中考复习第2讲代数综合提高专题

合集下载

【免费阅读】(教师版)中考数学专题复习第一轮第二讲代数式

【免费阅读】(教师版)中考数学专题复习第一轮第二讲代数式

中考数学专题复习第一轮第二讲代数式★重点★代数式的有关概念及性质,代数式的运算一、重要概念分类:1.代数式、有理式、无理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母。

没有根号的代数式叫有理式。

如:a、。

22a b+2.整式和分式分母中含有字母的代数式叫做分式。

如:。

分母中不含有字母的代数式叫做整式。

1a整式和分式统称有理式,或含有加、减、乘、除、乘方运算的代数式叫做有理式。

3.单项式与多项式数字和字母之间,字母和字母之间只有乘除运算的代数式叫单项式。

如:,23a bc 。

单独的一个数或字母也是单项式。

如:、0、-3。

几个单项式的和或差,叫213a bc a做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如为分式。

xx4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同。

合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式,是无理数。

377.各种方根的概念1.平方根:如果一个数的平方等于另一个数,那么这个数叫另一个数的平方根.即:2,a aχχχ==叫的平方根记作2.算术平方根:一个正数的平方等于另一个数,这个正数叫另个一数的算术平方根。

a单项式多项式整式分有理式无理式代数式配还发兄弟体活⑴正数a 的正的平方根([a≥0—与“平方根”的区别]);a ⑵算术平方根与绝对值①联系:都是非负数,=│a│2a ②区别:│a│中,a 为一切实数;中,a 为非负数。

a 3.立方根:一个数的立方等于另一个数,这个数叫另个一数的立方根。

如:3,a a χχχ==叫的立方根 记作 8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

中考复习之代几综合问题知识讲解

中考复习之代几综合问题知识讲解

代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

中考数学专题训练第2讲整式(知识点梳理)

中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。

单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。

2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。

(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。

(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。

3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。

(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。

(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。

(4)运算时,要注意运算顺序。

(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。

2.单项式中不能含有加减法运算,但可以含有除法运算。

3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。

2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第二讲  代数式(含答案)(全国通用版)

第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。

【最新】2020中考数学考点举一反三讲练第2讲 代数式及整式的运算 (学生版)

【最新】2020中考数学考点举一反三讲练第2讲 代数式及整式的运算  (学生版)

第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数)2.幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)3.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)4.同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1B .0C .1D .2【举一反三1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1D .(﹣1)n x 2n +1【举一反三1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【举一反三1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A .10﹣xB .10﹣yC .10﹣x +yD .10﹣x ﹣y【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a 2b 2)3与(a 2b 2)4,(x ﹣y )2与(x ﹣y )3等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【举一反三2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【举一反三2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【举一反三2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【举一反三2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是_______.【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【举一反三3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【举一反三3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【举一反三3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【举一反三3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x 2+ax ﹣y +6与整式2bx 2﹣3x +5y ﹣1的差不含x 和x 2项,试求4(a 2+2b 3﹣a 2b )+3a 2﹣2(4b 3+2a 2b )的值. 【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。

中考数学 第一部分 数代数 第三章 第2讲 一次函数检测复习

中考数学 第一部分 数代数 第三章 第2讲 一次函数检测复习

第2讲一次函数1.(2013年广东广州)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____________.2.(2013年广东珠海)已知函数y=3x的图象经过点A(-1,y1),B(-2,y2),则y1______y2(填“>”“<”或“=”).3.(2014年广东深圳)已知函数y=ax+b经过点(1,3),(0,-2),求a-b=( ) A.-1 B.-3 C.3 D.74.(2014年广东广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<05.(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图3­2­5是他们离家的路程y(单位:千米)与小明离家时间x(单位:时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.图3­2­5A级基础题1.(2013年江苏徐州)下列函数中,y随x的增大而减小的函数是( )A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x2.(2014年陕西)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是( )A.14B.-14C.1 D.-13.一次函数y=2x+3的图象交y轴于点A,则点A的坐标为( )A.(0,3) B.(3,0) C.(1,5) D.(-1.5,0)4.(2014年广西南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买种子2千克以上,超过2千克部分的种子的价格打6折,设购买种子数量为x千克,付款金额为y 元,则y与x的函数关系的图象大致是( )A B C D5.(2013年湖南益阳)已知一次函数y =x -2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( )A B C D6.(2013年广东深圳育才二中一模)若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <07.(2014年昆明市)如图3­2­6是反比例函数y =k x(k 为常数,k ≠0)的图象,则一次函数y =kx -k 的图象大致是( )图3­2­6A B C D8.(2014年湖南张家界)已知一次函数y =(1-m )x +m -2,当m ________时,y 随x 的增大而增大.9.(2014年广州模拟)已知一次函数y =kx -4,当x =2时,y =-3. (1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴交点的坐标.10.(2013年浙江绍兴)某市出租车计费方法如图3­2­7,x (单位:km)表示行驶里程,y (单位:元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; (2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.图3­2­7B级中等题11.(2014年湖北武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(单位:米)与时间t(单位:秒)之间的函数关系如图3­2­8,则这次越野跑的全程为________米.图3­2­8图3­2­912.(2013年福建福州)A,B两点在一次函数图象上的位置如图3­2­9,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0 B.a<0 C.b=0 D.ab<013.(2013年湖南衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,某市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”.分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图3­2­10所示的折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时,电费是__________元;(2)第二档的用电量范围是__________千瓦时;(3)“基本电价”是__________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?图3­2­10C级拔尖题14.(2014年广东中山君里模拟)若点(a,b)在一次函数y=2x-3图象上,则代数式3b -6a+1的值是______.15.(2013年湖北荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.第2讲 一次函数【真题·南粤专练】1.m >-2 2.> 3.D 4.C5.解:(1)由图象知,小明1小时骑车20千米,所以小明骑车的速度为:201=20 (千米/时).图象中线段AB 表明小明游玩的时间段,所以小明在南亚所游玩的时间为2-1=1(时).(2)由题意和图象,得小明从南亚所出发到湖光岩门口所用的时间为:15060+2560-2=14(时),所以从南亚所出发到湖光岩门口的路程为20×14=5(千米).于是从家到湖光岩门口的路程为:20+5=25(千米).故妈妈驾车的速度为25÷2560=60(千米/时).设CD 所在直线的函数解析式为y =kx +b ,由题意知,点C ⎝ ⎛⎭⎪⎫94,25,D ⎝ ⎛⎭⎪⎫116,0, 则⎩⎪⎨⎪⎧94k +b =25,116k +b =0.解得 ⎩⎪⎨⎪⎧k =60,b =-110.则CD 所在直线的函数解析式为y =60x -110.【演练·巩固提升】1.C 2.C 3.A 4.B 5.B 6.D 7.B 8.<19.解:(1)由已知,得-3=2k -4,解得k =12.∴一次函数的解析式为y =12x -4.(2)将直线y =12x -4向上平移6个单位后得到的直线是y =12x +2.∵当y =0时,x =-4,∴平移后的图象与x 轴交点的坐标是(-4,0).10.解:(1)由图象,得出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b ,12=5k +b .解得⎩⎪⎨⎪⎧k =2,b =2.故y 与x 的函数关系式为y =2x +2.(2)当y =32时,32=2x +2,x =15. 答:这位乘客乘车的里程是15 km.11.2200 解析:根据图象分别设两函数解析式为y 1=k 1x +1400,y 2=k 2x +1600.再由图知,当x =100时,y 1=y 2,当x 1=200,x 2=300时,y 1=y 2.于是,可得到⎩⎪⎨⎪⎧ 100k 1+1400=100 k 2+1600,①200k 1+1400=300 k 2+1600.②从而求出⎩⎪⎨⎪⎧k 1=4,k 2=2,即得到两函数解析式为y 1=4x +1400,y 2=2x +1600.最后,把x =200代入y 1=4x +1400或x =300代入y 2=2x +1600得到答案.12.B13.解:(1)108 (2)180<x ≤450 (3)0.6(4)由图可知,小明家的用电量在450~540千瓦时之间,故设直线BC 的解析式为y =kx +b ,由图象,得⎩⎪⎨⎪⎧364.5=540k +b ,283.5=450k +b .解得⎩⎪⎨⎪⎧k =0.9,b =-121.5.∴y =0.9x -121.5.当y =328.5时,x =500.答:这个月他家用电500千瓦时.14.-8 解析:把(a ,b )代入函数式中,即b =2a -3,则b -2a =-3.∴3b -6a +1=3(b -2a )+1=-8.15.解:(1)由题意,得三口之家的人均住房面积为:1203=40(平方米),三口之家应缴购房款为:0.3×3×30+0.5×3×10=42(万元). (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.3×3×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.3×3×30+0.5×3(m -30)+0.7×3×(x -m )=2.1x -0.6m -18.∴y =⎩⎪⎨⎪⎧0.9x 0≤x ≤30,1.5x -1830<x ≤m ,45≤m ≤60,2.1x -0.6m -18x >m .(3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍);②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m . ∵57<y ≤60,∴57<87-0.6m ≤60.∴45≤m <50. 综上所述,得45≤m <50.。

