π21,h x e ⎡⎤∈⎢⎥⎣⎦,(当1k ≤时,()0g x '≥恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为增函数,(()()min 00g x g ==,(1k ≤满足题意;(当π21k e <<时,()0g x '=在π0,2⎡⎤⎢⎥⎣⎦上有实根0x ,()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则当[)00,x x ∈时,()0g x '<,(()0(0)0g x g <=不符合题意; (当π2k e ≥时,()0g x '≤恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为减函数,(()()00g x g <=不符合题意,(1k ≤,即(],1k ∈-∞. (3)(()()()cos sin cos x x F x f x e x e x x =+=+(()2cos xF x e x '=,设切点坐标为()()0000,sin cos x x e x x +,则切线斜率为()0002cos xF x e x '=,从而切线方程为()()000000sin cos 2cos xxy e x x e x x x -+=-,(()0000000π1πsin cos 2cos tan 222x xex x e x x x x -⎛⎫⎛⎫-+=-⇔=- ⎪ ⎪⎝⎭⎝⎭,令1tan y x =,2π22y x ⎛⎫=- ⎪⎝⎭,这两个函数的图象均关于点π,02⎛⎫⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,又在2015π2017π,22⎡⎤-⎢⎥⎣⎦共有1008对,每对和为π. (1008πS =.⑤第11页共11页。

高考文科数学试题分类汇编----函数与导数

高考文科数学试题分类汇编----函数与导数

函数与导数一 选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是A .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =A.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)一、选择题1.(市回民中学2008-2009学年度上学期高三第二次阶段测试文科) 函数x x x f ln )(+=的零点所在的区间为 ( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )答案:B.2(市回民中学2008-2009学年度上学期高三第二次阶段测试文科)具有性质:1()()f f x x =-的函数,我们称为满足“倒负”变换的函数,下列函数:①1y x x=-;②1y x x =+;③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有① 答案:B.3.(二中2009届高三期末数学试题) 已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则与的夹角围为( ) A .)6,0[π B .],6(ππC .],3(ππD .2[,]33ππ答案:C.4.(二中2009届高三期末数学试题)已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+。

当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为 A .2log 3- B .22log 3- C .212log 3-D .232log 3-答案:D.5.(省二中2008—2009学年上学期高三期中考试)已知),(,)1(log )1()3()(+∞-∞⎩⎨⎧≥<--=是x x x ax a x f a 上是增函数,那么实数a 的取值围是()A .(1,+∞)B .(3,∞-)C .)3,23[D .(1,3)答案:C.6.(省二中2008—2009学年上学期高三期中考试) 若关于x 的方程,01)11(2=+++xx a ma (a>0,且1≠a )有解,则m 的取值围是() A .)0,31[- B .]1,0()0,31[ - C .]31,(--∞D .),1(+∞答案:A.7.(省二中2008—2009学年上学期高三期中考试)已知函数)(x f 是定义在R 上的偶函数,且对任意R x ∈,都有)3()1(+=-x f x f 。

专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题04  导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点

高考数学必做题--函数与导数 (后附参考答案与详解)

高考数学必做题--函数与导数 (后附参考答案与详解)

1 23 4 56 7 8 9 10 1112 13 14 15 1617 18 19 20 212223,且关于的方的取值范围是.24252627 28 29 30123,4.567解析式最值奇偶性二次函数二次函数的概念、图象和性质导数及其应用导数概念及其几何意义导数的运算数列数列的应用数列与不等式数列的概念数列的递推公式数列的前n项和89恒成立,则有即恒成立,,令,解得.得:,,或,时矛盾.函数的模型及其应用导数及其应用利用导数研究函数的单调性10如图点在的下方,∴得.再根据当与相切时,设切点坐标为,则,∴,此时,此时与有个交点,∴.故选.函数与导数函数分段函数图象函数与方程方程根的个数函数图象的交点11函数与导数函数单调性函数与方程函数的零点导数及其应用导数与零点导数与分类讨论导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式1213解析几何直线与方程直线的倾斜角与斜率14又图象可知交点为∴解得.∵,∴,由()知,当时,在故要证原不等式成立,只需要证明:当时,令,则,∴在上为增函数,∴,即,∴,即.函数与导数函数与方程函数图象的交点导数及其应用导数概念及其几何意义导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式解析几何直线与方程直线的倾斜角与斜率直线的方程15对应的点坐标的最高点为最低点为,此两点也是函数的最高和最低点,由此可知.同理可得时,取得最大值.依理,当时,取得最小值,即.16在上至少有三个零点可化为少有三个交点,在上单调递减,则,解得:.函数与导数函数奇偶性二次函数二次函数的概念、图象和性质对数函数对数函数的概念、图象及其性质函数与方程方程根的个数函数的零点B. C.,关于的不等式只有两个整数解,则实数17C函数的定义域为,则,当得,即即,即,由得,得即,即,即当时,函数取得极大值,同时也是最大值即当时,有一个整数解当时,有无数个整数解,若,则得若,则由得或当时,不等式由无数个整数解,不满足条件.当时,由得当时,没有整数解,则要使当有两个整数解,∵,,∴当时,函数有两个整数点,∴要使有两个整数解,则,即.故选.函数与导数二次函数二次型函数导数及其应用导数与零点导数的运算利用导数研究函数的单调性18单调性19复合函数20易知共有个交点.函数与导数函数分段函数奇偶性周期性函数与方程函数图象的交点2122,则,恰好是正方形的面积,所以23,且关于的方的取值范围是.,如图所示,2425函数与导数导数及其应用导数与恒成立导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式不等式与线性规划解不等式分式不等式2627正弦函数的图象与性质282930。

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

导数十年真题分类汇编(带答案)

导数十年真题分类汇编(带答案)

