八年级数学上册第十二章全等三角形测试卷3新版新人教版附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册第十二章全等三角形测试卷3新版新人教版附答案一、选择题
1.如图,已知等边△ABC,AB=2,点D在AB上,点F在AC的延长线上,BD=CF,DE⊥BC于E,FG⊥BC于G,DF交BC于点P,则下列结论:①BE=CG;②△EDP≌△GFP;③∠EDP=60°;
④EP=1中,一定正确的是()
A.①③B.②④
C.①②③D.①②④
二、填空题
2.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.
3.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是.
4.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.
5.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=.
6.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上且坐标是(0,2),点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,C 1的坐标是(1,0).B 1C 1∥B 2C 2∥B 3C 3,以此继续下去,则点A 2014到x 轴的距离是
.
7.如图,在边长为6的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE=DG,
连接EG,CF⊥EG 交EG 于点H,交AD 于点F,连接CE,BH.若BH=8,则FG=
.
8.如图,已知△ABC 三个内角的平分线交于点O,点D 在CA 的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA 的度数为
.
9.如图,在四边形ABCD 中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.
10.如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE.设△ACD、△BCE、△ABC 的面积分别是S 1、S 2、S 3,现有如下结论:①S 1:S 2=AC 2:BC 2;
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S 1•S 2=S 32.其中结论正确的序号是
.
三、解答题
11.如图,已知点E、F 在四边形ABCD 的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD 是什么特殊四边形?请说明理由.
12.如图,△ABC 中,AB=AC,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE,连接BD,CE 交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE 的度数;
(3)求证:四边形ABFE 是菱形.
13.如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
14.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.
(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.
15.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;
(2)求∠BPC的度数.
16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)
(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;
(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.
17.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.
18.如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).
(1)求证:△ACE≌△AFE;
(2)求tan∠CAE的值.
19.探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CBD.
应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.
20.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.
21.如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.
22.(1)如图1,点E,F 在BC 上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.
(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上.①sinB 的值是
;
②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应),连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.
23.在平面内正方形ABCD 与正方形CEFH 如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.
24.如图,点D 是线段BC 的中点,分别以点B,C 为圆心,BC 长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E 为AD 上一点,连接BE,CE.(1)求证:BE=CE;
(2)以点E 为圆心,ED 长为半径画弧,分别交BE,CE 于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
25.如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.
(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;
(提示:过点F作FM∥BC交射线AB于点M.)
(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S
=4,则BE=,CD=.
△ABC
26.如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.
(1)你添加的条件是;
(2)请写出证明过程.
27.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠
BDC=90°.
(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;
下面是小明的证明过程,请你将它补充完整:
证明:设AB与CD相交于点O,
∵∠BDC=90°,∠BAC=90°,
∴∠DOB+∠DBO=∠AOC+∠ACO=90°.
∵∠DOB=∠AOC,
∴∠DBO=∠①.
∵M是DC的中点,
∴CM=CD=②.
又∵AB=AC,
∴△ADB≌△AMC.
(2)若CD<BD(如图2),在BD上是否存在一点N,使得△ADN是以DN为斜边的等腰直角三角形?若存在,请在图2中确定点N的位置,并加以证明;若不存在,请说明理由;(3)当CD≠BD时,线段AD,BD与CD满足怎样的数量关系?请直接写出.
28.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.
求证:AE=BF.
29.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
30.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
参考答案与试题解析
一、选择题
1.如图,已知等边△ABC,AB=2,点D在AB上,点F在AC的延长线上,BD=CF,DE⊥BC于E,FG⊥BC于G,DF交BC于点P,则下列结论:①BE=CG;②△EDP≌△GFP;③∠EDP=60°;
④EP=1中,一定正确的是()
A.①③B.②④C.①②③D.①②④
【考点】全等三角形的判定与性质;等边三角形的性质.
【分析】由等边三角形的性质可以得出△DEB≌△FGC,就可以得出BE=CG,DE=FG,就可以得出△DEP≌△FGP,得出∠EDP=∠GFP,EP=PG,得出PC+BE=PE,就可以得出PE=1,从而得出结论.
【解答】解:∵△ABC是等边三角形,
∴AB=BC=AC,∠A=∠B=∠ACB=60°.
∵∠ACB=∠GCF,
∵DE⊥BC,FG⊥BC,
∴∠DEB=∠FGC=∠DEP=90°.