2020年中考代数综合第2讲:二次函数图象与线段公共点问题

2020年中考代数综合第2讲:二次函数图象与线段公共点问题

2020年中考代数综合第2讲:二次函数图象与线段公共点问题【案例赏析】1.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.2.在平面直角坐标系xOy中,已知抛物线y=x2﹣mx+n.(1)当m=2时,①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.3.在平面直角坐标系xOy中,抛物线y=x2+2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向左平移4个单位长度,得到点B.(1)求点B的坐标;(2)抛物线与直线y=a交于M、N两点,将抛物线在直线y=a下方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,即为图形M.①求线段MN的长;②若图形M与线段AB恰有两个公共点,结合函数图象,直接写出a的取值范围.4.在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B.(1)求点B的坐标;(2)求抛物线C1的对称轴;(3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G与线段AB恰有一个交点时,结合图象,求a的取值范围.5.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD有两个公共点,结合函数的图象,求m的取值范围.【专项突破】6.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.7.已知:过点A(3,0)直线l1:y=x+b与直线l2:y=﹣2x交于点B.抛物线y=ax2+bx+c 的顶点为B.(1)求点B的坐标;(2)如果抛物线y=ax2+bx+c经过点A,求抛物线的表达式;(3)直线x=﹣1分别与直线l1,l2交于C,D两点,当抛物线y=ax2+bx+c与线段CD 有交点时,求a的取值范围.8.已知:抛物线y=ax2+4ax+4a(a>0)(1)求抛物线的顶点坐标;(2)若抛物线经过点A(m,y1),B(n,y2),其中﹣4<m≤﹣3,0<n≤1,则y1y2(用“<”或“>”填空);(3)如图,矩形CDEF的顶点分别为C(1,2),D(1,4),E(﹣3,4),F(﹣3,2),若该抛物线与矩形的边有且只有两个公共点(包括矩形的顶点),求a的取值范围.9.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1与y轴交于点A,其对称轴与x轴交于点B.(1)当△OAB是等腰直角三角形时,求n的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n的取值范围.10.如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C点,tan∠ABC=2.(1)求抛物线的表达式及其顶点D的坐标;(2)过点A、B作x轴的垂线,交直线CD于点E、F,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF(含线段端点)只有1个公共点.求m的取值范围.11.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣m+2的顶点为D.线段AB的两个端点分别为A(﹣3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.12.在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.13.已知:直线l:y=x+2与过点(0,﹣2),且与平行于x轴的直线交于点A,点A关于直线x=﹣1的对称点为点B.(1)求A,B两点的坐标;(2)若抛物线y=﹣x2+bx+c经过A,B两点,求抛物线解析式;(3)若抛物线y=﹣x2+bx+c的顶点在直线l上移动,当抛物线与线段AB有一个公共点时,求抛物线顶点横坐标t的取值范围.14.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.15.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx ﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.16.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.17.在平面直角坐标系xOy中,抛物线y=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,AB=4,点D为抛物线的顶点.(1)求点A和顶点D的坐标;(2)将点D向左平移4个单位长度,得到点E,求直线BE的表达式;(3)若抛物线y=ax2﹣6与线段DE恰有一个公共点,结合函数图象,求a的取值范围.18.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.19.直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C.(1)求点C的坐标;(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.20.在平面直角坐标系xOy中.已知抛物线y=ax2+bx+a﹣2的对称轴是直线x=1.(1)用含a的式子表示b,并求抛物线的顶点坐标;(2)已知点A(0,﹣4),B(2,﹣3),若抛物线与线段AB没有公共点,结合函数图象,求a的取值范围;(3)若抛物线与x轴的一个交点为C(3,0),且当m≤x≤n时,y的取值范围是m≤y ≤6,结合函数图象,直接写出满足条件的m,n的值.21.在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.参考答案与试题解析1.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【解答】解:(1)当a=0时,∴抛物线的解析式为y=x2﹣2x﹣3A(0,﹣3),∵将点A向右平移4个单位长度,得到点B.∴B(4,﹣3);(2)当函数经过点A时,a=0,有三个交点.∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a<0,当a=1时,y=x2﹣2x+a﹣3沿着y=1翻折,此时,图形M与线段AB恰有两个公共点.综上所述:﹣3<a<0或a=1.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.2.在平面直角坐标系xOy中,已知抛物线y=x2﹣mx+n.(1)当m=2时,①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是x2<﹣2或x2>4;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.【分析】(1)①把m=2代入抛物线解析式,利用x=﹣,求出对称轴,然后把顶点横坐标代入,即可用含n的式子表示出顶点的纵坐标;②利用抛物线的对称性,及开口向上,可知离对称轴越远,函数值越大,从而可解;(2)把n=3代入,再分抛物线经过点Q,抛物线经过点P(﹣1,2),抛物线的顶点在线段PQ上,三种情况分类讨论,得出相应的m值,从而得结论.【解答】解:(1)①∵m=2,∴抛物线为y=x2﹣2x+n.∵x=﹣=1,∴抛物线的对称轴为直线x=1.∵当线x=1时,y=1﹣2+n=n﹣1,∴顶点的纵坐标为:n﹣1.②∵抛物线的对称轴为直线x=1,开口向上,x=﹣2到x=1的距离为3,∴点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是x2<﹣2或x2>4,故答案为:x2<﹣2或x2>4.(2)∵点P(﹣1,2),向右平移4个单位长度,得到点Q.∴点Q的坐标为(3,2),∵n=3,抛物线为y=x2﹣mx+3.当抛物线经过点Q(3,2)时,2=32﹣3m+3,解得;当抛物线经过点P(﹣1,2)时,2=(﹣1)2+m+3,解得m=﹣2;当抛物线的顶点在线段PQ上时,=2,解得m=±2.结合图象可知,m的取值范围是m≤﹣2或m=2或.故答案为:m≤﹣2或m=2或.【点评】本题考查二次函数图象与系数的关系,以及二次函数的对称性和抛物线与线段交点个数的问题,属于中等难度的题目.3.在平面直角坐标系xOy中,抛物线y=x2+2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向左平移4个单位长度,得到点B.(1)求点B的坐标;(2)抛物线与直线y=a交于M、N两点,将抛物线在直线y=a下方的部分沿直线y=a 翻折,图象的其他部分保持不变,得到一个新的图象,即为图形M.①求线段MN的长;②若图形M与线段AB恰有两个公共点,结合函数图象,直接写出a的取值范围.【分析】(1)求出A(0,﹣3),即可得到B(﹣4,﹣3);(2)令x2+2x+a﹣3=a即可求出MN的长;(3)顶点(﹣1,a﹣4),关于y=a的对称点为(﹣1,a+4),当a+4=﹣3时,a=﹣7,此时图形M与线段AB恰有两个公共点,当a=﹣6时,y=x2+2x﹣9,y=﹣6,y=x2+2x ﹣9关于y=﹣6翻折部分的函数解析式为y=﹣x2﹣2x﹣4,当x=0时,y=﹣4,当a=﹣6时,图形与y=﹣6有三个交点,由此可知在﹣6≤a<﹣7时,图形与y=a有三个交点,y=a要在线段AB的下方,a<﹣3,故﹣6<a<﹣3且a=﹣7.【解答】解:(1)当a=0时,A(0,﹣3),∴B(﹣4,﹣3);(2)①∵抛物线y=x2+2x+a﹣3与直线y=a交于M、N两点,∴x2+2x+a﹣3=a即x2+2x﹣3=0,∴MN=4;②顶点(﹣1,a﹣4),关于y=a的对称点为(﹣1,a+4),当a+4=﹣3时,a=﹣7,此时图形M与线段AB恰有两个公共点,当a=﹣6时,y=x2+2x﹣9,y=﹣6,y=x2+2x﹣9关于y=﹣6翻折部分的函数解析式为y=﹣x2﹣2x﹣4,当x=0时,y=﹣4,当a=﹣6时,图形与y=﹣6有三个交点,∴在﹣6≤a<﹣7时,图形与y=a有三个交点,∴y=a要在线段AB的下方,∴a<﹣3,∴﹣6<a<﹣3且a=﹣7.【点评】本题考查二次函数的图象与性质;能够画出M图形,结合函数图象,运用二次函数的性质求解是关键.4.在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B.(1)求点B的坐标;(2)求抛物线C1的对称轴;(3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G与线段AB恰有一个交点时,结合图象,求a的取值范围.【分析】(1)根据坐标平移的特点是左减右加、上加下减可以求得点B的坐标;(2)根据抛物线C1:y=ax2﹣2ax﹣3a(a≠0)可以求得该抛物线的对称轴;(3)根据翻折的性质和二次函数的性质可以求得a的取值范围,本题得以解决.【解答】解:(1)∵点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B,∴点B的坐标为(2,2);(2)∵抛物线C1:y=ax2﹣2ax﹣3a,∴对称轴是直线x=﹣=1;(3)当抛物线C1:y=ax2﹣2ax﹣3a过点A(0,﹣3)时,此时﹣3a=﹣3,得a=1,∵对称轴是直线x=1,∴当x=2时,y<3,点B在抛物线C2下方,此时抛物线C1与线段AB一个交点,抛物线C2与线段AB没有交点,当抛物线C1:y=ax2﹣2ax﹣3a过点(0,﹣2)时,﹣3a=﹣2,得a=,∵对称轴是直线x=1,∴当x=2时,y=2,点B在抛物线C2上,此时抛物线C1与线段AB一个交点,抛物线C2与线段AB有一个交点,∴a的取值范围是;同理可得,当抛物线C2:y=﹣ax2+2ax+3a过点A(0,﹣3)或(0,﹣2)时,可以求得a=﹣1或a=﹣,∴a的取值范围是﹣1≤a<﹣,由上可得,a的取值范围是﹣1≤a<﹣或.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.5.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD有两个公共点,结合函数的图象,求m的取值范围.【分析】(1)求出x=0时y的值与y=0时x的值即可得答案;(2)分m>0和m<0两种情况,结合函数图象可得.【解答】解:(1)由题意,当x=0时,y=2.∴A(0,2).∵y=mx2﹣2mx+2=m(x﹣1)2+2﹣m,∴对称轴为直线x=1.∴B(1,0).(2)由题意,C(﹣1,0),D(3,0).①当m>0时,结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,即2﹣m<0.∴m>2.②当m<0时,过C(﹣1,0)的抛物线的顶点为E(1,).结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,即2﹣m≥.∴m≤.综上所述,m的取值范围为m>2或m≤.【点评】本题主要考查抛物线与x轴的交点,熟练掌握二次函数的图象与性质是解题的关键.6.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.【分析】(1)根据题意分别求出点A、B、C的坐标;(2)求得抛物线的对称轴,顶点的坐标;再分类讨论①当n>3时;②当n=3时;③当0<n<3时,抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.