导数十年真题分类汇编(带答案)一.基础题组1. 【2010全国新课标,文4】曲线y =x 3-2x +1在点(1,0)处的切线方程为…( ) A .y =x -1 B .y =-x +1 C .y =2x -2 D .y =-2x +2 【答案】:A【解析】y ′|x =1=(3x 2-2)|x =1=1,因此曲线在(1,0)处的切线方程为y =x -1. 2. 【2010全国2,文7】若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 【答案】:A【解析】∵y ′=2x +a ,∴k =y ′|x =0=a =1,将(0,b )代入切线:0-b +1=0,∴b =1,∴a =1,b =1.3. 【2007全国2,文8】已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( ) (A)1(B) 2(C) 3(D) 4【答案】:A【解析】f'(x )=x/2,k=f'(x)=x/2=1/2,x=1,所以:切点的横坐标是1.4. 【2012全国新课标,文13】曲线y =x (3ln x +1)在点(1,1)处的切线方程为__________. 【答案】:4x -y -3=05. 【2005全国3,文15】曲线32x x y -=在点(1,1)处的切线方程为 . 【答案】x+y-2=0【解析】'223y x =-,1k =-,∴切线方程为11(1)y x -=-⨯-,即20x y +-=.6. 【2015新课标2文数】已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.【考点定位】本题主要考查导数的几何意义及直线与抛物线相切问题. 二.能力题组1. 【2013课标全国Ⅱ,文21】(本小题满分12分)已知函数f (x )=x 2e -x. (1)求f (x )的极小值和极大值;(2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞). 令h (x )=2x x+(x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为22 当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪223,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪223,+∞). 2. 【2005全国2,文21】(本小题满分12分)设为实数,函数32()f x x x x a =--+. (Ⅰ) ()f x 的极值;(Ⅱ) 当在什么范围内取值时,曲线()y f x =与轴仅有一个交点. 【解析】:(I)'()f x =32x -2-1 若'()f x =0,则==-13, =1 当变化时,'()f x ,()f x 变化情况如下表:(-∞,-13) -13(-13,1) 1 (1,+∞)'()f x + 0 - 0 + ()f x极大值极小值∴()f x 的极大值是15()327f a -=+,极小值是(1)1f a =- ∴当5(,)27a ∈-∞-∪(1,+∞)时,曲线y =()f x 与轴仅有一个交点。

09-13安徽高考函数与导数真题汇编

09-13安徽高考函数与导数真题汇编

专题二——函数与导数【2009~2013年安徽高考数学卷试题分类汇编】一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1、【09·6】设b a <,函数)()(2b x a x y --=的图像可能是 ( )2、【09·9】已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y = 在点))1(,1(f 处的切线方程是( ) A. 12-=x y B. x y =C. 23-=x yD. 32+-=x y3、【10·4】若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=( )A. -1B. 1C. -2D. 24、【10·6】设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是( )5、【11·3】设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-, (1)f =( )A. -3B. -1C. 1D. 36、【11·10】函数()(1)m n f x nx x =- 在区间上的图像如图所示,则m,n 的值可能是( )A. 1,1m n ==B. 1,2m n ==C. 2,1m n ==D. 3,1m n ==7、【12·2】下列函数中,不满足:(2)2()f x f x =的是( )A. ()f x x =B. ()f x x x =-C. ()f x x =+1D. ()f x x =-8、【13·8】函数()y f x =的图像如图所示,在区间[,]a b 上可找到(2)n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x === ,则 n 的取值范围为( )A. {2,3}B. {2,3,4}C. {3,4}D. {3,4,5}9、【13·10】已知函数32()f x x ax bx c =+++有两个极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( )A. 3B. 4C. 5D. 6二、解答题 (解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)10、【09·19】已知函数.)(.0),ln 2(2)(的单调性讨论x f a x a xx x f >-+-=11、【10·17】设a 为实数,函数.,22)(R x a x e x f x∈+-=(I )求)(x f 的单调区间与极值;(II )求证:当012ln >->x a 且时,22 1.xe x ax >-+12、【11.16】设2()1xe f x ax=+,其中a 为正实数 (Ⅰ)当43a =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。

2012新题分类汇编:函数与导数(高考真题+模拟新题)

2012新题分类汇编:函数与导数(高考真题+模拟新题)