在△DEB和△FGC中,
,
∴△DEB≌△FGC(AAS),
∴BE=CG,DE=FG,故①正确;
在△DEP和△FGP中,
,
∴△DEP≌△FGP(AAS),故②正确;
∴PE=PG∠EDP=∠GFP≠60°,故③错误;
∵PG=PC+CG,
∴PE=PC+BE.
∵PE+PC+BE=2,
∴PE=1.故④正确.
正确的有①②④,
故选D.
【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
二、填空题
2.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.
【考点】全等三角形的判定与性质;正方形的性质;解直角三角形.
【专题】分类讨论.
【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.
【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,
∵四边形ABCD为正方形,
∴AD=DC=PN,
在Rt△ADE中,∠DAE=30°,AD=3cm,
∴tan30°=,即DE=cm,
根据勾股定理得:AE==2cm,
∵M为AE的中点,
∴AM=AE=cm,
在Rt△ADE和Rt△PNQ中,
,
∴Rt△ADE≌Rt△PNQ(HL),
∴DE=NQ,∠DAE=∠NPQ=30°,
∵PN∥DC,
∴∠PFA=∠DEA=60°,
∴∠PMF=90°,即PM⊥AF,
在Rt△AMP中,∠MAP=30°,cos30°=,
∴AP===2cm;
由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,
综上,AP等于1cm或2cm.
故答案为:1或2.
【点评】此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
3.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.
【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.【专题】几何图形问题.
【分析】根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.
【解答】解:∵矩形ABCD中,G是CD的中点,AB=8,
∴CG=DG=×8=4,
在△DEG和△CFG中,
,
∴△DEG≌△CFG(ASA),
∴DE=CF,EG=FG,
设DE=x,
则BF=BC+CF=AD+CF=4+x+x=4+2x,
在Rt△DEG中,EG==,
∴EF=2,
∵FH垂直平分BE,
∴BF=EF,
∴4+2x=2,
解得x=3,
∴AD=AE+DE=4+3=7,
∴BC=AD=7.
故答案为:7.
【点评】本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
4.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,
过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.
【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.
【专题】计算题;几何图形问题.
【分析】在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.
【解答】解:如图,在BE上截取BG=CF,连接OG,
∵RT△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG与△OCF中
∴△OBG≌△OCF(SAS)
∴OG=OF,∠BOG=∠COF,
∴OG⊥OF,
在RT△BCE中,BC=DC=6,DE=2EC,
∴EC=2,
∴BE===2,
∵BC2=BF•BE,
则62=BF,解得:BF=,
∴EF=BE﹣BF=,
∵CF2=BF•EF,
∴CF=,
∴GF=BF﹣BG=BF﹣CF=,
在等腰直角△OGF中
OF2=GF2,
∴OF=.
故答案为:.
【点评】本题考查了全等三角形的判定和性质,直角三角形的判定以及射影定理、勾股定理的应用.
5.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.
【考点】全等三角形的判定与性质.
【专题】几何图形问题.
【分析】根据题中条件由SAS可得△ABC≌△DEF,根据全等三角形的性质可得AC=DF=6.【解答】证明:∵AB∥DE,
∴∠B=∠DEF
∵BE=CF,
∴BC=EF,
在△ABC 和△DEF 中,
,
∴△ABC≌△DEF(SAS),∴AC=DF=6.故答案是:6.
【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
6.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上且坐标是(0,2),点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,C 1的坐标是(1,0).B 1C 1∥B 2C 2
∥B 3C 3,以此继续下去,则点A 2014到x 轴的距离是
.
【考点】全等三角形的判定与性质;规律型:点的坐标;正方形的性质;相似三角形的判定与性质.
【专题】规律型.
【分析】根据勾股定理可得正方形A 1B 1C 1D 1的边长为
=
,根据相似三角形的性质
可得后面正方形的边长依次是前面正方形边长的,依次得到第2014个正方形和第2014个正方形的边长,进一步得到点A 2014到x 轴的距离.
【解答】解:如图,∵点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,B 1C 1∥B 2C 2∥B 3C 3,∴△B 1OC 1∽△B 2E 2C 2∽B 3E 4C 3…,△B 1OC 1≌△C 1E 1D 1,…,
∴B 2E 2=1,B 3E 4=,B 4E 6=,B 5E 8=…,
∴B 2014E 4016=
,
作A 1E⊥x 轴,延长A 1D 1交x 轴于F,则△C 1D 1F∽△C 1D 1E 1,∴
=
,
在Rt△OB 1C 1中,OB 1=2,OC 1=1,
正方形A 1B 1C 1D 1的边长为为=
,
∴D 1F=,∴A 1F=
,
∵A 1E∥D 1E 1,∴
=
,
∴A 1E=3,∴=,
∴点A 2014到x 轴的距离是×=
故答案为:
.