【解答】解:(1)∵直线y=2x﹣3与y轴交于点A(0,﹣3),∴点A关于x轴的对称点B(0,3),l为直线y=3,∵直线y=2x﹣3与直线l交于点C,∴点C坐标为(3,3),(2)∵抛物线y=nx2﹣4nx+5n(n>0),∴y=nx2﹣4nx+4n+n=n(x﹣2)2+n(n>0)∴抛物线的对称轴为直线x=2,顶点坐标为(2,n),∵点B(0,3),点C(3,3),①当n>3时,抛物线的最小值为n>3,与线段BC无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n(x﹣2)2+n经过点B,则3=5n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x﹣2)2+n经过点C,则3=2n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC上,此时抛物线与线段BC有两个公共点;综上所述,当≤n<或n=3时,抛物线与线段BC有一个公共点.【点评】本题主要考查二次函数的性质,以及一次函数的性质,根据题意得出关于n的不等式组是解题的关键.7.已知:过点A(3,0)直线l1:y=x+b与直线l2:y=﹣2x交于点B.抛物线y=ax2+bx+c 的顶点为B.(1)求点B的坐标;(2)如果抛物线y=ax2+bx+c经过点A,求抛物线的表达式;(3)直线x=﹣1分别与直线l1,l2交于C,D两点,当抛物线y=ax2+bx+c与线段CD 有交点时,求a的取值范围.【分析】(1)将点A的坐标代入直线l1,求出其函数表达式,联立直线l1、l2表达式成方程组,解方程组即可得出点B的坐标;(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,由抛物线的顶点坐标即可得出y=a(x﹣1)2﹣2,再根据点C的坐标利用待定系数法即可得出结论;(3)根据两直线相交,求出点C、D的坐标,将其分别代入y=a(x﹣1)2﹣2中求出a 的值,由此即可得出抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围.【解答】解:(1)将A(3,0)代入直线l1:y=x+b中,0=3+b,解得:b=﹣3,∴直线l1:y=x﹣3.联立直线l1、l2表达式成方程组,,解得:,∴点B的坐标为(1,﹣2).(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,∵抛物线y=ax2+bx+c的顶点为B(1,﹣2),∴y=a(x﹣1)2﹣2,∵抛物线y=ax2+bx+c经过点A,∴a(3﹣1)2﹣2=0,解得:a=,∴抛物线的表达式为y=(x﹣1)2﹣2.(3)∵直线x=﹣1分别与直线l1,l2交于C、D两点,∴C、D两点的坐标分别为(﹣1,﹣4),(﹣1,2),当抛物线y=ax2+bx+c过点C时,a(﹣1﹣1)2﹣2=﹣4,解得:a=﹣;当抛物线y=ax2+bx+c过点D时,a(﹣1﹣1)2﹣2=2,解得:a=1.∴当抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围为﹣≤a≤1且a≠0.【点评】本题考查了待定系数法求函数解析式、两直线相交与平行、一次函数图象上点的坐标特征以及二次函数的三种形式,解题的关键是:(1)利用待定系数法求出直线l1的表达式;(2)将二次函数一般式改写为顶点式;(3)分别代入C、D点的坐标求出a 值.8.已知:抛物线y=ax2+4ax+4a(a>0)(1)求抛物线的顶点坐标;(2)若抛物线经过点A(m,y1),B(n,y2),其中﹣4<m≤﹣3,0<n≤1,则y1<y2(用“<”或“>”填空);(3)如图,矩形CDEF的顶点分别为C(1,2),D(1,4),E(﹣3,4),F(﹣3,2),若该抛物线与矩形的边有且只有两个公共点(包括矩形的顶点),求a的取值范围.【分析】(1)把抛物线解析式化为顶点式可求得其顶点坐标;(2)由抛物线的对称性可知当开口向上时,离对称轴越近其函数值则越小,则可求得答案;(3)由于抛物线的顶点确定,且开口向上,所以当抛物线开口越大时a的值越小,当抛物线开口越小时a的值越大,可知当抛物线过C时a有最小值,当抛物线过F时a有最大值,则可求得a的取值范围.【解答】解:(1)∵y=a(x2+4x+4)=a(x+2)2,∴抛物线的顶点坐标为(﹣2,0);(2)∵a>0,且对称轴为直线x=﹣2,∴当函数图象上的点离对称轴越近时其函数值越小,∵﹣4<m≤﹣3,0<n≤1,∴A点离对称轴x=﹣2近,∴y1<y2,故答案为:<;(3)∵y=a(x+2)2开口向上,且顶点为(﹣2,0),∴当开口越大时a的值越小,当开口越小时a的值越大,∴当抛物线过点C时a有最小值,当抛物线过点F时a有最大值代入点C(1,2),得a=,代入点F(﹣3,2),得a=2,∴<a<2.【点评】本题为二次函数的综合应用,涉及二次函数的性质、二次函数的开口大小、二次函数的比较大小及数形结合思想等知识.在(1)中把二次函数解析式化为顶点式是解题的关键,在(2)中掌握抛物线上的点离对称轴的距离的远近与函数值的大小关系是解题的关键,在(3)中掌握抛物线的开口大小与二次项系数的关系是解题的关键.本题考查知识点不多,但综合性很强,难度适中.9.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1与y轴交于点A,其对称轴与x轴交于点B.(1)当△OAB是等腰直角三角形时,求n的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n的取值范围.【分析】(1)先求得点B的坐标,再根据△OAB是等腰直角三角形得出点A的坐标,代入求得n即可;(2)分两种情况:抛物线的顶点在x轴上和抛物线的顶点在x轴下方两种情况求解可得.【解答】解:(1)二次函数的对称轴是x=﹣=1,则B的坐标是(1,0),当△OAB是等腰直角三角形时,OA=OB=1,则A的坐标是(0,1)或(0,﹣1).抛物线y=x2﹣2x+n﹣1与y轴交于点A的坐标是(0,n﹣1).则n﹣1=1或n﹣1=﹣1,解得n=2或n=0;(2)①当抛物线的顶点在x轴上时,△=(﹣2)2﹣4(n﹣1)=0,解得:n=2;②当抛物线的顶点在x轴下方时,如图,由图可知当x=0时,y<0;当x=3时,y≥0,即,解得:﹣2≤n<1,综上,﹣2≤n<1或n=2.【点评】本题考查了二次函数的图象和等腰直角三角形的性质,明确等腰直角三角形中两条边相等,解题的关键是根据抛物线与线段OC有且只有一个公共点得出x=0时y<0;x=3时,y≥0的结论.10.如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C点,tan∠ABC=2.(1)求抛物线的表达式及其顶点D的坐标;(2)过点A、B作x轴的垂线,交直线CD于点E、F,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF(含线段端点)只有1个公共点.求m的取值范围.【分析】(1)由OC=8、tan∠ABC=2得点B坐标,将点A、B坐标代入求解可得;(2)先求出直线CD解析式和点E、F坐标,设平移后解析式为y=﹣(x﹣1)2+9+m,结合图象根据抛物线与线段EF(含线段端点)只有1个公共点,求得临界时m的值,从而得出答案,【解答】解:(1)由抛物线的表达式知,点C(0,8),即OC=8;Rt△OBC中,OB=OC•tan∠ABC=8×=4,则点B(4,0).将A、B的坐标代入抛物线的表达式中,得:,解得:,∴抛物线的表达式为y=﹣x2+2x+8,∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴抛物线的顶点坐标为D(1,9).(2)设直线CD的表达式为y=kx+8,∵点D(1,9),∴直线CD表达式为y=x+8.∵过点A、B作x轴的垂线,交直线CD于点E、F,可得:E(﹣2,6),F(4,12).设抛物线向上平移m个单位长度(m>0),则抛物线的表达式为:y=﹣(x﹣1)2+9+m;当抛物线过E(﹣2,6)时,m=6,当抛物线过F(4,12)时,m=12,∵抛物线与线段EF(含线段端点)只有1个公共点,∴m的取值范围是6<m≤12.【点评】本题主要考查待定系数法求函数解析式及抛物线与直线的交点问题,利用图象与线段只有一个交点得出临界是m的值是解题关键11.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣m+2的顶点为D.线段AB的两个端点分别为A(﹣3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.【分析】(1)由y=x2﹣2mx+m2﹣m+2=(x﹣m)2﹣m+2,于是得到结论;(2)由于抛物线经过点B(1,m),得方程于是得到结论;(3)根据题意得到线段AB:y=m(﹣3≤x≤1),与y=x2﹣2mx+m2﹣m+2联立得到x2﹣2mx+m2﹣2m+2=0,令y′=x2﹣2mx+m2﹣2m+2,若抛物线y=x2﹣2mx+m2﹣m+2与线段AB只有1个公共点,于是得到结论.【解答】解:(1)∵y=x2﹣2mx+m2﹣m+2=(x﹣m)2﹣m+2,∴D(m,﹣m+2);(2)∵抛物线经过点B(1,m),∴m=1﹣2m+m2﹣m+2,解得:m=3或m=1;(3)根据题意:∵A(﹣3,m),B(1,m),∴线段AB:y=m(﹣3≤x≤1),与y=x2﹣2mx+m2﹣m+2联立得:x2﹣2mx+m2﹣2m+2=0,令y=x2﹣2mx+m2﹣2m+2,若抛物线y=x2﹣2mx+m2﹣m+2与线段AB只有1个公共点,即函数y在﹣3≤x≤1范围内只有一个零点,当x=﹣3时,y=m2+4m+11>0,∵△>0,∴此种情况不存在,当x=1时,y=m2﹣4m+3≤0,解得1≤m≤3.解法二:由题意或,解得1≤m≤3.【点评】本题考查了抛物线的性质,直线与抛物线的位置关系,考查了转化思想和数形结合的数学思想.12.在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.【分析】(1)利用配方法求出抛物线的顶点坐标是(m,﹣m+1),根据顶点在x轴上,得出﹣m+1=0,求出m=1,即可得出抛物线的解析式;(2)由于抛物线的顶点坐标是(m,﹣m+1),即可得出顶点在直线y=﹣x+1上;(3)把点A(﹣1,0)代入y=﹣x2+2mx﹣m2﹣m+1,求出m的值,再把B(1,0)代入y=﹣x2+2mx﹣m2﹣m+1,求出m的值,即可求解.【解答】解:(1)∵y=﹣x2+2mx﹣m2﹣m+1=﹣(x﹣m)2﹣m+1,∴顶点坐标是(m,﹣m+1),∵抛物线的顶点在x轴上,∴﹣m+1=0,∴m=1,∴y=﹣x2+2x﹣1;(2)∵抛物线y=﹣x2+2mx﹣m2﹣m+1的顶点坐标是(m,﹣m+1),∴抛物线的顶点在直线y=﹣x+1上;(3)当抛物线y=﹣x2+2mx﹣m2﹣m+1过点A(﹣1,0)时,﹣1﹣2m﹣m2﹣m+1=0,解得m1=0,m2=﹣3,当抛物线y=﹣x2+2mx﹣m2﹣m+1过点B(1,0)时,﹣1+2m﹣m2﹣m+1=0,解得m1=0,m2=1,故﹣3≤m≤1.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,抛物线与x轴的交点,求直线的解析式等知识,有一定难度.把求二次函数与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.13.已知:直线l:y=x+2与过点(0,﹣2),且与平行于x轴的直线交于点A,点A关于直线x=﹣1的对称点为点B.(1)求A,B两点的坐标;(2)若抛物线y=﹣x2+bx+c经过A,B两点,求抛物线解析式;(3)若抛物线y=﹣x2+bx+c的顶点在直线l上移动,当抛物线与线段AB有一个公共点时,求抛物线顶点横坐标t的取值范围.【分析】(1)由点A在直线l上可得A的坐标,根据点A、B关于直线x=﹣1对称可得点B坐标;(2)根据(1)中A、B两点坐标,利用待定系数法可求得解析式;(3)由顶点在直线l上可设顶点坐标为(t,t+2),继而可得抛物线解析式为y=﹣(x ﹣t)2+t+2,根据抛物线与线段AB有一个公共点,考虑抛物线过点A或点B临界情况可得t的范围.【解答】解:(1)由题可知A点的纵坐标为﹣2,∵点A在直线l:y=x+2上,∴A(﹣4,﹣2),由对称性可知B(2,﹣2);(2)∵抛物线y=﹣x2+bx+c过点A、B,∴,解得:,∴抛物线解析式为y=﹣x2﹣2x+6;(3)∵抛物线y=﹣x2+bx+c顶点在直线y=x+2上,由题可知,设抛物线顶点坐标为(t,t+2),∴抛物线解析式可化为y=﹣(x﹣t)2+t+2.把A(﹣4,﹣2)代入解析式可得﹣2=﹣(﹣4﹣t)2+t+2,解得:t=﹣3或t=﹣4.∴﹣4≤t<﹣3,把B(2,﹣2)代入解析式可得﹣2=﹣(2﹣t)2+t+2.解得:t=0或t=5,∴0<t≤5.综上可知t的取值范围时﹣4≤t<﹣3或0<t≤5.【点评】本题考查待定系数法求二次函数解析式及二次函数的图象与性质,待定系数求解析式是解题的根本、前提,将抛物线与线段AB有一个公共点转化为方程问题是解题关键.14.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称;(3)①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,所以函数与AB 无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与PQ无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.15.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx ﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.。