二、函数与导数(高考真题+模拟新题)课标文数13.B1[2011·安徽卷] 函数y =16-x -x 2的定义域是________.课标文数13.B1[2011·安徽卷] 【答案】 (-3,2)【解析】 由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2.课标理数15.B1,M1[2011·福建卷] 设V 是全体平面向量构成的集合,若映射f :V →R 满足:对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ). 则称映射f 具有性质P . 现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ; ②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号) 课标理数15.B1,M1[2011·福建卷] 【答案】 ①③ 【解析】 设a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,则λa +(1-λ)b =λ(x 1,y 1)+(1-λ)(x 2,y 2)=(λx 1+(1-λ)x 2,λy 1+(1-λ)y 2), ①f 1(λa +(1-λ)b )=λx 1+(1-λ)x 2-[λy 1+(1-λ)y 2] =λ(x 1-y 1)+(1-λ)(x 2-y 2)=λf 1(a )+(1-λ)f 1(b ), ∴映射f 1具有性质P ;②f 2(λa +(1-λ)b )=[λx 1+(1-λ)x 2]2+[λy 1+(1-λ)y 2],λf 2(a )+(1-λ)f 2(b )=λ(x 21 +y 1 ) + (1-λ)(x 22 + y 2 ), ∴f 2(λa +(1-λ)b )≠λf 2(a )+(1-λ)f 2(b ), ∴ 映射f 2不具有性质P ;③f 3(λa +(1-λ)b )=λx 1+(1-λ)x 2+(λy 1+(1-λ)y 2)+1=λ(x 1+y 1+1)+(1-λ)(x 2+y 2+1)=λf 3(a )+(1-λ)f 3(b ), ∴ 映射f 3具有性质P .故具有性质P 的映射的序号为①③.课标文数8.B1[2011·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3 课标文数8.B1[2011·福建卷] A 【解析】 由已知,得f (1)=2; 又当x >0时,f (x )=2x >1,而f (a )+f (1)=0, ∴f (a )=-2,且a <0,∴a +1=-2,解得a =-3,故选A.课标文数4.B1[2011·广东卷] 函数f (x )=11-x+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)课标文数4.B1[2011·广东卷] C 【解析】 要使函数有意义,必须满足⎩⎪⎨⎪⎧1-x ≠0,1+x >0,所以所求定义域为{x |x >-1且x ≠1},故选C.课标文数16.B1[2011·湖南卷] 给定k ∈N *,设函数f :N *→N *满足:对于任意大于k 的正整数n ,f (n )=n -k .(1)设k =1,则其中一个函数f 在n =1处的函数值为________________; (2)设k =4,且当n ≤4时,2≤f (n )≤3,则不同的函数f 的个数为________. 课标文数16.B1[2011·湖南卷] (1)a (a 为正整数) (2)16 【解析】 (1)由法则f 是正整数到正整数的映射,因为k =1,所以从2开始都是一一对应的,而1可以和任何一个正整数对应,故f 在n =1处的函数值为任意的a (a 为正整数);(2)因为2≤f (n )≤3,所以根据映射的概念可得到:1,2,3,4只能是和2或者3对应,1可以和2对应,也可以和3对应,有2种对应方法,同理,2,3,4都有两种对应方法,由乘法原理,得不同函数f 的个数等于16.课标文数11.B1[2011·陕西卷] 设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.课标文数11.B1[2011·陕西卷] -2 【解析】 因为f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,-2<0,f (-2)=10-2,10-2>0,f (10-2)=lg10-2=-2.大纲文数16.B1[2011·四川卷] 函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②指数函数f (x )=2x (x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(写出所有真命题的编号)[来源:Z §xx §] 大纲文数16.B1[2011·四川卷] ②③④ 【解析】 本题主要考查对函数概念以及新定义概念的理解.对于①,如-2,2∈A ,f (-2)=f (2),则①错误;对于②,当2x 1=2x 2时,总有x 1=x 2,故为单函数;对于③根据单函数的定义,函数即为一一映射确定的函数关系,所以当函数自变量不相等时,则函数值不相等,即③正确;对于④,函数f (x )在定义域上具有单调性,则函数为一一映射确定的函数关系,所以④正确.课标理数1.B1[2011·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α=( )A .-4或-2B .-4或2C .-2或4D .-2或2 课标理数1.B1[2011·浙江卷] B 【解析】 当α≤0时,f (α)=-α=4,α=-4;当α>0,f (α)=α2=4,α=2.课标文数11.B1[2011·浙江卷] 设函数f (x )=41-x,若f (α)=2,则实数α=________.课标文数11.B1[2011·浙江卷] -1 【解析】 ∵f (α)=41-α=2,∴α=-1.大纲理数2.B2[2011·全国卷] 函数y =2x (x ≥0)的反函数为( )A .y =x 24(x ∈R )B .y =x 24(x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)大纲理数2.B2[2011·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y =x24(x ≥0).故选B.大纲文数2.B2[2011·全国卷] 函数y =2x (x ≥0)的反函数为( )A .y =x 24(x ∈R )B .y =x 24(x ≥0)C .y =4x 2(x ∈R ) D .y =4x 2(x ≥0)大纲文数2.B2[2011·全国卷] B 【解析】 由y =2x 得x =y 24,∵x ≥0,∴y ≥0,则函数的反函数为y=x24(x ≥0).故选B.大纲理数7.B2[2011·四川卷] 已知f (x )是R 上的奇函数,且当x >0时,f (x )=⎝⎛⎭⎫12x+1,则f (x )的反函数的图象大致是( )图1-2大纲理数7.B2[2011·四川卷] A 【解析】 当x >0时,由y =⎝⎛⎭⎫12x +1可得其反函数为y =log 12(x -1)(1<x <2),根据图象可判断选择答案A ,另外对于本题可采用特殊点排除法.课标理数8.B3[2011·北京卷] 设A (0,0),B (4,0),C (t +4,4),D (t,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}课标理数2.B3,B4[2011·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标理数2.B3,B4[2011·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数3.B3,B4[2011·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标文数3.B3,B4[2011·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标数学2.B3[2011·江苏卷] 函数f (x )=log 5(2x +1)的单调增区间是________.课标数学2.B3[2011·江苏卷] ⎝⎛⎭⎫-12,+∞【解析】 因为y =log 5x 为增函数,故结合原函数的定义域可知原函数的单调增区间为⎝⎛⎭⎫-12,+∞.课标文数12.B3,B7[2011·天津卷] 已知log 2a +log 2b ≥1,则3a +9b 的最小值为________. 课标文数12.B3,B7[2011·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2,∴3a +9b =3a +32b ≥23a ·32b =23a +2b ≥2322ab =18.大纲理数5.B3[2011·重庆卷] 下列区间中,函数f (x )=||ln (2-x )在其上为增函数的是( )A .(-∞,1] B.⎣⎡⎦⎤-1,43 C.⎣⎡⎭⎫0,32 D .[1,2)课标文数11.B4,B5[2011·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2011·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x , ∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3.课标理数3.B4,B5[2011·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3 课标理数3.B4,B5[2011·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.大纲理数9.B4[2011·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14 C.14 D.12大纲理数9.B4[2011·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫2+12=f ⎝⎛⎭⎫12=12,又函数是奇函数,∴f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-12,故选A.大纲文数10.B4[2011·全国卷] 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14C.14 D.12大纲文数10.B4[2011·全国卷] A 【解析】 因为函数的周期为2,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫2+12=f ⎝⎛⎭⎫12=12,又函数是奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-12,故选A.课标理数9.B4[2011·福建卷] 对于函数f (x )=a sin x +bx +c (其中,a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是......( ) A .4和6 B .3和1C .2和4D .1和2 课标理数9.B4[2011·福建卷] D 【解析】 由已知,有f (1)=a sin1+b +c ,f (-1)=-a sin1-b +c , ∴ f (1)+f (-1)=2c ,∵ c ∈Z ,∴ f (1)+f (-1)为偶数,而D 选项给出的两个数,一个是奇数,一个是偶数,两个数的和为奇数,故选D.课标理数4.B4[2011·广东卷] 设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数 课标理数4.B4[2011·广东卷] A 【解析】 因为g (x )在R 上为奇函数,所以|g (x )|为偶函数,则f (x )+|g (x )|一定为偶函数.课标文数12.B4[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 课标文数12.B4[2011·广东卷] -9 【解析】 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.