【点评】此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.
7.如图,在边长为6的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE=DG,
连接EG,CF⊥EG 交EG 于点H,交AD 于点F,连接CE,BH.若BH=8,则FG=
5
.
【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质;相似三角形的判定与性质.
【专题】几何图形问题;压轴题.
【分析】如解答图,连接CG,首先证明△CGD≌△CEB,得到△GCE是等腰直角三角形;过点H作AB、BC的垂线,垂足分别为点M、N,进而证明△HEM≌△HCN,得到四边形MBNH为正方形,由此求出CH、HN、CN的长度;最后利用相似三角形Rt△HCN∽Rt△GFH,求出FG的长度.
【解答】解:如图所示,连接CG.
在△CGD与△CEB中
∴△CGD≌△CEB(SAS),
∴CG=CE,∠GCD=∠ECB,
∴∠GCE=90°,即△GCE是等腰直角三角形.
又∵CH⊥GE,
∴CH=EH=GH.
过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,
又∵∠EHC=90°,
∴∠1=∠2,
∴∠HEM=∠HCN.
在△HEM与△HCN中,
∴△HEM≌△HCN(ASA).
∴HM=HN,
∴四边形MBNH为正方形.
∵BH=8,
∴BN=HN=4,
∴CN=BC﹣BN=6﹣4=2.
在Rt△HCN中,由勾股定理得:CH=2.
∴GH=CH=2.
∵HM∥AG,
∴∠1=∠3,
∴∠2=∠3.
又∵∠HNC=∠GHF=90°,
∴Rt△HCN∽Rt△GFH.
∴,即,
∴FG=5.
故答案为:5.
【点评】本题是几何综合题,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知识点,难度较大.作出辅助线构造全等三角形与相似三角形,是解决本题的关键.
8.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.
【考点】全等三角形的判定与性质;等腰三角形的性质.
【专题】几何图形问题.
【分析】可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°
【解答】解:∵△ABC三个内角的平分线交于点O,
∴∠ACO=∠BCO,
在△COD和△COB中,
,
∴△COD≌△COB,
∴∠D=∠CBO,
∵∠BAC=80°,
∴∠BAD=100°,
∴∠BAO=40°,
∴∠DAO=140°,
∵AD=AO,∴∠D=20°,
∴∠CBO=20°,
∴∠ABC=40°,
∴∠BCA=60°,
故答案为:60°.
【点评】本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.
9.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.
【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.
【专题】计算题;压轴题.
【分析】根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.
【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,
,
∴△BAD≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90°
由勾股定理得DD′=
,
∠D′DA+∠ADC=90°
由勾股定理得CD′=
,∴BD=CD′=
,故答案为:.
【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.
10.如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE.设△ACD、△BCE、△ABC 的面积分别是S 1、S 2、S 3,现有如下结论:
①S 1:S 2=AC 2:BC 2;
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S 1•S 2=S 32.
其中结论正确的序号是①②③.
【考点】全等三角形的判定与性质;等边三角形的性质.
【分析】①根据相似三角形面积的比等于相似比的平方判断;
②根据SAS 即可求得全等;
③根据面积公式即可判断.
【解答】①S 1:S 2=AC 2:BC 2正确,
解:∵△ADC 与△BCE 是等边三角形,
∴△ADC∽△BCE,
∴S 1:S 2=AC 2:BC 2.
②△BCD≌△ECA 正确,
证明:∵△ADC 与△BCE 是等边三角形,
∴∠ACD=∠BCE=60°
∴∠ACD+∠ACB=∠BCE+∠ACD,
即∠ACE=∠DCB,
在△ACE 与△DCB 中,
,
∴△BCD≌△ECA(SAS).
③若AC⊥BC,则S 1•S 2=S 32正确,
解:设等边三角形ADC 的边长=a,等边三角形BCE 边长=b,则△ADC 的高=
a,△BCE 的
高=b,
∴S 1=a a=a 2,S 2=b b=b 2,
∴S 1•S 2=a 2b 2=a 2b 2,∵S 3=ab,
∴S 32=a 2b 2,
∴S 1•S 2=S 32.