2022年中考数学分类复习强化练 -第二讲 代数式(含答案)

2022年中考数学分类复习强化练 -第二讲  代数式(含答案)

第二讲代数式专项一列代数式知识清单代数式:用________把数和表示数的字母连接起来的式子叫做代数式.注意代数式不含等号,单独一个数或一个字母也是代数式.考点例析例1 如图1,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球的总数,则表达错误的是()A.12(m-1)B.4m+8(m-2)C.12(m-2)+8 D.12m-16分析:正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球算了3次,多计算2次,则正方体棱长上的所有小球个数为12m-8×2=12m-16.将各选项化简即可.解:例2 (2021•模考海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图2是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).分析:根据已知图形可得,图形中菱形的个数为序数的平方与序数减1的平方的和,据此求解可得.解:归纳:在一些实际问题中,有时表示数量的代数式有单位,如果代数式是和或差的形式,则必须先把代数式用括号括起来,单位写在式子后面.跟踪训练1.(2021•模考重庆)已知a+b=4,则代数式1++的值为()A.3 B.1 C.0 D.﹣12.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,共需花费元.3. (2021•模考鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……依此规律排列下去,第9个图形中圆的个数是个.第3题图专项二整式知识清单一、整式的加减1. __________与__________统称为整式(注意整式的分母中不含有字母).2. 同类项:所含__________相同,并且相同字母的__________也相同的项叫做同类项.3. 合并同类项法则:同类项的__________相加,所得的结果作为_________,字母和字母的__________保持不变.4. 整式的加减运算:先去括号,再合并同类项(当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都__________符号;当括号前面是“-”时,把括号和它前面的“-”去掉,括号内各项都__________符号).二、幂的运算1. 同底数幂的乘法:a m·a n=___________(m,n都是正整数);2. 幂的乘方:(a m)n=___________(m,n都是正整数);3. 积的乘方:(ab)n=___________(n是正整数);4. 同底数幂的除法:a m÷a n=___________(a≠0,m,n为正整数).三、整式的乘法1. 单项式乘以单项式:把它们的___________、___________分别相乘,对于只在一个单项式里出现的字母,则连同它的___________作为积的一个因式.2. 单项式乘以多项式:a(a+b+c)=a2+ab+ac.3. 多项式乘以多项式:(a+b)(b+c)=ab+b2+ac+bc.4. 乘法公式:①平方差公式:(a+b)(a-b)=___________;②完全平方公式:(a±b)2=___________.四、整式的除法1. 单项式相除,把___________、___________分别相除作为商的一个因式,对于只在被除式里出现的字母,则连同它的___________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的___________除以这个单项式,再把所得的商___________.考点例析例1 (2021•模考鄂尔多斯)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1分析:(x+1)2=x2+2x+1是完全平方式,故选项D错误.解:例2 已知3m=4,32m-4n=2,若9n=x,则x的值为()A.8 B.4 C. D.分析:先逆用幂的乘方及同底数幂的除法法则将32m-4n=2变形为(3m)2÷(3n)4,再将9n变形为(3n)2,代入求得n的值.再开平方求得x 的值,注意x在本题中应为正数.解:归纳:幂的运算首先要分清运算法则,再选择相应法则进行计算.在解答利用幂的运算性质求值类的题目时,需注意幂的运算的逆向运用.例3 (2021•模考郴州)如图①,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图②所示的长方形.这两个图能解释的等式是()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)分析:左边两个长方形面积等于大正方形的面积减去阴影正方形的面积,即x2﹣1,右边大长方形的面积可以表示为(x+1)(x﹣1),根据空白部分面积相等列等式.解:例4 已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.分析:直接利用乘法公式以及单项式乘多项式运算法则化简,这里不要着急求解x的值,可以将条件式变形,整体代入求得.解:归纳:整式的运算主要是整式的加减运算和乘除运算.进行加减运算时要注意去括号时的符号问题;进行乘法运算时,首先要观察是否可以运用乘法公式,其次运算时注意不要重复或遗漏.跟踪训练1.(2021•模考日照)单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a2. (2021•模考济南)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b23. (2021•模考河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.×D.÷4. (2021•模考淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.5205. (2021•模考绵阳)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.6. 化简:(x+y)2-x(x+2y).7. (2021•模考襄阳)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.专项三因式分解知识清单1. 因式分解:把一个多项式化为几个整式的_________的形式,像这样的式子变形叫做把这个多项式因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc=_______________.(2)公式法:①平方差公式:a2-b2=_______________.②完全平方公式:a2±2ab+b2=_______________.考点例析例1 (2021•模考西藏)下列分解因式正确的是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2分析:2xy+4x=2x(y+2),选项B提公因式不彻底;选项C,D不是完全平方公式,不能用公式法因式分解.解:归纳:判断因式分解是否正确,一看等式右边是否是整式的积的形式,二看左右两边是否相等.例2 (2021•模考自贡)分解因式:3a2﹣6ab+3b2=.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解:归纳:一个多项式有公因式先提取公因式,再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.多项式是二项式优先考虑平方差公式分解,三项式优先考虑完全平方公式分解.跟踪训练1. (2021•模考河北)若=8×10×12,则k的值是()A.12 B.10 C.8 D.62. (2021•模考眉山)已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣43.(2021•模考盐城)因式分解:x2﹣y2=.4. (2021•模考营口)ax2﹣2axy+ay2=.5. (2021•模考深圳)分解因式:m3﹣m=.6. (2021•模考常德)【阅读理解】对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).【理解运用】如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.【解决问题】求方程x3﹣5x+2=0的解是__________________________.专项四分式知识清单一、分式的相关概念1. 定义:用A ,B(B≠0)表示两个整式,A÷B就可以表示成.如果B中含有____________,式子叫做分式.2. 分式有意义、值为0的条件:分式的分母____________,分式有意义;分式的____________不为0,____________为0时,分式的值为0.二、分式的基本性质分式的分子与分母都乘(或除以)同一个__________的整式,分式的值不变.三、分式的运算1. 最简分式:分子与分母没有____________的分式,叫做最简分式.2. 分式的约分、通分:把分式的分子与分母的_____________约去,叫做约分;把几个____________的分式分别化为与原来的分式相等的____________的分式,叫做通分.3. 分式的乘法运算法则:分式乘分式,用分子的积作为积的_____________,分母的积作为积的____________,即·=____________.4. 分式的除法运算法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即÷=____________.5. 分式的乘方:分式的乘方等于分子的乘方除以分母的乘方,即=____________.6. 分式的加减运算法则:同分母的分式相加减,____________不变,把____________相加减;异分母分式相加减,先通分,化为_________分式,然后再按同分母分式的加减法则进行运算.考点例析例1 (2021•模考河北)若a≠b,则下列分式化简正确的是()A.B.C.D.分析:根据分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变来判断. 选项A,B 是同加或同减,不是同乘除,不符合分式的基本性质;选项C中,分子、分母同乘的整式不相同,也不符合分式的基本性质;选项D中,分式的分子与分母同乘2,分式的值不变.解:归纳:根据分式的基本性质对分式变形,要注意:①分子与分母必须同乘(或除以)同一个整式;②该整式不等于0.例2 (2021•模考雅安)若分式=0,则x的值是()A.1 B.﹣1 C.±1 D.0分析:根据分式的值为0的条件,得x2-1=0且x+1≠0.解:归纳:判断分式值等于0时,要从两方面来考虑:一是分子等于0,二是分母不等于0.例3 (2021•模考娄底)先化简,然后从﹣3,0,1,3中选一个合适的数代入求值.分析:本题可以先将括号中的两项通分,再利用除法法则变形,约分得到最简结果,最后把m的值代入计算.还可以先把除法变为乘法,利用乘法分配律计算.化简时可以根据题目选择最简便的方法. 解:归纳:分式化简的最后结果,一定是最简分式或整式,求值所选数值要使原分式有意义.跟踪训练1. (2021•模考衡阳)要使分式有意义,则x的取值范围是()A.x>1 B.x≠1C.x=1 D.x≠02. (2021•模考金华)分式的值是零,则x的值为()A.2 B.5 C.-2 D.-53.(2021•模考淄博)化简的结果是()A.a+b B.a﹣b C.D.4.(2021•模考随州)的计算结果为()A. B. C. D.5. (2021•模考阜新)先化简,再求值:,其中x=﹣1.6. (2021•模考自贡)先化简,再求值:,其中x是不等式组的整数解.专项五二次根式知识清单1. 二次根式:形如_________(a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含__________;(2)被开方数中不含能_________的因数或因式.同时满足上述两个条件的二次根式,叫做最简二次根式.3.二次根式的性质:(1)=____________(a≥0);(2)=|a|=(3)=____________(a≥0,b≥0);(4)=____________(a≥0,b>0).4. 二次根式的运算(1)二次根式的乘法:=____________(a≥0,b≥0);(2)二次根式的除法:=____________(a≥0,b>0);(3)二次根式的加减:先把每个二次根式化成____________,再把__________相同的二次根式进行合并.考点例析例1 若代数式在实数范围内有意义,则x的取值范围是________________.分析:根据二次根式有意义的条件和分母不为零的性质,可得2x-6>0,求解即可.解:归纳:二次根式有意义的条件是被开方数是非负数,若二次根式在分母上,则被开方数不能为0,由此可确定字母的取值范围.例2 (2021•模考攀枝花)实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b分析:根据数轴,知﹣2<a<﹣1,1<b<2,故a+1<0,b﹣1>0,a﹣b<0,原式可转化为-(a+1)+b﹣1+(a﹣b),去括号合并即可.解:例3 (2021•模考包头)计算:=.分析:本题可以把原式化为,再将中括号内的部分利用平方差公式计算,运算更简便.解:归纳:进行二次根式的混合运算,应注意先化简,后合并,还要注意乘法公式的灵活应用.跟踪训练1.(2021•模考广东)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣22. (2021•模考济宁)下列各式是最简二次根式的是()A.B.C.D.3. (2021•模考南通)下列运算结果正确的是()A.B.3+=C.÷=3 D.×=4. (2021•模考朝阳)计算的结果是()A.0 B.C.D.5.(2021•模考荆州)若x为实数,在“(+1)□x”的“□”中填入一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.+1 B.﹣1 C.D.1﹣6. (2021•模考益阳)若计算m的结果为正整数,则无理数m的值可以是(写一个).7. (2021•模考河北)已知﹣=a﹣=b,则ab=.8. (2021•模考株洲)计算的结果是.专项六代数式中的数学思想1. 整体思想整体思想是指在解决某些问题时,把一些组合式子作为一个“整体”,并把这个“整体”直接代入另一个式子,避免局部运算烦琐的方法.在分解因式、求代数式的值时,恰当使用整体思想,可以提高解题效率,减少复杂的计算.例1 (2021•模考临沂)若a+b=1,则a2﹣b2+2b﹣2=.分析:把a+b看做一个整体,由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:归纳:在代数式的化简与求值过程中,如果不能确定整式中字母的具体值,可以考虑将该整式看做一个整体代入求值.2. 数形结合思想数形结合就是把抽象难懂的数学语言、数量关系与直观形象的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例2 (2021•模考呼伦贝尔)已知实数a在数轴上对应点的位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3分析:先根据数轴上a的位置,确定绝对值符号内式子的正负,然后再用去绝对值符号的方法进行化简.解:归纳:实数与数轴上的点之间具有一一对应关系,平面上的点与有序实数对之间具有一一对应关系,这些都是“数”和“形”转化的桥梁.3. 归纳推理思想由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概括出一般的结论.例3 (2021•模考青海)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式:,用含有字母的式子表示第n个算式:.分析:观察发现,和算式序号相等的数与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可.解:跟踪训练1.(2021•模考枣庄)图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示拼成一个正方形,则中间空余部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2第1题图第5题图2.(2021•模考西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n的值是()A.18 B.19 C.20 D.213.(2021•模考十堰)已知x+2y=3,则1+2x+4y=.4.(2021•模考雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.5.(2021•模考赤峰)一个电子跳蚤在数轴上做跳跃运动.设原点处为O,第一次从点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;…;如此跳跃下去,最后落点为OA2019的中点A2020,则点A2020表示的数为.参考答案专项一列代数式考点例析:例1 A 例2 41 (2n2﹣2n+1)跟踪训练:1. A 2.(30m+15n) 3. 92专项二整式考点例析:例1 D 例2 C 例3 B例4 原式=9x2-4+x2-2x=10x2-2x-4.因为5x2-x-1=0,所以5x2-x=1.所以原式=2(5x2-x)-4=2×1-4=-2.跟踪训练:1. B 2. A 3. D 4. D 5. 0或86.解:原式=x2+2xy+y2-x2-2xy=y2.7.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy.当x =,y =﹣1时,原式=6××=﹣.专项三因式分解考点例析:例1 A 例2 3(a﹣b)2跟踪训练:1. B 2. A 3.(x+y)(x﹣y) 4. a(x﹣y)2 5. m(m+1)(m﹣1)6.x=2或x=﹣1+或x=﹣1﹣提示:将x3﹣5x+2=0变形为x3﹣4x﹣x+2=0,则x(x2﹣4)﹣(x﹣2)=0,x(x+2)(x﹣2)﹣(x﹣2)=0,即(x﹣2)(x2+2x﹣1)=0.所以x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±.专项四分式考点例析:例1 D 例2 A例3 原式=•=(m﹣3)﹣2(m+3)=﹣m﹣9.因为m的值为﹣3,0,3时,原分式没有意义,所以m只能取1.当m=1时,原式=﹣1﹣9=﹣10.跟踪训练:1. B 2. D 3. C 4. B5. 解:原式==.当x =-1时,原式==1﹣.6. 解:==.解不等式组得﹣1≤x<1.因为x是不等式组的整数解,所以x的值为﹣1,0.11因为x=﹣1时,原分式无意义,所以x=0.当x=0时,原式==.专项五二次根式考点例析:例1 x>3 例2 A 例3 ﹣跟踪训练:1. B 2. A 3. D 4. B 5.C 6. 答案不唯一,如7. 6 8.2专项六代数式中的数学思想考点例析:例1 ﹣1 例2 D 例3 4×6﹣52=24﹣25=﹣1 n(n+2)﹣(n+1)2=﹣1 跟踪训练:1. C 2. A 3. 7 4. 6 5.12。

