湘乡市二中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘乡市二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣3
2. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
3. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B .
C .
D .2
4. 若,
,且
,则λ与μ的值分别为( )
A .
B .5,2
C .
D .﹣5,﹣2
5. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )
A .若x ∉A ,则y ∉A
B .若y ∉A ,则x ∈A
C .若x ∉A ,则y ∈A
D .若y ∈A ,则x ∉A
6. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312
7. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
8. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .3
9. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )
A .﹣1<a <2
B .﹣3<a <6
C .a <﹣3或a >6
D .a <﹣1或a >2
10.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )
A .
B .
C .
D . 11.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
12.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )
A .(﹣∞,]
B .(﹣∞,]
C .(﹣∞,
] D .(﹣∞,
]
二、填空题
13.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 14.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
15.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
16.把函数y=sin2x 的图象向左平移
个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵
坐标不变),所得函数图象的解析式为 .
17.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
18.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为.
三、解答题
19.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.
20.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求
的值.
21.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()
21x
f x x e a =+-.
(1)证明在(上仅有一个零点;
(2)若曲线在点
处的切线与轴平行,且在点
处的切线与直线
平行,(O 是坐标原点),
证明:1m ≤
22.已知a >0,a ≠1,命题p :“函数f (x )=a x 在(0,+∞)上单调递减”,命题q :“关于x 的不等式x 2﹣2ax+≥0对一切的x ∈R 恒成立”,若p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.
23.设集合{}
{}2
|8150,|10A x x x B x ax =-+==-=.
(1)若1
5
a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .
24.已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.
(Ⅰ)求数列{a n },{b n }的通项公式;
(Ⅱ)记c n =a n b n ,求数列{c n }的前n 项和S n .
湘乡市二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:∵条件p:x2+x﹣2>0,
∴条件q:x<﹣2或x>1
∵q是p的充分不必要条件
∴a≥1
故选A.
2.【答案】B
【解析】解:∵命题“p∧q”为假,且“¬q”为假,
∴q为真,p为假;
则p∨q为真,
故选B.
【点评】本题考查了复合命题的真假性的判断,属于基础题.
3.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x
|=2,
P
∴S△POF=|0F|•|x P|=.
故选:C.
4.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
5.【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.
与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.
故选D.
6.【答案】A
【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为=0.648.
故选:A.
7.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||2
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
11
||||222
22
AF y
⋅=⨯⨯=,故选B.
8.【答案】C
【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;
故其逆否命题也为真命题;
其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题
故其否命题也为假命题
故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个
故选C
【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.
9.【答案】C
【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2﹣12(a+6)>0,
从而有a>6或a<﹣3,
故选:C.
【点评】本题主要考查函数在某点取得极值的条件.属基础题.
10.【答案】C
【解析】
考点:三视图.
11.【答案】D
【解析】解:y=x+1不是奇函数;
y=﹣x2不是奇函数;
是奇函数,但不是减函数;
y=﹣x|x|既是奇函数又是减函数,
故选:D.
【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.12.【答案】D
【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,
所以(x+y)(+)=10+≥10=16,
当且仅当时等号成立,所以2m﹣1≤16,解得m;
故m的取值范围是(﹣];
故选D.
二、填空题
13.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件; 当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立, 则满足,
即,
∴
解得﹣4<a <0,
综上:a 的取值范围是(﹣4,0]. 故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
14.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
15.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
16.【答案】 y=cosx .
【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得
,即y=cos2x 的图象,把y=cos2x
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;
故答案为:y=cosx .
17.【答案】B
【解析】
18.【答案】(x﹣1)2+(y+1)2=5.
【解析】解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+y=0上,
∴a+b=0,①
且(2﹣a)2+(1﹣b)2=r2;②
又直线x﹣y+1=0截圆所得的弦长为,
且圆心(a,b)到直线x﹣y+1=0的距离为d==,
根据垂径定理得:r2﹣d2=,
即r2﹣()2=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x﹣1)2+(y+1)2=5.
故答案为:(x﹣1)2+(y+1)2=5.
三、解答题
19.【答案】
【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,
∴|MF|+|NF|=x1+x2+p=8;
(2)p=2时,y2=4x,
若直线MN斜率不存在,则B(3,0);
若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则
代入利用点差法,可得y12﹣y22=4(x1﹣x2)
∴k MN=,
∴直线MN的方程为y﹣t=(x﹣3),
∴B的横坐标为x=3﹣,
直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0
△>0可得0<t2<12,
∴x=3﹣∈(﹣3,3),
∴点B横坐标的取值范围是(﹣3,3).
【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.
20.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III )设点D 的竖坐标为t ,(0<t <4),在平面BCC 1B 1中作DE ⊥BC 于E ,可得D ,
∴=
, =(0,3,﹣4),
∵,∴
,
∴,解得t=
.
∴
.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
21.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:
试题解析:
(1)()()
()2
2211x
x f x e
x x e x +='=++,()0f x ∴'≥,
()(
)2
1x
f x x e
a ∴=+-在(),-∞+∞上为增函数.
1a >,()010f a ∴=-<,
又(
)
1f
a a =-=-,
10,1a ->∴>,即0f
>,
由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f
⋅<,
()
f x ∴在(上仅有一个零点。
(2)()()2
1x
f x e x ='+,设点()00,P x y ,则()()02
001x f x e x '=+,
()y f x =在点P 处的切线与x 轴平行,()()0
2
0010x f x e x ∴+'==,01x ∴=-,
21,P a e ⎛⎫
∴-- ⎪⎝⎭
,2OP k a e ∴=-,
点M 处切线与直线OP 平行,
∴点M 处切线的斜率()()2
21m k f m e m a e
=+'==-
,
又题目需证明1m ≤
,即()3
21m a e +≤-,
则只需证明()3211m m e m +≤+,即1m
m e +≤。
令()()1m
g m e m =-+,则()1m
g m e '=-,
易知,当(),0m ∈-∞时,()0g m '<,单调递减, 当()0,m ∈+∞时,()0g m '>,单调递增,
()()min 00g m g ∴==,即()()10m g m e m =-+≥,
1m m e ∴+≤,
1m ∴≤,得证。
22.【答案】
【解析】解:若p 为真,则0<a <1;
若q 为真,则△=4a 2
﹣1≤0,得
, 又a >0,a ≠1,∴.
因为p ∧q 为假命题,p ∨q 为真命题,所以p ,q 中必有一个为真,且另一个为假.
①当p 为真,q 为假时,由;
②当p 为假,q 为真时,无解.
综上,a 的取值范围是
.
【点评】1.求解本题时,应注意大前提“a >0,a ≠1”,a 的取值范围是在此条件下进行的.
23.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】
考
点:1、集合的表示;2、子集的性质. 24.【答案】
【解析】解:(I )设等差数列{a n }的公差为d ,等比数列{b n }的公比为q :∵a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.
∴1+d=q ,2(1+2d )﹣q 2
=1,解得
或
.
∴a n =1,b n =1;
或a n =1+2(n ﹣1)=2n ﹣1,b n =3n ﹣1
.
(II )当时,c n =a n b n =1,S n =n .
当
时,c n =a n b n =(2n ﹣1)3n ﹣1
,
∴S n =1+3×3+5×32+…+(2n ﹣1)3n ﹣1
,
3S n =3+3×32+…+(2n ﹣3)3n ﹣1+(2n ﹣1)3n ,
∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)3n=﹣1﹣(2n﹣1)3n=(2﹣2n)3n﹣2,
∴S n=(n﹣1)3n+1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.。