课标理数6.B4[2011·湖北卷] 已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)=( )A .2 B.154 C.174D .a 2课标理数6.B4[2011·湖北卷] B 【解析】 因为函数f (x )是奇函数,g (x )是偶函数,所以由f (x )+g (x )=a x-a -x +2①,得-f (x )+g (x )=a -x -a x +2②, ①+②,得g (x )=2,①-②,得f (x )=a x -a -x .又g (2)=a ,所以a =2,所以f (x )=2x -2-x ,所以f (2)=154.课标文数3.B4[2011·湖北卷] 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )课标文数3.B4[2011·湖北卷] D 【解析】 因为函数f (x )是偶函数,g (x )是奇函数,所以f ()-x +g ()-x =f (x )-g ()x =e -x .又因为f (x )+g ()x =e x,所以g ()x =e x -e -x 2.课标文数12.B4[2011·湖南卷] 已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________. 课标文数12.B4[2011·湖南卷] 6 【解析】 由g (x )=f (x )+9,得当x =-2时,有g (-2)=f (-2)+9⇒f (-2)=-6.因为f (x )为奇函数,所以有f (2)=f (-2)=6.课标理数2.B3,B4[2011·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1 D .y =2-|x | 课标理数2.B3,B4[2011·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数6.B4[2011·辽宁卷] 若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 课标文数6.B4[2011·辽宁卷] A 【解析】 法一:由已知得f (x )=x(2x +1)(x -a )定义域关于原点对称,由于该函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-12且x ≠a ,知a =12,故选A. 法二:∵f (x )是奇函数,∴f (-x )=-f (x ),又f (x )=x2x 2+(1-2a )x -a ,则-x 2x 2-(1-2a )x -a =-x 2x 2+(1-2a )x -a在函数的定义域内恒成立,可得a =12.课标文数3.B3,B4[2011·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标文数3.B3,B4[2011·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数12.B4,B7,B8[2011·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2011·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数10.B4[2011·山东卷] 已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 课标理数10.B4[2011·山东卷] B 【解析】 当0≤x <2时,f (x )=x 3-x =x (x 2-1)=0,所以当0≤x <2时,f (x )与x 轴交点的横坐标为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,则f (x -2)=(x -2)3-(x -2),又周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,f (x )与x 轴交点的横坐标为x 3=2,x 4=3;同理当4≤x ≤6时,f (x )与x 轴交点的横坐标分别为x 5=4,x 6=5,x 7=6,所以共有7个交点.课标理数3.B4[2011·陕西卷] 设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )图1-1课标理数3.B4[2011·陕西卷] B 【解析】 由f (-x )=f (x )可知函数为偶函数,其图像关于y 轴对称,可以结合选项排除A 、C ,再利用f (x +2)=f (x ),可知函数为周期函数,且T =2,必满足f (4)=f (2),排除D ,故只能选B.课标理数11.B4[2011·浙江卷] 若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 课标理数11.B4[2011·浙江卷] 0 【解析】 ∵f (x )为偶函数,∴f (-x )=f (x ), 即x 2-|x +a |=(-x )2-|-x +a |⇒||x +a =||x -a ,∴a =0. 课标文数11.B4,B5[2011·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.课标文数11.B4,B5[2011·安徽卷] 【答案】 -3【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x , ∴f (1)=-f (-1) =-2×(-1)2+(-1)=-3.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3.课标理数3.B4,B5[2011·安徽卷] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3 课标理数3.B4,B5[2011·安徽卷] A 【解析】 法一:∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3,故选A.法二:设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x ) = 2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.课标文数8.B5,H2[2011·北京卷] 已知点A (0,2),B (2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1 课标文数8.B5,H2[2011·北京卷] A 【解析】 由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB :x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点;[来源:] 当x 2+x -2=-2时,亦有两个不同的C 点. 因此满足条件的C 点有4个,故应选A.课标理数12.B5[2011·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标理数12.B5[2011·陕西卷] 3或4 【解析】 由x 2-4x +n 得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,故当n =3,4时方程有整数根.课标文数14.B5[2011·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整.数.根的充要条件是n =________.课标文数14.B5[2011·陕西卷] 3或4 【解析】 由x 2-4x +n =0得(x -2)2=4-n ,即x =2±4-n ,∵n ∈N +,方程要有整数根,满足n =3,4,当n =3,4时方程有整数根.课标理数8.B5[2011·天津卷] 对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 课标理数8.B5[2011·天津卷] B 【解析】 f (x )=⎩⎨⎧x 2-2,x 2-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1 =⎩⎨⎧x 2-2,-1≤x ≤32,x -x 2,x <-1,或x >32,则f ()x 的图象如图1-4.图1-4∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴y =f (x )与y =c 的图象恰有两个公共点,由图象知c ≤-2,或-1<c <-34.课标文数8.B5[2011·天津卷] 对实数a 和b ,定义运算“⊗”;a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]课标文数8.B5[2011·天津卷] B 【解析】 f (x )=⎩⎪⎨⎪⎧ x 2-2,x 2-2-(x -1)≤1x -1,x 2-2-(x -1)>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2x -1,x <-1,或x >2 则f (x )的图象如图,∵函数y =f (x )-c 的图象与x 轴恰有两个公共点,∴函数y =f (x )与y =c 的图象有两个交点,由图象可得-2<c ≤-1,或1<c ≤2.图1-3课标理数3.B6[2011·山东卷] 若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3课标理数3.B6[2011·山东卷] D 【解析】 因为点(a,9)在函数y =3x 的图象上,所以9=3a ,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标文数3.B6[2011·山东卷] 若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3课标文数3.B6[2011·山东卷] D 【解析】 因为点(a,9)在函数y =3x 的图象上,所以9=3a ,所以a =2,即tan a π6=tan 2π6=tan π3=3,故选D.课标数学12.B6[2011·江苏卷] 在平面直角坐标系xOy 中,已知P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是________.课标数学12.B6[2011·江苏卷] 12⎝⎛⎭⎫e +1e 【解析】 设P (x 0,y 0),则直线l :y -e x 0=e x 0(x -x 0).令x =0,则y =-x 0e x 0+e x 0,与l 垂直的直线l ′的方程为y -e x 0=-1e x 0(x -x 0),令x =0得,y =x 0e x 0+e x 0,所以t =-x 0e x 0+2e x 0+x 0e x 02.令y =-x e x +2e x +xe x 2,则y ′=-e x (x -1)+(x -1)ex2,令y ′=0得x =1,当x ∈(0,1)时,y ′>0,当x ∈(1,+∞)时,y ′<0,故当x =1时该函数的最大值为12⎝⎛⎭⎫e +1e .课标理数7.B6,B7[2011·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b课标理数7.B6,B7[2011·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3又∵y =5x为单调递增函数, ∴a >c >b .课标文数5.B7[2011·安徽卷] 若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( ) A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 课标文数5.B7[2011·安徽卷] D 【解析】 由点(a ,b )在y =lg x 图像上,得b =lg a .当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图像上.课标文数3.B7[2011·北京卷] 如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x课标文数3.B7[2011·北京卷] D 【解析】 因为log 12x <log 12y <0=log 121,所以x >y >1,故选D.