中考数学专题02 代数式【考点精讲】(解析版)

中考数学专题02 代数式【考点精讲】(解析版)

考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。

求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。

【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8nm (元) B .8nm(元) C .8mn(元) D .8mn(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可; 【详解】∵m 千克的售价为n 元, ∴1千克商品售价为n m, ∴8千克商品的售价为8nm(元); 故选A .【例2】(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解. 【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.专题02 代数式【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知: 第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可. 【详解】设原件为x 元,∵先打九五折,再打九五折,∴调价后的价格为0.95x ×0.95=0.9025x 元, ∵先提价50%,再打六折,∴调价后的价格为1.5x ×0.6=0.90x 元, ∵先提价30%,再降价30%, ∴调价后的价格为1.3x ×0.7=0.91x 元, ∵先提价25%,再降价25%,∴调价后的价格为1.25x ×0.75=0.9375x 元, ∵0.90x <0.9025x <0.91x <0.9375x 故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解. 【详解】 解:∵x =3<4∴把x =3代入1(4)y x x =-≤, 解得:312y =-=, ∴y 值为2, 故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______. 【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可. 【详解】解:∵单项式4272m a b -+与223m n a b +是同类项, ∴2m =4,n +2=-2m +7, 解得:m =2,n =1, 则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a + B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决. 【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,..., ∴第n 个单项式为21n n a +, 故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= . 【答案】17【分析】直接利用单项式的次数确定方法分析得出答案. 【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式, ∴3+|m |+1=7且m ﹣3≠0, 解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17. 故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的 次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23ab 的同类项是( ) A .32a b B .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项 【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致, ∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致, ∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致, ∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致, ∴3ab 不是23a b 的同类项,不符合题意; 故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( ) A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意; 故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 . 【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0.考点3:整式的运算 1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数). (2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数). (5)a 0=1(a ≠0), a -n =a1(a ≠0). 2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加. 3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2. (2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案. 【详解】解:A 、22()a a -=,原计算错误,不符合题意; B 、2222a a a -=,原计算错误,不符合题意; C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意; 故选:C .【例8】(2021·福建中考真题)下列运算正确的是( )A .22a a -=B .()2211a a -=- C .632a a a ÷=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案. 【详解】解:A :()221a a a a -=-=,故 A 错误; B :()22121a a a -=-+,故 B 错误; C :63633a a a a -÷==,故C 错误; D :()()2232332622·44a a a a ⨯===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案. 【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意; B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意; C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意; 故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8a B .6aC .8a -D .6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可. 【详解】解:原式24246a a a a +=⋅==. 故选B .2.(2021·四川宜宾市·中考真题)下列运算正确的是( ) A .23a a a += B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误; 选项B :()32628aa =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误; 选项D :33522a a a a +⋅==,故选项D 正确; 故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案. 【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意; 故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得. 【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.4=±()2234636m n m n =24833a a a ⋅=33xy x y -=4=±()2234639m n m n =24633a a a ⋅=3xy 3x ()()212(2)x x x +++-1x =1x =22214x x x =+++-25x =+1x =2157=⨯+=2(21)(21)(23)x x x +---1x =-【详解】解:原式= = =,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x =2. 【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案. 【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12 =4x 2﹣9﹣x 2﹣4x ﹣4+4x +12 =3x 2﹣1, 当x =2时, 原式=3×(2)2﹣1 =3×2﹣1 =6﹣1 =5. 考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”) (1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x - B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可 【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+2241(4129)x x x ---+22414129x x x --+-1210x -()12110⨯--C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可. 【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 . 【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案. 【详解】∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。

第2讲 代数式及整式的运算(讲练)(解析版)

第2讲 代数式及整式的运算(讲练)(解析版)