【点评】本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方,熟知各性质是解题的关键.
三、解答题
11.如图,已知点E、F 在四边形ABCD 的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.
(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD 是什么特殊四边形?请说明理由.
【考点】全等三角形的判定与性质;矩形的判定.
【专题】证明题.
【分析】(1)根据两直线平行,内错角相等可得∠E=∠F,再利用“角角边”证明△AED 和△CFB 全等即可;
(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.
【解答】(1)证明:∵DE∥BF,
∴∠E=∠F,
在△AED 和△CFB 中,
,
∴△AED≌△CFB(AAS);
(2)解:四边形ABCD是矩形.
理由如下:∵△AED≌△CFB,
∴AD=BC,∠DAE=∠BCF,
∴∠DAC=∠BCA,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AD⊥CD,
∴四边形ABCD是矩形.
【点评】本题考查了全等三角形的判定与性质,矩形的判定,平行四边形的判定以及平行四边形与矩形的联系,熟记各图形的判定方法和性质是解题的关键.
12.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)求∠ACE的度数;
(3)求证:四边形ABFE是菱形.
【考点】全等三角形的判定与性质;菱形的判定;旋转的性质.
【专题】证明题.
【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.
(3)根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.
【解答】(1)证明:∵△ABC绕点A按逆时针方向旋转100°,
∴∠BAC=∠DAE=40°,
∴∠BAD=∠CAE=100°,
又∵AB=AC,
∴AB=AC=AD=AE,
在△ABD与△ACE中
∴△ABD≌△ACE(SAS).
(2)解:∵∠CAE=100°,AC=AE,
∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;
(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.
【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.
13.如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
【考点】全等三角形的判定与性质;菱形的判定;旋转的性质.
【专题】证明题.
【分析】(1)根据旋转可得∠BAE=∠CAD,从而SAS证明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF ∥BC,∠DBF=∠EFB,从而得出∠EBF=∠EFB,则EB=EF,证明得出四边形BDFE为菱形.【解答】证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,
∴AB=AC,
∴∠BAE=∠CAD,
在△ACD和△ABE中,
,
∴△ACD≌△ABE(SAS),
∴BE=CD;
(2)∵AD⊥BC,
∴BD=CD,
∴BE=BD=CD,∠BAD=∠CAD,
∴∠BAE=∠BAD,
在△ABD和△ABE中,
,
∴△ABD≌△ABE(SAS),
∴∠EBF=∠DBF,
∵EF∥BC,
∴∠DBF=∠EFB,
∴∠EBF=∠EFB,
∴EB=EF,
∴BD=BE=EF=FD,
∴四边形BDFE为菱形.
【点评】本题考查了全等三角形的判定和性质以及菱形的判定、旋转的性质.
14.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.
(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是EH=FH,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.
【考点】全等三角形的判定与性质;矩形的判定.
【专题】几何综合题;分类讨论.
【分析】(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,
(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.
【解答】(1)答:添加:EH=FH,
证明:∵点H是BC的中点,
∴BH=CH,
在△BEH和△CFH中,
,
∴△BEH≌△CFH(SAS);
(2)解:∵BH=CH,EH=FH,
∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),
∵当BH=EH时,则BC=EF,
∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).
【点评】本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.
15.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;
(2)求∠BPC的度数.
【考点】全等三角形的判定与性质;等边三角形的性质.
【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;
(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.【解答】(1)证明:如图,∵△ABC是等边三角形,
∴BC=AB,∠A=∠EBC=60°,
∴在△BCE与△ABF中,
,
∴△BCE≌△ABF(SAS),
∴CE=BF;
(2)解:∵由(1)知△BCE≌△ABF,
∴∠BCE=∠ABF,
∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,
∴∠BPC=180°﹣60°=120°.
即:∠BPC=120°.
【点评】本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结
合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)
(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;
(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.
【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.
【专题】几何综合题.
【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.
【解答】题干引论:
证明:如答图1,过点D作DF⊥MN,交AB于点F,
则△ADF为等腰直角三角形,∴DA=DF.
∵∠1+∠FDP=90°,∠FDP+∠2=90°,
∴∠1=∠2.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)
∴BD=DP.
(1)答:BD=DP成立.
证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.
∵∠1+∠ADB=90°,∠ADB+∠2=90°,
∴∠1=∠2.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)
∴BD=DP.
