初中数学《平移》一等奖公开课PPT1
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A -2
-3
-4
1 2 3 4 5 6x
A1
-5
-6
y
3.将点A(-2,-3)向上平移4个单位长
6 5
度,得到点A3( -2 , 1 );
4 3
4.将点A(-2,-3)向下平移2个单位长
A3
2 1
度,得到点A4( -2 , -5 ).
-6
-5
-4
-3
-2
-1O -1
A -2
-3
1 2 3 4 5 6x
你发现了什么规律?
-4
A4 -5
-6
在平面直角坐标系中,将点进行平移,点的位置发生了变化,
坐标也会发生变化,具体情况如下(其中 a>0,b>0):
P3(x,y+b)
向上平移 b个单位
向左平移
向右平移
P2(x-a,y) a个单位
点P(x,y) a个单位
P1(x+a,y)
向下平移 b个单位
P4(x,y-b)
一般上地,,将一个点图形A依的次沿两坐个坐标标轴为方向(平2移,所得0到)的,图形将,可以正通过方将原形来的O图形A作一B次C平移沿得到着. OB方向平移OB个单位,则点
建立如图所示的平面直角坐标系,平移这个图形,图形上的点的坐标发生了什么变化呢?
C的对应点坐标为_______(_1_,__3_)___. 人教版 · 数学· 七年级(下)
平移方向和平移距离
对应点的坐标
向右平移a个单位长度,向上平移b个单位长度 (x+a , y+b)
向右平移a个单位长度,向下平移b个单位长度 (x+a , y-b)
向左平移a个单位长度,向上平移b个单位长度 (x-a , y+b)
向左平移a个单位长度,向下平移b个单位长度 (x-a , y-b)
巩固新知
规律总结 左右平移,横坐标左减右加,纵坐标不变. 上下平移,横坐标不变,纵坐标上加下减.
巩固新知
1-2=-1
-2+3=1
在平面直角坐标系中,将点 A(1,-2)向上平移 3 个单位
长度,再向左平移 2 个单位长度,得到点 B,则点 B 的
坐标是( A )
A. (-1,1)
B. (3,1)
C. (4,-4) D. (4,0)
标为( D ) A. (2,2) B. (4,3)
平移长度OD=3
y AC
C. (3,2) D. (4,2)
O DB E x
3.若将点 A(m+2,3) 先向下平移 1 个单位,再向左平移 2 个单位,得到点 B(2,n-1),则( A )
A. m=2,n=3 B. m=2,n=5 C. m=-6,n=3 D. m=-6,n=5
如图,你能画出把鱼往左平移 6 格后所得的图形吗?
13.在平面直角坐标系中,△ABC的三个顶点的位置如图,现将△ABC平移,使点A变换为点A′,点A′的坐标是(-2,2),点B′,C′分别是B,C的对应点.
10.点N(-1,3)可以看作由点M(-1,-1)向____平移____个单位得到的.
4.(2020·台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为(
3 个单位长度,则顶点 P 平移后的坐标是( A )
A.( -2,-4)
B.( -2,4) C.(2,-3)
-1-3=-4
D.(-1,-3)
-4+2=-2
+3
OB=4
2.如图,点 A、B 的坐标分别为 (1,2)、(4,0),将 △AOB
沿 x 轴向右平移,得到 △CDE,已知 DB=1,则点 C 的坐
A.(-1,-1) B.(1,0) C.(-1,0) D.(3,0)
4.(2020·台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位 得到△DEF,则顶点C(0,-1)对应点的坐标为( D )
A.(0,0) B.(1,2) C.(1,3) D.(3,1)
5.(百色中考)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴
根据右图回答问题: C.(2,3) D.(-2,-1)
将点A(-2,-3)向左平移2个单位长度,得到点A2(___ , ___); 一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图形对应点的坐标之间的关系:
y
6 5
如图,你能画出把鱼往左平移 6 格后所得的图形吗?
1.将点A(-2,-3)向右平移5个单 如图,你能画出把鱼往左平移 6 格后所得的图形吗?