备战2021年中考数学总复习一轮讲练测第一单元数与式第2讲代数式及整式的运算1、了解:因式分解的概念,感受因式分解与整式乘法的互逆运算过程.2、理解:单项式、多项式、整式等概念,及它们之间的区别与联系;理解同类项概念;理解因式分解的意义.3、会:推导幂的运算公式及乘方公式(平方差、完全平方).4、掌握:正整数幂的乘、除运算性质;整式的加、减、乘、除、乘方的混合运算;掌握提公因式法和公式法这两种分解因式的基本方法.5、能:利用乘法公式进行乘法运算;灵活运算运算律与乘法公式化简求值.1.(2020秋•西城区期末)下列计算正确的是( ) A .2()2a b a b --=-+ B .2222c c -= C .325a b ab +=D .22243x y yx x y -=-【解答】解:A 、2()22a b a b --=-+,故此选项错误;B 、2222c c c -=,故此选项错误;C 、32a b +,无法合并,故此选项错误;D 、22243x y yx x y -=-,正确.故选:D .2.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是( ) A .2(2)2x x x x -=- B .22(1)21x x x +=++ C .24(2)(2)x x x -=+-D .22(1)x x x+=+【解答】解:A 、是整式的乘法,不是因式分解,故此选项不符合题意;B 、是整式的乘法,不是因式分解,故此选项不符合题意;C 、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D 、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C .3.(2020•密云区二模)如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .222()2a b a ab b +=++B .222()2a b a ab b +=+-C .222()2a b a ab b -=-+D .222()2a b a ab b -=--【解答】解:计算大正方形的面积:方法一:2()a b +,方法二:四部分的面积和为222a ab b ++, 因此:222()2a b a ab b +=++, 故选:A .4.(2020•朝阳区二模)如果23x x +=,那么代数式(1)(1)(2)x x x x +-++的值是( ) A .2B .3C .5D .6【解答】解:(1)(1)(2)x x x x +-++ 2212x x x =-++ 2221x x =+-22()1x x =+-, 23x x +=,∴原式2315=⨯-=.故选:C .5.(2019秋•东城区校级期中)将一列有理数1-,2,3-,4,5-,6,⋯,如图所示有序排列,根据图中的排列规律可知:“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数( ),2013-应排在A 、B 、C 、D 、E 中的位置( ),其中两个填空依次为( )A .28-,CB .29-,BC .30-,DD .31-,E【解答】解:每个峰需要5个数, 5525∴⨯=,251329++=,∴ “峰6”中C 位置的数的是29-,(20131)5402-÷=余2,2013∴-为“峰403”的第二个数,排在B 的位置.故选:B .6.(2020•西城区校级模拟)因式分解:228168ax axy ay -+-= . 【解答】解:原式228(2)a x xy y =--+28()a x y =--.7.(2020秋•大兴区期末)若22(3)9x m x +-+是完全平方式,则m 的值等于 . 【解答】解:22(3)9x m x +-+是完全平方式,33m ∴-=±,解得:6m =或0. 故答案为:6或0.8.(2020秋•海淀区校级月考)已知2a b +=,1ab =,则22a b += . 【解答】解:2a b +=,1ab =,222()2422a b a b ab ∴+=+-=-=, 故答案为:2.9.(2020春•东城区期末)当n 取正整数时,(1)n x +的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若623456(1)1615156x x x ax x x x +=++++++,则a = ; (2)7(1)x +的展开式中每一项的系数和为 .【解答】解:(1)由题意可得,623456(1)1615156x x x ax x x x +=++++++,则20a =;(2)当1n =时,多项式1(1)x +展开式的各项系数之和为:11122+==, 当2n =时,多项式2(1)x +展开式的各项系数之和为:212142++==, 当3n =时,多项式3(1)x +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4(1)x +展开式的各项系数之和为:414641162++++==,⋯∴多项式7(1)x +展开式的各项系数之和72=.故答案为:20,72.10.(2020秋•朝阳区期末)已知2277x x -=,求代数式2(23)(3)(21)x x x ---+的值. 【解答】解:2(23)(3)(21)x x x ---+ 224129263x x x x x =-+--++ 22712x x =-+,当2277x x -=时,原式71219=+=.1.同底数幂乘法同底数幂相乘,底数 不变 ,指数 相加 ,即m n m n a a a +⋅=(m ,n 都是正整数). 推导过程:一般地,对于任意底数a 与任意正整数m ,n ,2.同底数幂的除法同底数幂相除,底数 不变 ,指数 相减 ,即m n m n a a a -÷=(m ,n 都是正整数,并且m n >). 推导过程:()()()m nm an am n am na a a a a a a a a a aa ++⋅=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅=个个个一般地,对于任意底数a 与任意正整数m ,n ,3.幂的乘方幂的乘方,底数 不变 ,指数 相乘 ,即()nmmn a a =(m ,n 都是正整数). 推导过程:一般地,对于任意底数a 与任意正整数m ,n ,4.积的乘方积的乘方,等于把积的每一个因式 分别乘方 ,再把 所得的幂相乘 ,即()nn n ab a b =(n 为正整数) 推导过程:一般地,对于任意底数a ,b 与任意正整数n ,5.单项式乘以单项式单项式与单项式相乘,把它们的 系数 、 同底数幂 分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 注:单项式与单项式的乘积仍是单项式. 6.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的 每一项 ,再 把所得的积相加 ,即()m a b c am bm cm ++=++.7.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的 每一项 ,再 把所得的积相加 ,即()()a b m n am an bm bn ++=+++. 8.平方差公式两个数的和与这两个数的差的积,等于 这两个数的平方差 ,即:22()()a b a b a b +-=-. 9.完全平方公式()()()m n m an am n am na a a a a a a a a a aa --÷=⋅⋅⋅÷⋅⋅⋅=⋅⋅⋅=个个个()mn a n mm nm m m m m mmna a a a a a +++=⋅⋅⋅==个个()()()()n abnn an bn nab ab ab ab a a a b b ba b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=个个个两个数的和的平方,等于它们的 平方和 ,加上它们的 积的2倍 , 即:222()2a b a ab b +=++.两个数的差的平方,等于它们的 平方和 ,减去它们的 积的2倍 , 即:222()2a b a ab b -=-+. 10.因式分解的定义把一个多项式化成 几个整式的积的形式 ,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式. 11.因式分解(1)公因式:多项式各项都含有的 公共因式 ,叫做这个多项式的公因式.(2)提公因式法:一般地,如果多因式的各项有公因式,可以把这个公因式提取出来,将多项式写成 公因式与另一个因式的乘积的形式 ,这种分解因式的方法叫做提公因式法. (3)平方差公式:()()22a b a b a b -=+- (4)完全平方公式:()2222a ab b a b ±+=±考点一 幂的运算例1.(2020秋•海淀区校级期中)已知m x a =,n x b =,则32m n x +可以表示为( ) A .32a b + B .32a b - C .32a b + D .32a b【解答】解:32m n x + 32m n x x =32()()m n x x =, m x a =,n x b =,∴原式32a b =.故选:D . 【变式训练】1.(2020秋•西城区期末)下列运算中正确的是( ) A .23a a a +=B .5210a a a ⋅=C .238()a a =D .2224()ab a b =【解答】解:A .2a 与a 不是同类项,不能合并,因此A 不符合题意;B .52527a a a a +⋅==,因此B 不符合题意;C .23236()a a a ⨯==,因此C 不符合题意;D .2224()ab a b =,因此D 符合题意;故选:D .2.(2020秋•海淀区校级月考)计算10099(2)(2)-+-的结果为( ) A .992-B .992C .2-D .2【解答】解:原式99(2)(21)=-⨯-+99(2)(1)=-⨯-992=.故选:B . 考点二 整式乘法例2.(2020•密云区一模)下列各式计算正确的是( ) A .326a a a =B .5510a a a +=C .339(2)8a a -=-D .22(1)1a a -=-【解答】解:A 、原式5a =,不符合题意;B 、原式52a =,不符合题意;C 、原式98a =-,符合题意;D 、原式221a a =-+,不符合题意,故选:C .【变式训练】1.(2020秋•海淀区校级期中)如果2(4)(8)x x x mx n -+=++,那么m n +的值为( ) A .36B .28-C .28D .36-【解答】解:2(4)(8)432x x x x -+=+-,2(4)(8)x x x mx n -+=++, 4m ∴=,32n =-, m n ∴+的值为28-,故选:B .2.(2020秋•海淀区校级期中)计算()(3)x k x -+的结果中不含x 的一次项,则k 的值是( ) A .0B .3C .3-D .2-【解答】解:()(3)x k x -+ 233x kx x k =-+-2(3)3x k x k =+--.()(3)x k x -+的结果中不含x 的一次项, 30k ∴-=. 3k ∴=.故选:B .考点三 平方差公式例3.(2020秋•东城区校级期中)下列各式可以利用平方差公式计算的是( ) A .(2)(2)x x +--B .(5)(5)a y y a +-C .()()x y x y -+-D .(3)(3)x y y x +-【解答】解:222(2)(2)(2)(44)44x x x x x x x +--=-+=-++=---;2222(5)(5)25552455a y y a ay a y ay ay a y +-=-+-=-+; 22222()()()(2)2x y x y x y x xy y x xy y -+-=--=--+=-+-; 22(3)(3)(3)(3)9x y y x y x y x y x +-=+-=-. 故选:D . 【专项训练】1.化简(23)(32)x x ---的结果是( )A .249x -B .294x -C .249x --D .2469x x -+【解答】解:2(23)(32)49x x x ---=-, 故选:A .2.(2020春•朝阳区期末)已知x =+y =,则xy = .【解答】解:因为x y =,所以xy =22=-53=-2=,故答案为:2.考点四 完全平方公式例4.(2020秋•海淀区校级期中)若17a b +=,60ab =,则2()a b -= . 【解答】解:17a b +=,60ab =,222()()41746049a b a b ab ∴-=+-=-⨯=. 故答案为49.【专项训练】1.(2020秋•丰台区期末)如果关于x 的多项式24x bx ++是一个完全平方式,那么b = . 【解答】解:22242x bx x bx ++=++,2124b ∴=±⨯⨯=±,故答案为:4±.2.(2020秋•海淀区校级期中)如果a ,b ,c 满足2222222690a b c ab bc c ++---+=,则abc 等于( ) A .9B .27C .54D .81【解答】解:222222269a b c ab bc c ++---+,22222(2)(2)(69)a ab b b bc c c c =-++-++-+, 222()()(3)0a b b c c =-+-+-=, 2()0a b ∴-=,2()0b c -=,2(3)0c -=, a b ∴=,b c =,3c =,即3a b c ===. 27abc ∴=.故选:B .考点五 代数式化简求值——直接代入例5.当13a =时,代数式(4)(3)(1)(3)a a a a -----的值为( )A .343B .10-C .10D .8【解答】解:(4)(3)(1)(3)a a a a -----, 2271243a a a a =-+-+-, 39a =-+,当13a =时,原式13983=-⨯+=.故选:D . 【专项训练】1.(2020春•房山区期末)已知12m =,求代数式2(1)(1)(1)m m m +-+-的值. 【解答】解:2(1)(1)(1)m m m +-+-2221(1)m m m =++-- 22211m m m =++-+ 22m =+,当12m =时,原式123=+=. 2.(2019春•房山区期中)已知2|2|(1)0a b -++=,化简求值:4()(2)(2)a a b a b a b +-+-. 【解答】解:4()(2)(2)a a b a b a b +-+- 222444a ab a b =+-+ 24ab b =+,2|2|(1)0a b -++=, |2|0a ∴-=,2(1)0b +=,解得,2a =,1b =-,当2a =,1b =-时,原式242(1)(1)817=⨯⨯-+-=-+=-.考点六 代数式化简求值——整体代入例6.(2020•北京二模)若245a a +=,则代数式2(2)(1)(1)a a a a +-+-的值为( ) A .1B .2C .4D .6【解答】解:原式222241(4)1a a a a a =+-+=++, 245a a +=,∴原式516=+=.故选:D . 【专项训练】1.(2020•海淀区二模)如果220a a --=,那么代数式2(1)(2)(2)a a a -++-的值为( ) A .1B .2C .3D .4【解答】解:原式22222142232()3a a a a a a a =-++-=--=--, 220a a --=, 22a a ∴-=,∴原式2231=⨯-=.故选:A .2.(2020春•通州区期末)若225m n -=,则22()()m n m n +-的值是( ) A .25B .5C .10D .15【解答】解:225m n -=,22222()()()25m n m n m n ∴+-=-=, 故选:A .3.(2020春•海淀区校级期末)已知3x y -=,1xy =,则22(x y += ) A .5B .7C .9D .11【解答】解:3x y -=,1xy =,222()2x y x y xy ∴-=+-, 2292x y ∴=+-, 2211x y ∴+=, 故选:D .考点七 因式分解例7.(2020•朝阳区一模)分解因式:2288x x ++= . 【解答】解:原式222(44)2(2)x x x =++=+.故答案为:22(2)x +. 【专项训练】1.(2020秋•东城区期末)下列各式由左到右是分解因式的是( ) A .269(3)(3)6x x x x x +-=+-+ B .2(2)(2)4x x x +-=- C .2222()x xy y x y --=-D .22816(4)x x x -+=-【解答】解:A .等式由左到右的变形不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;C .等式两边不相等,即等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形属于分解因式,故本选项符合题意;故选:D .2.(2020秋•西城区校级期中)分解因式:233ma mb -= . 【解答】解:原式23()m a b =-.3.(2020•密云区二模)分解因式:2312ax a -= . 【解答】解:原式23(4)a x =- 3(2)(2)a x x =+-.故答案为:3(2)(2)a x x +-.考点八 规律探索例8.(2020•北京模拟)如图为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A B C D C B A B C →→→→→→→→→⋯的方式)从A 开始数连续的正整数1,2,3,4⋯,当字母C 第201次出现时,恰好数到的数是 603 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).【解答】解:由题意可得,一个循环为A B C D C B →→→→→,即六个数一个循环, 由题意可得,一个循环中C 出现两次,20121001∴÷=⋯,∴当字母C 第201次出现时,恰好数到的数是61003603⨯+=,(21)21n n +÷=⋯,∴当字母C 第21n +次出现时(为正整数),恰好数到的数是63n +.故答案为:603,63n +. 【专项训练】1.(2020秋•海淀区校级期中)按一定规律排列的一列数为12-,2,92-,8,252-,18⋯,则第8个数为 ,第n 个数为 .【解答】解:把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(1)n -表示,故第n 个数为:2(1)2nn -⨯,第8个数为:288(1)322-⨯=.故答案为:32,2(1)2nn -⨯.2.(2020•密云区一模)如图1,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1.取ABC ∆和DEF ∆各边中点,连接成正六角星形111111A F B D C E ,如图2中阴影部分:取△111A B C 和△111D E F 各边中点,连接成正六角星形222222A F B D C E ,如图3中阴影部分⋯如此下去,则正六角星形n n n n n n A F B D C E 的面积为 .【解答】解:1A 、1F 、1B 、1D 、1C 、1E 分别是ABC ∆和DEF ∆各边中点,∴正六角星形AFBDCE ∽正六角星形111111A F B D C E ,且相似比为2:1,正六角星形AFBDCE 的面积为1,∴正六角星形111111A F B D C E 的面积为14,同理可得,第三个六角形的面积为:311464=, 第n 个六角形的面积为:14n, 正六角星形n n n n n n A F B D C E 的面积为:14n, 故答案为为:14n. 3.(2020•东城区一模)从1-,0,2,3四个数中任取两个不同的数(记作k a ,)k b 构成一个数对{k k M a =,)k b (其中1k =,2,⋯,s ,且将{k a ,}k b 与{k b ,}k a 视为同一个数对),若满足:对于任意的{i i M a =,}i b 和{j j M a =,)(j b i j ≠,1i s ,1)j s 都有i i j j a b a b +≠+,则s 的最大值是 .【解答】解:101-+=-,121-+=,132-+=,022+=,033+=,235+=, i i a b ∴+共有5个不同的值.又对于任意的{i i M a =,}i b 和{j j M a =,)(j b i j ≠,1i s ,1)j s 都有i i j j a b a b +≠+, s ∴的最大值是5.故答案为:5.。