(2)答:BD=DP.
证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)
∴BD=DP.
【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.
17.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.
【考点】全等三角形的判定与性质;矩形的性质.
【专题】证明题.
【分析】欲证明OE=OF,只需证得△ODE≌△OCF即可.
【解答】证明:如图,∵四边形ABCD是矩形,
∴∠ADC=∠BCD=90°,
AC=BD,OD=BD,OC=AC,
∴OD=OC,
∴∠ODC=∠OCD,
∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,
即∠EDO=∠FCO,
在△ODE与△OCF中,
,
∴△ODE≌△OCF(SAS),
∴OE=OF.
【点评】本题考查了全等三角形的判定与性质,矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
18.如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).
(1)求证:△ACE≌△AFE;
(2)求tan∠CAE的值.
【考点】全等三角形的判定与性质;角平分线的性质;勾股定理;锐角三角函数的定义.【专题】证明题.
【分析】(1)根据角的平分线的性质可求得CE=EF,然后根据直角三角形的判定定理求得三角形全等.
(2)由△ACE≌△AFE,得出AC=AF,CE=EF,设BF=m,则AC=2m,AF=2m,AB=3m,根据勾股
定理可求得,tan∠B==,CE=EF=,在RT△ACE中,tan∠CAE===;【解答】(1)证明:∵AE是∠BAC的平分线,EC⊥AC,EF⊥AF,
∴CE=EF,
在Rt△ACE与Rt△AFE中,
,
∴Rt△ACE≌Rt△AFE(HL);
(2)解:由(1)可知△ACE≌△AFE,
∴AC=AF,CE=EF,
设BF=m,则AC=2m,AF=2m,AB=3m,
∴BC===m,
解法一:∵∠C=∠EFB=90°,
∴△EFB∽△ACB,
∴=,
∵CE=EF,
∴==;
解法二:∴在RT△ABC中,tan∠B===,
在RT△EFB中,EF=BF•tan∠B=,
∴CE=EF=,
在RT△ACE中,tan∠CAE===;
∴tan∠CAE=.
【点评】本题考查了直角三角形的判定、性质和利用三角函数解直角三角形,根据已知条件表示出线段的值是解本题的关键.
19.探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CBD.
应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.
【考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.
【专题】几何图形问题.
【分析】探究:先判断出△ABC是等边三角形,根据等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BD,然后利用“边角边”证明即可;
应用:连接AC,易知△ABC是等边三角形,由探究可知△ACE和△CBD全等,根据全等三角形对应角相等可得∠E=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.
【解答】解:探究:∵AB=AC,∠ABC=60°,
∴△ABC是等边三角形,
∴BC=AC,∠ACB=∠ABC,
∵BE=AD,
∴BE+BC=AD+AB,
即CE=BD,
在△ACE和△CBD中,
,
∴△ACE≌△CBD(SAS);
应用:如图,连接AC,易知△ABC是等边三角形,
由探究可知△ACE≌△CBD,
∴∠E=∠D,
∵∠BAE=∠DAG,
∴∠E+∠BAE=∠D+∠DAG,
∴∠CGE=∠ABC,
∵∠ABC=60°,
∴∠CGE=60°.
【点评】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质,熟记性质并确定出三角形全等的条件是解题的关键,(2)作辅助线构造出探究的条件是解题的关键.
20.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.
【考点】全等三角形的判定与性质;正方形的性质.
【专题】证明题.
【分析】根据正方形的四条边都相等可得BC=CD,对角线平分一组对角可得∠BCP=∠DCP,再利用“边角边”证明△BCP和△DCP全等,根据全等三角形对应角相等可得∠PDC=∠PBC,再根据等边对等角可得∠PBC=∠PEC,从而得证.
【解答】证明:在正方形ABCD中,BC=CD,∠BCP=∠DCP,
在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS),
∴∠PDC=∠PBC,
∵PB=PE,
∴∠PBC=∠PEC,
∴∠PDC=∠PEC.
【点评】本题考查了全等三角形的判定与性质,正方形的性质,等边对等角的性质,熟记各性质并判断出全等三角形是解题的关键.
21.如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.
【考点】全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图.
【专题】作图题;证明题.
【分析】(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.
【解答】(1)解:如图所示;
(2)证明:∵AB=AC,AE=AB,
∴AE=AC,
∵AF是∠EAC的平分线,
∴∠EAF=∠CAF,
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠E=∠ACF.。