课标文数15.B7[2011·湖北卷] 里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.课标文数15.B7[2011·湖北卷] 6 10000 【解析】 由M =lg A -lg A 0知,M =lg1000-lg0.001=6,所以此次地震的级数为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=()lg A 1-lg A 0-()lg A 2-lg A 0=9-5=4.所以A1A 2=104=10000.所以9级地震的最大振幅是5级地震的最大振幅的10000倍.课标理数3.B7[2011·江西卷] 若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 课标理数3.B7[2011·江西卷] A 【解析】 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得x ∈⎝⎛⎭⎫-12,0.故选A.课标文数3.B7[2011·江西卷] 若f ()x =1log 12()2x +1,则f ()x 的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞C.⎝⎛⎭⎫-12,0∪()0,+∞D.⎝⎛⎭⎫-12,2 课标文数3.B7[2011·江西卷] C 【解析】 方法一:根据题意得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x ∈⎝⎛⎭⎫-12,0∪(0,+∞).故选C. 方法二:取特值法,取x =0,则可排除B 、D ;取x =1,则排除A.故选C.课标文数12.B4,B7,B8[2011·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2011·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5课标理数7.B6,B7[2011·天津卷] 已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >b D .c >a >b课标理数7.B6,B7[2011·天津卷] C 【解析】 令m =log 23.4,n =log 43.6,l =log 3103,在同一坐标系下作出三个函数的图象,由图象可得m >l >n ,图1-3又∵y =5x为单调递增函数,∴a >c >b .课标文数5.B7[2011·天津卷] 已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b 课标文数5.B7[2011·天津卷] B 【解析】 ∵a =log 23.6>log 22=1.又∵y =log 4x ,x ∈(0,+∞)为单调递增函数,∴log 43.2<log 43.6<log 44=1,∴b <c <a .课标文数12.B3,B7[2011·天津卷] 已知log 2a +log 2b ≥1,则3a +9b 的最小值为________. 课标文数12.B3,B7[2011·天津卷] 18 【解析】 ∵log 2a +log 2b =log 2ab ≥1, ∴ab ≥2,∴3a +9b =3a +32b ≥23a ·32b =23a +2b≥2322ab=18.大纲文数6.B7[2011·重庆卷] 设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a大纲文数6.B7[2011·重庆卷] B 【解析】 a =log 1312=log 32,b =log 1323=log 332,则由log 343<log 332<log 32,得c <b <a .故选B.课标文数10.B8[2011·安徽卷] 函数f (x )=ax n (1-x )2在区间[0,1]上的图像如图1-2所示,则n 可能是( )图1-2A .1B .2C .3D .4 课标文数10.B8[2011·安徽卷] A 【解析】 由函数图像可知a >0.当n =1时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x -1)(x -1),所以函数的极大值点为x =13<0.5,故A 可能;当n =2时,函数f (x )=ax 2(1-x )2=a (x 2-2x 3+x 4),f ′(x )=a (2x -6x 2+4x 3)= 2ax (2x -1)(x -1),函数的极大值点为x =12,故B 错误;当n =3时,f (x )=ax 3(1-x )2=a (x 5-2x 4+x 3),f ′(x )=ax 2(5x 2-8x +3)=ax 2(5x -3)(x -1),函数的极大值点为x =35>0.5,故C 错误;当n =4时,f (x )=ax 4(1-x )2=a (x 6-2x 5+x 4),f ′(x )=a (6x 5-10x 4+4x 3)=2ax 3(3x -2)(x -1),函数的极大值点为x =23>0.5,故D 错误.课标理数10.B8[2011·安徽卷] 函数f (x )=ax m (1-x )n 在区间[0,1]上的图像如图1-2所示,则m ,n 的值可能是( )图1-2A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1 课标理数10.B8[2011·安徽卷] B 【解析】 由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图像关于直线x =12对称,所以A 不可能;当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ),f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<0.5,由图可知B 可能.当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3),f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>0.5,所以C 不可能;当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4),f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>0.5,所以D 不可能,故选B.课标理数13.B8[2011·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 课标理数13.B8[2011·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-5所示:图1-5由上图可知0<k <1.课标文数13.B8[2011·北京卷] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.课标文数13.B8[2011·北京卷] (0,1) 【解析】 函数f (x )的图象如图1-3所示:图1-3由上图可知0<k <1.课标文数12.B4,B7,B8[2011·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2011·课标全国卷] A 【解析】 由题意做出函数图像如图,由图像知共有10个交点.图1-5右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C.课标文数10.B8[2011·山东卷] 函数y =x2-2sin x 的图象大致是( )图1-2课标文数10.B8[2011·山东卷] C 【解析】 由f (-x )=-f (x )知函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在x 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C.课标文数4.B8[2011·陕西卷] 函数y =x 13的图象是( )图1-1课标文数4.B8[2011·陕西卷] B 【解析】 因为y =x 13,由幂函数的性质,过点(0,0),(1,1),则只剩B ,C.因为y =x α中α=13,图象靠近x 轴,故答案为B.课标数学8.B8[2011·江苏卷] 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P 、Q 两点,则线段PQ 长的最小值是________.课标数学8.B8[2011·江苏卷] 4 【解析】 设直线为y =kx (k >0),⎩⎪⎨⎪⎧y =kx ,y =2x⇒x 2=2k ,y 2=k 2x 2=2k ,所以PQ =2OP =x 2+y 2=22k+2k ≥224=4.大纲文数4.B8[2011·四川卷] 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )图1-1大纲文数4.B8[2011·四川卷] A 【解析】 由y =⎝⎛⎭⎫12x +1可得其反函数为y =log 12(x -1)(x >1),根据图象可判断选择答案A.另外对于本题可采用特殊点排除法.课标理数21.B9,H8[2011·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2; (2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝⎛⎭⎫p 1,14p 21,E ′⎝⎛⎭⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y ≤x -1,y ≥14(x +1)2-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2011·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+(p -p 0)22.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02;当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22.求得l 1,l 2交点M (a ,b )的坐标⎝⎛⎭⎫p 1+p 22,p 1p 24. 由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2. 当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p 2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p =0得p =32,由于h (0)=h (2)=1,h ⎝⎛⎭⎫32=54, ∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q 2≤p +p 2-4⎣⎡⎦⎤14(p +1)2-542=p +4-2p 2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4(p -1)2=p +(p -2)22=p +2-p 2=1,故φmin =1,φmax =54.课标理数21.B9,H8[2011·广东卷] 在平面直角坐标系xOy 上,给定抛物线L :y =14x 2,实数p ,q 满足p 2-4q ≥0,x 1,x 2是方程x 2-px +q =0的两根,记φ(p ,q )=max{|x 1|,|x 2|}.(1)过点A ⎝⎛⎭⎫p 0,14p 20(p 0≠0)作L 的切线交y 轴于点B .证明:对线段AB 上的任一点Q (p ,q ),有φ(p ,q )=|p 0|2; (2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0.过M (a ,b )作L 的两条切线l 1,l 2,切点分别为E ⎝⎛⎭⎫p 1,14p 21,E ′⎝⎛⎭⎫p 2,14p 22,l 1,l 2与y 轴分别交于F 、F ′.线段EF 上异于两端点的点集记为X .证明:M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2;(3)设D =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y ≤x -1,y ≥14(x +1)2-54.