中考数学 第2讲 代数式及整式的运算(解析版)

中考数学 第2讲 代数式及整式的运算(解析版)

第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数) 幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1 B .0 C .1 D .2【答案】C .【分析】将m =﹣1代入代数式即可求值;【解答】解:将m =﹣1代入2m +3=2×(﹣1)+3=1; 故选:C .【一领三通1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1 D .(﹣1)n x 2n +1【答案】C .【分析】观察指数规律与符号规律,进行解答便可. 【解答】解:∵x 3=(﹣1)1﹣1x 2×1+1, ﹣x 5=(﹣1)2﹣1x 2×2+1, x 7=(﹣1)3﹣1x 2×3+1, ﹣x 9=(﹣1)4﹣1x 2×4+1, x 11=(﹣1)5﹣1x 2×5+1, ……由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n +1, 故选:C .【一领三通1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【答案】C .【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【一领三通1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y【答案】A.【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,由题意可得点A餐10﹣x;【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:B.【一领三通2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【答案】C.【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【一领三通2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【答案】A.【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【一领三通2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【一领三通2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是______.【答案】(﹣1,8).【分析】根据新运算公式列出关于c、d的方程组,解方程组即可得c、d的值;进一步得到点B的坐标.【解答】解:根据题意,得,解得:.则点B的坐标为(﹣1,8).故答案为:(﹣1,8).【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【答案】2.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【一领三通3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【答案】C.【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【一领三通3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【答案】B.【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【一领三通3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【分析】首先去括号,合并同类项,将两代数式化简,然后代入数值求解即可.【解答】解:∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;【一领三通3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x2+ax﹣y+6与整式2bx2﹣3x+5y﹣1的差不含x和x2项,试求4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)的值.【分析】根据两整式的差不含x和x2项,可得差式中x与x2的系数为0,列式求出a、b的值,然后将代数式化简再代值计算.【解答】解:2x2+ax﹣y+6﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵两个整式的差不含x和x2项,∴2﹣2b=0,a+3=0,解得a=﹣3,b=1,4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)=4a2+8b3﹣4a2b+3a2﹣8b3﹣4a2b=7a2﹣8a2b,当a=﹣3,b=1时,原式=7a2﹣8a2b=7×(﹣3)2﹣8×(﹣3)2×1=7×9﹣8×9×1=63﹣72=﹣9.【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。

山西省中考复习数学满分大专题冲刺专题二代数建模课件

山西省中考复习数学满分大专题冲刺专题二代数建模课件

掷出时起点离地面的高度为
5 3
m,当水平距离为
3
m
时,实心球行进至
最高点 3 m 处.
(1)求 y 关于 x 的函数表达式.
可设表达式为y = a(x - 3)2 + 3
解:(1)根据题意设 y 关于 x 的函数
表达式为 y = a(x - 3)2 + 3(a ≠ 0).

0,
5 3
代入表达式得
根据题意得
500 x ห้องสมุดไป่ตู้20
400 x
.
解得 x = 80.
经检验,x = 80是原方程的解,且符合实际. x + 20 = 100(元). 答:A,B两种型号的漆器每件的进价分别是100元和80元.
(2)该店决定购进A,B两种型号的漆器共60件,其中A型漆器a件.根 据销售经验,购进B型漆器的数量不少于A型漆器的2倍.已知A型漆器每 件的售价为125元,B型漆器每件的售价为100元.设60件漆器全部售完获 利w元,当该店购进A,B两种型号漆器各多少件时,才能使w最大?
∴线段 BC 的函数表达式为 y2 = 200x - 600.
(3)直接写出点D的坐标,并解释点D的坐标表示的实际意义.
(3)D(12,1 800). 点D的坐标表示的实际意义是甲出发 12分钟后,乙在距出发点1 800米的地 方追上甲.
5. 山东新泰香椿畅销全国各地.当地某电商对一款成本为每件30元的
满分笔记
破解方法:①梳理等量关系或不等关系;②正确设未知量;③根据题意由
已知量推出所有可知量;④正确列出方程. (注意:分式方程的解需要进行检
验)
2.(2022 兰州)掷实心球是兰州市高中阶段学校招生体育考试的选考

中考冲刺:代数综合问题--知识讲解(提高)

中考冲刺:代数综合问题--知识讲解(提高)