B.
1
建立如图所示的平面直角坐标系,平移这个图形,图形上的点的坐标发生了什么变化呢?
2 1
向左平移a个单位长度,向上平移b个单位长度
4.(2020·台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为(
)
-6 -5 -4 -3 -2 -1O 一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图形对应点的坐标之间的关系:
可求出点 E,F,G,H 的坐 标分别是(5,-3),(5,-4), (6,-4),(7,-3).
如果直接平移正方形 ABCD, 使点 A 移到点 E,它和我们 前面得到的正方形位置相同.
y
6 5 A D4 B C3 2 1
-6 -5 -4 -3 -2 -1O -1 -2
-3 -4 -5
1 2 3 4 5 6x
解:(1)画图略,B′(-4,1),C′(-1,-1)
(4,-4)
D.
(x-a , y-b)
在平面直角坐标系中,将点进行平移,点的位置发生了变化,坐标也会发生变化,具体情况如下(其中 a>0,b>0):
(-1,1)
B.
8.点M向左平移4个单位长度后的坐标是(-1,2),则点M原来的坐标是(
)
6.已知点A(1,0)和点B(1,3),将线段AB平移至A′B′,点A′与点A对应, 若点A′的坐标为(1,-3).
人教版 · 数学· 七年级(下)
第7章 平面直角坐标系 7.2.2 用坐标表示平移
第1课时
学习目标
1.掌握平面直角坐标系中的点或图形平移引起的点 的坐标的变化规律。
2.体会平面直角坐标系是数与形之间的桥梁,感受 代数与几何的相互转化,初步建立把一个图形整体沿某一方向移动一定 的距离,图形的这种移动,叫做平移.
-3
-4
-5
-6
1. 作出线段两个端点平移后 的对应点. 2. 连接两个对应点,所得线 段即为所求.
各点坐标有什么变化?
y
6
B′
5
4
B
3 2
A′
1A
-6
-5
-4
-3
-2
-1O -1
1 2 3 4 5 6x
-2
-3
-4
-5
-6
纵坐标都增加2.
探究 如图,正方形 ABCD 四个顶点的坐标分别是 A(- 2, 4),B(-2,3),C(-1,3),D(-1,4),将正方形 ABCD 向下 平移 7 个单位长度,再向右平移 7 个单位长度,两次平移 后四个顶点相应变为点 E,F,G,H,它们的坐标分别是 什么?如果直接平移正方形 ABCD,使点 A 移到点 E,它 和我们前面得到的正方形位置相同吗?
如图,将平行四边形 ABCD 向左平移 2 个单位长度,然后再向 上平移 3 个单位长度,可以得到平行四边形 A′B′C′D′,画出平 移后的图形,并指出其各个顶点的坐标.
D′
A′(-3,1) B′(1,1)
C′
C′(2,4) D′(-2,4)
A′
B′
课堂练习
1. 如图,将三角形 PQR 向右平移2个单位长度,再向下平移
m+2-2=2 m=2
3-1=n-1 n=3
归纳新知 纵坐标不变
系图 中形 的在 平坐 移标
沿x轴平移 沿y轴平移
横坐标不变
向右平移 向左平移 向上平移 向下平移
横坐标加上 一个正数a
横坐标减去 一个正数a
纵坐标加上 一个正数a
纵坐标减去 一个正数a
课后练习
1.(2020·泸州)在平面直角坐标系中,将点A(-2,3)向右平移4个单位长 度,得到的对应点A′的坐标为( C )
2.将点A(-2,-3)向左平移2个单 -1 如图,你能画出把鱼往左平移 6 格后所得的图形吗?
如图,线段 AB 的两个端点坐标分别为:A(1,1),B(4,4),将线段 AB 向上平移 2 个单位,作出平移后的线段 A′B′. (1)AB是怎样平移的?
位长度,得到点A2(_-_4_ , _-_3_); A2
(-1,1)
B.