当点(p ,q )取遍D 时,求φ(p ,q )的最小值(记为φmin )和最大值(记为φmax ).课标理数21.B9,H8[2011·广东卷] 【解答】 (1)证明:切线l 的方程为y =12p 0x -14p 20.∀Q (p ,q )∈AB 有φ(p ,q )=|p |+p 2-4q 2=|p |+(p -p 0)22.当p 0>0时,0≤p ≤p 0,于是φ(p ,q )=p +p 0-p 2=p 02=||p 02;当p 0<0时,p 0≤p ≤0,于是φ(p ,q )=-p +p -p 02=-p 02=|p 0|2.(2)l 1,l 2的方程分别为y =12p 1x -14p 21,y =12p 2x -14p 22. 求得l 1,l 2交点M (a ,b )的坐标⎝⎛⎭⎫p 1+p 22,p 1p 24. 由于a 2-4b >0,a ≠0,故有|p 1|≠|p 2| . ①先证:M (a ,b )∈X ⇔|p 1|>|p 2|. (⇒)设M (a ,b )∈X .当p 1>0时,0<p 1+p 22<p 1⇒0<p 1+p 2<2p 1⇒|p 1|>|p 2|;当p 1<0时,p 1<p 1+p 22<0⇒2p 1<p 1+p 2<0⇒|p 1|>|p 2|.(⇐)设|p 1|>|p 2|,则⎪⎪⎪⎪p 2p 1<1⇒-1<p 2p 1<1⇒0<p 1+p 2p 1<2. 当p 1>0时,0<p 1+p 22<p 1;当p 1<0时,p 1<p 1+p 22<0,注意到M (a ,b )在l 1上,故M (a ,b )∈X .②次证:M (a ,b )∈X ⇔φ(a ,b )=|p 1|2.(⇒)已知M (a ,b )∈X ,利用(1)有φ(a ,b )=|p 1|2.(⇐)设φ(a ,b )=|p 1|2,断言必有|p 1|>|p 2|.若不然,|p 1|<|p 2|.令Y 是l 2上线段E ′F ′上异于两端点的点的集合,由已证的等价式①M (a ,b )∈Y .再由(1)得φ(a ,b )=|p 2|2≠|p 1|2,矛盾.故必有|p 1|>|p 2|.再由等价式①,M (a ,b )∈X .综上,M (a ,b )∈X ⇔|p 1|>|p 2|⇔φ(a ,b )=|p 1|2.(3)求得y =x -1和y =14(x +1)2-54的交点Q 1(0,-1),Q 2(2,1).而y =x -1是L 的切点为Q 2(2,1)的切线,且与y 轴交于Q 1(0,-1),由(1)∀Q (p ,q )∈线段Q 1Q 2,有φ(p ,q )=1.当Q (p ,q )∈L 1:y =14(x +1)2-54(0≤x ≤2)时,q =14(p +1)2-54,∴h (p )=φ(p ,q )=p +p 2-4q 2=p +4-2p 2(0≤p ≤2),在(0,2)上,令h ′(p )=4-2p -124-2p =0得p =32,由于h (0)=h (2)=1,h ⎝⎛⎭⎫32=54, ∴h (p )=φ(p ,q )在[0,2]上取得最大值h max =54.∀(p ,q )∈D ,有0≤p ≤2,14(p +1)2-54≤q ≤p -1,故φ(p ,q )=p +p 2-4q 2≤p +p 2-4⎣⎡⎦⎤14(p +1)2-542=p +4-2p 2≤h max =54,φ(p ,q )=p +p 2-4q 2≥p +p 2-4(p -1)2=p +(p -2)22=p +2-p2=1,故φmin =1,φmax =54.课标文数21.H10,B9[2011·广东卷]在平面直角坐标系xOy 中,直线l :x =-2交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO =∠AOP .(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知T (1,-1).设H 是E 上动点,求|HO |+|HT |的最小值,并给出此时点H 的坐标;(3)过点T (1,-1)且不平行于y 轴的直线l 1与轨迹E 有且只有两个不同的交点.求直线l 1的斜率k 的取值范围.课标文数21.H10,B9[2011·广东卷] 【解答】 (1)如图1-2(1).设MQ 为线段OP 的垂直平分线,交OP 于点Q .∵∠MPQ =∠AOP ,∴MP ⊥l ,且|MO |=|MP |. 因此,x 2+y 2=|x +2|,即 y 2=4(x +1)(x ≥-1). ①图1-3E 1:y 2=4(x +1)(x ≥-1); E 2:y =0,x <-1.当H ∈E 1时,过T 作垂直于l 的直线,垂足为T ′,交E 1于D ⎝⎛⎭⎫-34,-1.再过H 作垂直于l 的直线,交l 于H ′.因此,|HO |=|HH ′|(抛物线的性质).∴|HO |+|HT |=|HH ′|+|HT |≥|TT ′|=3(该等号仅当H ′与T ′重合(或H 与D 重合)时取得). 当H ∈E 2时,则|HO |+|HT |>|BO |+|BT |=1+5>3.综合可得,|HO |+|HT |的最小值为3,且此时点H 的坐标为⎝⎛⎭⎫-34,-1. (3)由图1-3知,直线l 1的斜率k 不可能为零. 设l 1:y +1=k (x -1)(k ≠0).故x =1k (y +1)+1,代入E 1的方程得:y 2-4k y -⎝⎛⎭⎫4k +8=0. 因判别式Δ=16k2+4⎝⎛⎭⎫4k +8=⎝⎛⎭⎫4k +22+28>0, 所以l 1与E 中的E 1有且仅有两个不同的交点. 又由E 2和l 1的方程可知,若l 1与E 2有交点,则此交点的坐标为⎝⎛⎭⎫k +1k ,0,且k +1k <-1.即当-12<k <0时,l 1与E 2有唯一交点⎝⎛⎭⎫k +1k ,0,从而l 1与E 有三个不同的交点.因此,直线l 1斜率k 的取值范围是⎝⎛⎦⎤-∞,-12∪(0,+∞).课标理数22.B9,M3[2011·湖南卷] 已知函数f (x )=x 3,g (x )=x +x . (1)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(2)设数列{a n }(n ∈N *)满足a 1=a (a >0),f (a n +1)=g (a n ),证明:存在常数M ,使得对于任意的n ∈N *,都有a n ≤M .课标理数22.B9,M3[2011·湖南卷] 【解答】 (1)由h (x )=x 3-x -x 知,x ∈[0,+∞),而h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此,h (x )至少有两个零点.解法一:h ′(x )=3x 2-1-12x -12,记φ(x )=3x 2-1-12x -12,则φ′(x )=6x +14x -32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ⎝⎛⎭⎫33<0,则φ(x )在⎝⎛⎭⎫33,1内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以,当x ∈(0,x 1)时,h (x )单调递减.而h (0)=0,则h (x )在(0,x 1]内无零点;当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.解法二:由h (x )=x ⎝⎛⎭⎫x 2-1-x -12,记φ(x )=x 2-1-x -12,则φ′(x )=2x +12x -32. 当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点.综上所述,h (x )有且只有两个零点.(2)记h (x )的正零点为x 0,即x 30=x 0+x 0. (i)当a <x 0时,由a 1=a ,即a 1<x 0.而a 32=a 1+a 1<x 0+x 0=x 30,因此a 2<x 0.由此猜测:a n <x 0.下面用数学归纳法证明. ①当n =1时,a 1<x 0显然成立.②假设当n =k (k ≥1)时,a k <x 0成立,则当n =k +1时,由a 3k +1=a k +a k <x 0+x 0=x 30知,a k +1<x 0.因此,当n =k +1时,a k +1<x 0成立.故对任意的n ∈N *,a n <x 0成立.(ii)当a ≥x 0时,由(1)知,h (x )在(x 0,+∞)上单调递增,则h (a )≥h (x 0)=0,即a 3≥a +a .从而a 32=a 1+a 1=a +a ≤a 3,即a 2≤a .由此猜测:a n ≤a .下面用数学归纳法证明. ①当n =1时,a 1≤a 显然成立.②假设当n =k (k ≥1)时,a k ≤a 成立,则当n =k +1时,由a 3k +1=a k +a k ≤a +a ≤a 3知,a k +1≤a . 因此,当n =k +1时,a k +1≤a 成立. 故对任意的n ∈N *,a n ≤a 成立.综上所述,存在常数M =max{x 0,a },使得对于任意的n ∈N *,都有a n ≤M .课标理数12.B 9[2011·课标全国卷] 函数y =11-x的图像与函数y =2sinπx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8课标理数12.B9[2011·课标全国卷] D 【解析】 当x =12时,y =11-12=2;当x =32时,y =11-32=-2.所以函数图象如图所示,所以有8个根,且关于点(1,0)对称,所以所有根的总和为8.图1-5课标文数10.B9[2011·课标全国卷] 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )A.⎝⎛⎭⎫-14,0B.⎝⎛⎭⎫0,14C.⎝⎛⎭⎫14,12D.⎝⎛⎭⎫12,34 课标文数10.B9[2011·课标全国卷] C 【解析】 因为f ⎝⎛⎭⎫14=e 14-2<0,f ⎝⎛⎭⎫12=e 12-1>0, 所以f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, 又因为函数y =e x 是单调增函数,y =4x -3也是单调增函数, 所以函数f (x )=e x +4x -3是单调增函数,所以函数f (x )=e x +4x -3的零点在⎝⎛⎭⎫14,12内.课标理数16.B9[2011·山东卷] 已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.课标理数16.B9[2011·山东卷] 2 【解析】 本题考查对数函数的单调性与函数零点定理的应用.因为2<a <3,所以log a 2<1=log a a <log a 3,因为3<b <4,所以b -2>1>log a 2,b -3<1<log a 3,所以f (2)·f (3)=(log a 2+2-b )(log a 3+3-b )<0,所以函数的零点在(2,3)上,所以n =2.课标文数16.B9[2011·山东卷] 已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.课标文数16.B9[2011·山东卷] 2 【解析】 本题考查对数函数的单调性与函数零点定理的应用.因为2<a <3,所以log a 2<1=log a a <log a 3,因为3<b <4,所以b -2>1>log a 2,b -3<1<log a 3,所以f (2)·f (3)= (log a 2+2-b )·(log a 3+3-b )<0,所以函数的零点在(2,3)上,所以n =2.课标理数6.B9[2011·陕西卷] 函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点 课标理数6.B9[2011·陕西卷] B 【解析】 在同一个坐标系中作出y =x 与y =cos x 的图象如图,图1-2由图象可得函数f (x )=x -cos x 在[0,+∞)上只有一个零点.课标文数6.B9[2011·陕西卷] 方程|x |=cos x 在(-∞,+∞)内( )A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根 课标文数6.B9[2011·陕西卷] C 【解析】 如图1-3所示,由图象可得两函数图象有两个交点,故方程有且仅有两个根,故答案为C.图1-3。

