高一数学人教A版必修1教案:第一章第一节集合第四课时 Word版含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第一节集合第四课时
导入新课
问题:①分别在整数范围和实数范围内解方程(x -3)(x -3)=0,其结果会相同吗? ②若集合A ={x |0<x <2,x ∈Z },B ={x |0<x <2,x ∈R },则集合A ,B 相等吗?
学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.
推进新课
新知探究
提出问题
①用列举法表示下列集合:
A ={x ∈Z |(x -2)(x +3
1)(x -2)=0; B ={x ∈Q |(x -2)(x +3
1)(x -2)=0; C ={x ∈R |(x -2)(x +3
1)(x -2)=0}. ②问题①中三个集合相等吗?为什么?
③由此看,解方程时要注意什么?
④问题①,集合Z ,Q ,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.
⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B . ⑥请给出补集的定义.
⑦用Venn 图表示∁U A .
活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.
讨论结果:①A ={2},B ={2,-13},C ={2,-13,2}. ②不相等,因为三个集合中的元素不相同.
③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.
④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U .
⑤B ={2,3}.
⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.
集合A 相对于全集U 的补集记为∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.
⑦如图6所示,阴影表示补集.
图6 应用示例
思路1
例1设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求∁U A ,∁U B .
活动:让学生明确全集U 中的元素,回顾补集的定义,用列举法表示全集U ,依据补集的定义写出∁U A ,∁U B .
解:根据题意,可知U ={1,2,3,4,5,6,7,8},
所以∁U A={4,5,6,7,8};∁U B={1,2,7,8}.
点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.
常见结论:∁(A∩B)=(∁A)∪(∁B);∁(A∪B)=(∁A)∩(∁B).
A∩B,∁U(A∪B).
活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合,∁U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.
解:根据三角形的分类可知A∩B=∅,
A∪B={x|x是锐角三角形或钝角三角形},
例1已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:
(1)∁U A,∁U B;
(2)(∁U A)∪(∁U B),∁U(A∩B),由此你发现了什么结论?
(3)(∁U A)∩(∁U B),∁U(A∪B),由此你发现了什么结论?
活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.
解:在数轴上表示集合A,B,如图7所示,
图7
(1)由图得∁U A={x|x<-2或x>4},∁U B={x|x<-3或x>3}.
(2)由图得(∁U A)∪(∁U B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B ={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},
∴∁U(A∩B)=∁U{x|-2≤x≤3}={x|x<-2或x>3}.
∴得出结论∁U(A∩B)=(∁U A)∪(∁U B).
(3)由图得(∁U A)∩(∁U B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};∵A∪B ={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴∁U(A∪B)=∁U{x|-3≤x≤4}={x|x<-3
U U
A)∩(∁U B)={2,17},求集合A,B.
U
活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A,B的关键是确定它们的元素,由于全集是U,则集合A,B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.
解:U={2,3,5,7,11,13,17,19},
由题意借助于Venn图,如图8所示,
图8
∴A={3,5,11,13},B={7,11,13,19}.
点评:本题主要考查集合的运算、V enn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表示出来,这正体现了数形结合思想的优越性.
图9
)
(N∩P)
M内部,排除C;阴影部分不在集合
内部,即是M的子集,又阴影部分在
图10
课本本节练习,4.
【补充练习】
课堂小结
本节课学习了:
①全集和补集的概念和求法.
②常借助于数轴或Venn图进行集合的补集运算.
作业
课本习题1.1,A组,9,10,B组,4.
设计感想
本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节对此也予以体现,可以利用课余时间学习有关解不等式的知识.
备课资料
[备选例题]
【例1】已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.
解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},
又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.
故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.
【例2】设S={(x,y)|xy>0},T={(x,y)|x>0且y>0},则()
A.S∪T=S B.S∪T=T C.S∩T=S D.S∩T=∅
解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0,或x<0且y<0},则T⊆S,所以S∪T=S.
答案:A
【例3】某城镇有1000户居民,其中有819户有彩电,有682户有空调,有535户彩
电和空调都有,则彩电和空调至少有一种的有________户.
解析:设这1000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如图13所示.有彩电无空调的有819-535=284(户);有空调无彩电的有682-535=147(户),因此二者至少有一种的有284+147+535=966(户).填966.
图13
答案:966
差集与补集
有两个集合A,B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C 就叫做A与B的差集,记作A-B(或A\\B).
例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.
也可以用Venn图表示,如图14所示(阴影部分表示差集).
图14图15
特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I-B,叫做B在I中的补集,记作B.
例如,I={1,2,3,4,5},B={1,2,3},B=I-B={4,5}.
也可以用Venn图表示,如图15所示(阴影部分表示补集).
从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.。