中考冲刺:代数综合问题—知识讲解(提高)【中考展望】初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数的解析式的确定及函数性质等重要基础知识,是解好代数综合题的关键.在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口.通过解综合题有利于透彻和熟练地掌握基础知识和基本技能,更深刻地领悟数学思想方法,提高分析问题和解决问题的能力.【方法点拨】(1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心.* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法);后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识);由未知,想须知(应具备的条件),注意知识的结合;* 观察——挖掘题目结构特征;联想——联系相关知识网络;突破——抓往关键实现突破;寻求——学会寻求解题思路.(5)准确计算,严密推理是解综合题的保证.【典型例题】类型一、函数综合1.已知函数2yx=和y=kx+1(k≠0).(1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点?【思路点拨】本题是一次函数,反比例函数的综合题.本题考查了函数解析式的求法和利用判别式判断函数图象交点个数.【答案与解析】解:(1)∵两函数的图象都经过点(1,a),∴2,11.aa k⎧=⎪⎨⎪=+⎩解得2,1.ak=⎧⎨=⎩(2)将2yx=代入y=kx+1,消去y,得220kx x+-=.∵k≠0,∴要使得两函数的图象总有公共点,只要△≥0即可.∵△=1+8k . ∴1+8k ≥0,解得k ≥18-. ∴k ≥18-且k ≠0时这两个函数的图象总有公共点. 【总结升华】两图象交点的个数常常通过建立方程组,进而转化为一元二次方程,利用根的判别式来判断.若△>0,两图象有两个公共点;若△=0,两图象有一个公共点;若△<0,两图象没有公共点. 举一反三:【变式】如图,一元二次方程0322=-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.【答案】解:(1)解方程0322=-+x x ,得1x =-3,2x =1.∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0). 将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得⎪⎩⎪⎨⎧=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ⎪⎪⎩⎪⎪⎨⎧-===.23,1,21c b a ∴抛物线解析式为23212-+=x x y . (2)由2)1(21232122-+=-+=x x x y ,得抛物线顶点P 的坐标为(-1,-2),对称轴为直线x=-1.设直线AC 的函数关系式为y=kx+b,将A (3,6),C (-3,0)代入,得⎩⎨⎧=+-=+.03,63b k b k 解这个方程组,得 ⎩⎨⎧==.1,3k b ∴直线AC 的函数关系式为y=x+3.由于Q 点是抛物线的对称轴与直线AC 的交点,故解方程组⎩⎨⎧+=-=.3,1x y x 得⎩⎨⎧=-=.2,1y x ∴点Q 坐标为(-1,2).(3)作A 点关于x 轴的对称点)6,3(/-A ,连接Q A /,Q A /与x 轴交点M 即为所求的点.设直线Q A /的函数关系式为y=kx+b.∴⎩⎨⎧=+--=+.2,63b k b k 解这个方程组,得⎩⎨⎧-==.2,0k b ∴直线Q A /的函数关系式为y=-2x.令x=0,则y=0.∴点M 的坐标为(0,0).类型二、函数与方程综合2.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图象经过A ,B 两点;(2)若A 点坐标为(-1,0),试求B 点坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x 值的增大而减小? 【思路点拨】本题是二次函数与一元二次方程的综合题.本题考查了利用一元二次方程根的判别式判断二次函数图象,与x 轴的交点个数及二次函数的性质. 【答案与解析】解:(1)对于关于x 的二次函数2212m y x mx +=-+,由于△=(-m)2-4×1×221202m m ⎛⎫+=--< ⎪⎝⎭,所以此函数的图象与x 轴没有交点.对于关于x 的二次函数2222m y x mx +=--,xyO由于△=2222()413402m m m ⎛⎫+--⨯⨯-=+> ⎪⎝⎭, 所以此函数的图象与x 轴有两个不同的交点.故图象经过A ,B 两点的二次函数为22202m y x mx +=--=. (2)将A(-1,0)代入2222m y x mx +=--,得22102m m ++-=. 整理,得220m m -=. 解之,得m =0,或m =2.①当m =0时,21y x =-.令y =0,得210x -=.解这个方程,得11x =-,21x =. 此时,B 点的坐标是B(1,0).②当m =2时,223y x x =--.令y =0,得2230x x --=.解这个方程,得x 3=-1,x 4=3. 此时,B 点的坐标是B(3,0).(3)当m =0时,二次函数为21y x =-,此函数的图象开口向上,对称轴为x =0,所以当x <0时,函数值y 随x 的增大而减小.当m =2时,二次函数为2223(1)4y x x x =--=--,此函数的图象开口向上,对称轴为x =1,所以当x <1时,函数值y 随x 的增大而减小. 【总结升华】从题目的结构来看,二次函数与一元二次方程有着密切的联系,函数思想是变量思想,变量也可用常量来求解.举一反三:【变式】已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B 两个整数点(点A 在点B 左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12-之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.【答案】(1)证明:∵ △= (3m +1)2-4×m ×3 =(3m -1)2.∵ (3m -1)2≥0,∴ △≥0,∴ 原方程有两个实数根.(2)解:令y =0,那么mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. ∵抛物线与x 轴交于两个不同的整数点,且m 为正整数,∴m =1.∴抛物线的表达式为243y x x =++. (3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1. 又∵点A 在点B 左侧, ∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0). 设直线CD 的表达式为y =kx +b . ∴03k b b ⎧+=⎪⎨=⎪⎩,解得33.k b =-⎧⎨=⎩,∴直线CD 的表达式为y =-3x +3.又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54),∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54).当直线y =-3x +3过点A'(-3+n ,0)时, ∴-3(-3+n )+3=0, ∴n =4.当直线y =-3x +3过点E'(12n -+,54)时,∴153324n ⎛⎫--++= ⎪⎝⎭, ∴n =1312. ∴n 的取值范围是1312≤n ≤4.类型三、以代数为主的综合题3.如图所示,在直角坐标系中,点A 的坐标为(-2,0),将线段OA 绕原点O 顺时针旋转120°得到线段OB .(1)求点B 的坐标;(2)求经过A ,O ,B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.【思路点拨】(1)由∠AOB =120°可得OB 与x 轴正半轴的夹角为60°,利用OB =2及三角函数可求得点B 的坐标; (2)利用待定系数法可求出解析式;(3)OB 为定值,即求BC+CO 最小.利用二次函数的对称性可知点C 为直线AB 与对称轴的交点; (4)利用转化的方法列出PAB S △关于点P 的横坐标x 的函数关系式求解. 【答案与解析】 解:(1)B(1,3).(2)设抛物线的解析式为(2)y ax x =+,代入点B(1,3),得33a =.所以232333y x x =+.(3)如图所示,抛物线的对称轴是直线x =-1,因为A ,O 关于抛物线的对称轴对称,所以当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 的解析式为(0)y kx b k =+≠,则3,20.k b k b ⎧+=⎪⎨-+=⎪⎩ 解得333k b ⎧=⎪⎪⎨⎪=⎪⎩因此直线AB 的解析式为32333y x =+. 当1x =-时,33y =. 因此点C 的坐标为31,3⎛⎫- ⎪ ⎪⎝⎭. (4)如图所示,过P 作y 轴的平行线交AB 于D ,设其交x 轴于E ,交过点B 与x 轴平行的直线于F .设点P 的横坐标为x . 则PAB PAD PBD S S S =+△△△1122PD AE PD BF =⨯+⨯ 1()2PD AE BF =⨯⨯+ 1()()2D P B A y y x x =-- 2132332332x x ⎡⎤⎫=-+⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦22333193322228x x x ⎫=-=-++⎪⎝⎭. 当12x =-时,△PAB 的面积的最大值为938,此时13,2⎛- ⎝⎭. 【总结升华】本题为二次函数的综合题,综合程度较高,要掌握利用点的坐标表示坐标轴上线段的方法.因为线段的长度为正数,所以在用点的坐标表示线段长度时,我们用“右边点的横坐标减左边点的横坐标,上边点的纵坐标减下边点的纵坐标”,从而不用加绝对值号,本题中线段PD 的长为D P y y -就是利用了这一规律.4.在平面直角坐标系xOy 中,抛物线()210y axbx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)已知点坐标代入函数解析式即可求得解析式; (2)利用轴对称知识求三角形周长最小值;(3)注意分类讨论满足条件的直角三角形,不要漏解. 【答案与解析】解:(1)∵抛物线()210y axbx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数关系式为211122y x x =-++.(2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =.设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥, ∴90AOM CAM ∠=∠=︒. ∵()0,1C ,()1,0A -, ∴1OA OC ==. ∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒. ∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标,则1110,1.k b b -+=⎧⎨=-⎩解得111,1.k b =-⎧⎨=-⎩所以,直线AM 的函数表达式为1y x =--.令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形, ∴1OC ON ==. ∴点N 的坐标为()1,0. ∵2CP AC ⊥,1AP AC ⊥, ∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫⎪⎝⎭. 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形. 【总结升华】求最值问题,在几何和函数类题目中经常考查,通常利用轴对称知识来解答此类题型;点的存在性也是常考点,注意解的多样性,从而分类讨论,不要出现漏解情况.举一反三:【变式】如图所示,抛物线23y ax bx =++与y 轴交于点C ,与x 轴交于A ,B 两点,1tan 3OCA ∠=,6ABC S =△.(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A ,C ,E ,F 构成平行四边形,直接写出点E 的坐标. 【答案】解:(1)∵23y ax bx =++,∴C(0,3).又∵1tan 3OCA ∠=,∴A(1,0). 又∵6ABC S =△, ∴1362AB ⨯⨯=, ∴AB =4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级春第二讲代数综合提高专题一次函数:考察一次函数的知识,会用函数观点看一元一次不等式组,会用一次函数的知识解决有关问题(如行程问题),此类题关键在于运用数形结合的思想,弄清函数图象中变量的含义及其实际意义,将抽象的图表信息转化为数学模型(如路程、速度、时间),通过观察函数图象的特征进而分析与确定函数的自变量与函数值之间的变化规律与特征。

【例1】1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为______km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?2.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)甲每小时完成的件;(2)乙提高工作效率后,再工作个小时与甲完成的工作量相等?3.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示____槽中水的深度与注水时间的关系,线段DE表示____槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是____;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;OyABCDxO y AB C x(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)反比例函数:【函数的基本性质】 【例2】1.(1)如图1,点()C x,y 为反比例函数ky x=上任一点,则有:①xy k =; ②12AOC BOC S S k ∆∆==,ACBO S k =矩形; (2)如图2,矩形OABC 交反比例函数ky x=于两点E 、F ,则有:①EF F E y y x x =;②FB CFEB AE =;③EF ∥AC . (3)如图3,直线CD 交反比例函数ky x=于A 、B 两点,则有:AC =BD .图1 图3yFECB AOOyABCDE F x2.(1)如图4,点A 、B 为反比例函数ky x=上两点,过A 、B 向x 轴,y 轴作垂线,垂足分别为C 、D 、E 、F ,则有:AOB ACDB AFEB S S S ∆==梯形梯形.(2)如图5,矩形OABC 交xky =于E 、F 两点,EM ⊥OA ,FN ⊥OC ,EM 、FN 交于点D ,则有:①S 矩形OMDN •S 矩形DFBE =S 矩形MAFD •S 矩形NDEC ;②EM •FN =OMDNS k 矩形2(或S 矩形OABC •S 矩形OMDN =k 2)(3)如图6,矩形矩形ABCD 的对角线BD 经过原点, AB ∥x 轴,点C 在反比例函数xky =上,则有:①S 矩形ANOE =S 矩形OFCM (或OE •ON=OM •OF=A A x y =k ).图43.在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数k y x=(k >0)的图象与AC 边交于点E .(1)求证:△AOE 与△BOF 的面积相等.(2)记S =S △OEF -S △ECF ,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,请直接写出点F 的坐标,若不存在,请说明理由.N MD xyOABC 图6FE NM D F E 图5C B AOyx【函数图象中的面积问题】 【例3】1.如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点 (F 不与A 、B 重合),过点F 的反比例函数(0)ky k x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?2.如图,□ABCD 的顶点A 的坐标为(1,1),点B 、D在反比例函数(0)ky x x=>的图象上,若点B 、C 的横坐标分别为3和4,□ABCD 的面积为3,则k 的值为 .3.如图,直线4y x =-与坐标轴交于A 、B ,与双曲线交于 C 、D ,点E 在直线AB 上,且BE =2BD ,EF ⊥y 轴于F , 若4BEF OBD S S ∆∆+=,则k 的值为 .【函数图象中线段的比与积的问题】 【例4】1.如图,直线122y x =-+与x 轴、y 轴交于A 、B 两点,AC ⊥AB ,交双曲线(0)ky x x=<于C 点,且BC 交x 轴于M 点,BM =2CM , 则k 的值为 .2.已知反比例函数8m y x-=(m 为常数)的图象经过点A (-1,6), 如图,过点A 作直线AC 与函数8m y x-=的图象交于B ,与x 轴交于C , 且AB =2BC ,则点C 的坐标为 .【函数图象中的平移问题】 【例5】1.如图,直线43y x =与双曲线ky x =(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线ky x=(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = .OyABCxyx431CBDA Oy xCAB O2.如图,直线3y x =向左平移m 个单位,与双曲线6y x=-交于点A , 则22212OB OA AB -+= .【二次函数的应用(建模)】 【例6】1.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱了OA ,在A 处安装一个自动喷水装置,喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与O 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图示.(1)建立适当的坐标系,使A 点的坐标为(0,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块△OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?反馈练习1.某货轮在长江上同岸的A 、B 、C 三个码头间运送货物,从停船码头 C 出发,先顺水到达仓库码头A 地且装货1.5小时,然后逆水到达目的 地B 码头,且卸货1小时返回,行程情况如图.若返回时顺水、逆水 速度不变,那么货轮从B 码头卸完货后返回C 码头用的时间是 .2.甲、乙两车分别从A 地将一批物资运往B 地,在返回A 地.如图表示 两车离A 地距离S (千米)随时间t (小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回,请根据图象中的数据回答:甲车与乙车在 距离A 地远处迎面相遇.3.如图反比例函数ky x= (x >0)的图象经过矩形OABC 对角线的 交点M ,的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为 .yxBA O路程/千米6080 5.5O4.如图,点A 在双曲线xky =的第一象限的那一支上,AB ⊥x 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上, 且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为 .5.如图,直线33y x b =-+与y 轴交于点A ,与双曲线k y x =在第一象限交于B 、C 两点,且AB +AC =4,D 为BC 中点,且 OE ∶ED =2∶1,则k =_________.6.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x xky 的图象上,则k 的值等于 .7.如图,一次函数y =kx +2的图象与反比例函数my x=的图象交于P 、G 两点,过点P 作P A ⊥x 轴,一次函数图象分别交x 轴、y 轴于C 、D 两点, 12CD CP =,且S △ADD =6. (1)求点D 的坐标;(2)求一次函数和反比例函数的解析式;(3)根据图像写出当x >0时,一次函数的值大于反比例函数的值的x 的 取值范围.8.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系. (1)求抛物线h 的解析式;(2)已知从某时刻开始40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系()81912812+--=t h (0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行.请通过计算说明:在这一时段内,需多少时禁止船只通行?O 第15题图xyAB C E D yx第15题图DC BAO xyFAECBOD 米米y/x/hEDOABC。

相关文档
最新文档