导数大题经典练习及答案

导数大题经典练习及答案

导数大题专题训练1.已知f(x)=xlnx-ax,g(x)=-x2-2,(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立.2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围.3.设函数f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;(Ⅱ)若函数f (x)在上存在单调递增区间,试求实数a的取值范围;(Ⅲ)求函数f (x)的极值点.4、已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.5、已知函数(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.6、已知函数.(1)若函数在区间(其中)上存在极值,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围.1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则,在上,在上,因此,在处取极小值,也是最小值,即,所以.(Ⅱ)当,,由得.①当时,在上,在上因此,在处取得极小值,也是最小值. .由于因此,②当,,因此上单调递增,所以,……9分(Ⅲ)证明:问题等价于证明由(Ⅱ)知时,的最小值是,当且仅当时取得,设,则,易知,当且仅当时取到,但从而可知对一切,都有成立.2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)(Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立,所以即可. 则.由解得.所以a的取值范围是.(Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数在区间[e-1,e]上有两个零点,所以.解得.所以b的取值范围是.3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为,所以f (x)在[1,e]上是增函数,当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1.(Ⅱ)解法一:设g (x)=2x2―2ax+1,依题意,在区间上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x2―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以,所以实数a的取值范围是.解法二:,依题意得,在区间上存在子区间使不等式2x2―2ax+1>0成立.又因为x>0,所以.设,所以2a小于函数g (x)在区间的最大值.又因为,由解得;由解得.所以函数g (x)在区间上递增,在区间上递减.所以函数g (x)在,或x=2处取得最大值.又,,所以,所以实数a的取值范围是.(Ⅲ)因为,令h (x)=2x2―2ax+1①显然,当a≤0时,在(0,+∞)上h (x)>0恒成立,f (x)>0,此时函数f (x)没有极值点;②当a>0时,(i)当Δ≤0,即时,在(0,+∞)上h (x)≥0恒成立,这时f (x)≥0,此时,函数f (x)没有极值点;(ii)当Δ>0时,即时,易知,当时,h (x)<0,这时f (x)<0;当或时,h (x)>0,这时f (x)>0;所以,当时,是函数f (x)的极大值点;是函数f (x)的极小值点.综上,当时,函数f (x)没有极值点;当时,是函数f (x)的极大值点;是函数f (x)的极小值点.4.解:. (Ⅰ),解得.(Ⅱ).①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.③当时,,故的单调递增区间是.④当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.(Ⅲ)由已知,在上有.由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.5、解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为因为,所以,所以a=1,所以由解得x>2 ;由解得0<x<2所以f(x)得单调增区间是,单调减区间是(Ⅱ),由解得由解得所以f(x)在区间上单调递增,在区间上单调递减所以当时,函数f(x)取得最小值因为对于任意成立,所以即可则,由解得;所以a得取值范围是(Ⅲ)依题意得,则由解得x>1,由解得0<x<1所以函数g(x)在区间上有两个零点,所以解得所以b得取值范围是6、解:(1)因为,,则,当时,;当时,.∴在上单调递增;在上单调递减,∴函数在处取得极大值.………3分∵函数在区间(其中)上存在极值,∴解得.(2)不等式,即为,记∴,…9分令,则,∵,∴,∴在上递增,∴,从而,故在上也单调递增,∴,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。