将点A(-2,-3)向左平移2个单位长度,得到点A2(___ , ___);
相应的变化. C.(2,3) D.(-2,-1)
解:(1)画图略,B′(-4,1),C′(-1,-1) C.(-1,6) D.(-1,-2)
一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图 形对应点的坐标之间的关系:
(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是__ 4.(2020·台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为(
)
一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图形对应点的坐标之间的关系:
向左平移a个单位长度,向上平移b个单位长度
EH FG
一般地,将一个图形依次沿两个坐标轴方向平移所得到的 (2)在x轴上是否存在一点F,使得△DFC的面积是△DFB面积的2倍,若存在,请求出点F的坐标;
将点A(-2,-3)向上平移4个单位长度,得到点A3(
,
);
向右平移a个单位长度,向上平移b个单位长度
(4,-4) (x-a , y+b)
图形,D. 可以通过将原来的图形作一次平移得到.
C.(-1,6) D.(-1,-2) (x+a , y-b)
4 3
可求出点 E,F,G,H 的坐标分别是(5,-3),(5,-4),(6,-4),(7,-3).
位长度,得到点A ( _3__ , _-_3_ ); 体会平面直角坐标系是数与形之间的桥梁,感受代数与几何的相互转化,初步建立空间概念。
(-1,1)
A.(2,7) B.(-6,3) C.(2,3) D.(-2,-1) 2.(2020·绵阳)在平面直角坐标系中,将点A(-1,2)向左平移2个单位长 度,再向上平移1个单位后得到的点A1的坐标是___(_-__3_,__3_)____________.
3.(海南中考)如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1), 平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为 ( C)
将点A(-2,-3)向右平移5个单位长度,得到点A1( ___ , ___ );
向左平移a个单位长度,向上平移b个单位长度
(x-a , y+b)
10.点N(-1,3)可以看作由点M(-1,-1)向____平移____个单位得到的.
6.已知点A(1,0)和点B(1,3),将线段AB平移至A′B′,点A′与点A对应,若点A′的坐标为(1,-3).
合作探究 新知二 平面直角坐标系中图形的平移
如图,线段 AB 的两个端点坐标 分别为:A(1,1),B(4,4),将 线段 AB 向上平移 2 个单位,作 出平移后的线段 A′B′.
还有其他方法吗?
y
6
B′
5
4
B
3 A′
2
1A
-6 -5 -4 -3 -2 -1O 1 2 3 4 5 6 x
-1
-2
)
将点A(-2,-3)向右平移5个单位长度,得到点A1( ___ , ___ );
一个图形依次沿 x 轴方向、y 轴方向平移后所得图形与原来的图形对应点的坐标之间的关系:
对一个图形进行平移,这个图形上所有点的坐标都要发生 (x-a , y+b)
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化.
7.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得 到△A′B′C′.
(1)在图中画出△A′B′C′; (2)写出A′,B′,C′的坐标.
解:(1)图略 (2)A′(0,4),B′(-1,1),C′(3,1)
8.点M向左平移4个单位长度后的坐标是(-1,2),则点M原来的坐标是 ( B)
平移后得到的新图形与原图形有什么关系?
平移后图形的位置改变,形状、大小不变.
导入新知
如图,你能画出把鱼往左平移 6 格后所得的图形吗? y
建立如图所示的平面直角
坐标系,平移这个图形,
图形上的点的坐标发生了
什么变化呢?
O
x
合作探究 新知一 平面直角坐标系中点的平移
体会平面直角坐标系是数与形之间的桥梁,感受代数与几何的相互转化,初步建立空间概念。
(1)AB是怎样平移的? (2)求点B′的坐标.
解:(1)∵A(1,0)平移后对应点 A′的坐标为(1,-3),∴A 点的平移方 法是:向下平移 3 个单位,∴线段 AB 向下平移 3 个单位得到 A′B′ (2)∵B 点的平移方法与 A 点的平移方法是相同的,∴B(1,3)平移后 B ′的坐标是(1,0)