87 . (安徽理16)设,其中d 为正实数( I ) 当‘ 时,求f(x)的极值点(Ⅱ)若f (x )为R 上的单调函数,求a 的取值范围。

本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力, 综合运用知识分析和解决问题的能力.解:对f(x)求导得①( I ) 当f ( x ) = 0 ,则4 x ² - 8 x + 3 = 0 ,解综合①,可知Xf'(x)f(x)十极大值所以,是极小值点,(I)若f(x)为R 上的单调函数,则f(x)在R 上不变号,结合①与条件a>0,知αx²-2ax+1≥0在R 上恒成立,因此△=4a²-4a=4a(a-1)≤0.由此并结合a>0,知O<a≤1.88.(北京理18)已知函数(1)求f(x)的单调区间;(2)若对x∈(0,+~),都有,求k 的取值范围。

是极大值点.极小值, 若十解:(1),令f(x)=0得x=±k当k>0时,f(x)在(-~,-k)和(k,+cx)上递增,在(-k,k)上递减:当k<0时,f(x)在(-~,k)和(-k,+c℃)上递减,在(k,-k)上递增(2)当k>0时,;所以不可能对Vx∈(0,+~)都有f(x)≤当k<0时有(1)知f(x)在(0,+~~)上的最大值;,所以对Vx∈(0,+~)都有e即,故对Vx∈(0,+~)都有时,k的取值范围为89. (北京文18)已知函数f(x)=(x-k)e*,(1)求f(x)的单调区间;(II)求f(x)在区简[0.1上的最小值。

解:(1)f(x)=(x-k+1)e',令f'(x)=0=x=k-1;所以f(x)在(一一,K-1)上逆减,在(k-1,+~~)上递增;(Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0.1]上递增,所以f(x)…m=f(O)=-k:当O<k-1≤1即1<k≤2时,由(1)知,两数f(x)在区间[0,K-1]上递减,(k-1.1)上递增,所以f(x)mm=f(k- 1)=-e/-.当k-1>1.即k>2时.函数f(x)在区间[0,1]上递减,所以f(x)……=f(1)=(1-k)e91. (福建文22)已知a、b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2,(e=2.71828…是自然对数的底数)。

( I ) 求实数b 的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)解: ( I ) b = 2 ; ( Ⅱ) a > 0 时单调递增区间是 ( 1 , + c ) , 单调递减区间是 ( 0 , 1 ) , a < 0 时单调递增区间是 ( 0 , 1),单调递减区间是(1,+);(Ⅲ)存在m,M;m的最小值为1,M的最大值为2。

93.(广东文19)设a>0,讨论函数f(x)=Inx+a(1-a)x²--2(1-a)x 的单调性.解:函数f(x)的定义域为(0,+0)当a≠1时,方程2a(1-a)x ²-2(1-a)x+1=0的判别; ①当(时,△>0,f'(x)有2个零点且当O<x<x,或x>x,时,f(x)>0.f(x)在(0,x)与(x2,+~)内为增函数; 当x,<x<x,时, f'(x)<0,f(x)在(x,x2) 内为减函数 ②当 1时,△≤0,f(x)≥0,f(x)在(0,+c)内为增函数; ③当a =1时, ),f(x)在(0,+c)内为增函数;④当a>1时, 所以f(x)在定义域内有唯一零点x ;; 且当O<x<x 时,f(x)>0,f(x)在(0,x)内为增函数;当x>x 时,f'(x)<0,f(x)在(x,,+)内为减函数;综上所述,f(x)的单调区间如下表:a>1(其中94. (湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度V (单位:千米/小时)是车流密度X(单位:辆/千米)的函数.当桥上的车流密度达到200辆千米时,造成堵塞, 此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度V 是车流密度X 的一次函数.(I)当O≤x≤200时,求函数(x)的表达式;(Ⅱ)当车流密度×为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆小时)f(x)=x~r(x)可以达到最大,并求出最大值. (精确到1辆/小时)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(I)由题意:当O≤x≤20时,(x)=60;当20≤x≤200时,设(x)=ax+b,显然(x)=ax+b 在[20,200]是减函数,由已知得,解得(0,x)(xj,X2)(x2,+oo)(0,+oo)(0,xj)(xj,+oo)故函数(x)的表达式;(Ⅱ)依题意并由(I)可得当O≤x≤20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200;当20≤x≤200时,当且仅当x=200-x,即x=100时,等号成立.所以,当x=100时,f(x)在区间[20,200]上取得最大值综上,当x=100时,f(x)在区间[0.200]上取得最大值即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.95.(湖北理21)(I)已知函数f(x)=lnx-x+1,x∈(0,+~7),求函数f(x)的最大值;(Ⅱ)设4y,b(k=1,2,n)均为正数,证明:(1)若4h+ab+ab≤b+b2+b,则Lc≤1(2)若h+bz+b=1,则N≤6b=Lb²≤b²+b2²+6解:(I)f(x)的定义域为(0,+c~),f(x)在(0,1)上递增,在(1,+~)上递减,故函数f(x)在x=1处取得最大值f()=0 (Ⅱ)(1)由(I)知当x∈(0,+~~)时有f(x)≤f(1)=0即lnx≤x-1,:ax,b>0,b‘b²L,(k=1,2,L ,n) ,则(2)①先证由( 1 ) 知;,(k=1,2,L,n)②再证公b ≈L b ≤b ²+ b 2 2 + 6 . 2 ,记则于是由( 1 )所以 b * L b ²≤ b ² + b ² + b . ²。

相关文档
最新文档