二次函数中以三角形为主的中考压轴题(等腰三角形、直角三角形、相似三角形)问题解析精选

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中以三角形为主的中考压轴题(等腰三角形、直角三角形、相似三角形)问题解析精选

【例1】.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物

线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;

(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;

(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.

解得

标为(﹣

××﹣=

的坐标为(,

﹣=

3

,﹣

=

为秒时,以

【例2】.(2013•大连)如图,抛物线y=﹣x2+x﹣4与x轴相交于点A、B,与y轴相

交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;

(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;

(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

﹣+即﹣

﹣+(+

﹣+(+,解得

x=

坐标为(

,解得,x

y=x x x

x=x.,

坐标为(,

【例3】.(2013凉山州)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐

标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

考点:二次函数综合题.

分析:(1)将A(3,0),C(0,4)代入y=ax2﹣2ax+c,运用待定系数法即可求出抛物线的解析式;

(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P、点M的坐标,即可得到PM的长;

(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.

解答:解:(1)∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),

∴,解得,

∴抛物线的解析式为y=﹣x2+x+4;

(2)设直线AC的解析式为y=kx+b,

∵A(3,0),点C(0,4),

∴,解得,

∴直线AC的解析式为y=﹣x+4.

∵点M的横坐标为m,点M在AC上,

∴M点的坐标为(m,﹣m+4),

∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,

∴点P的坐标为(m,﹣m2+m+4),

∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,

即PM=﹣m2+4m(0<m<3);

(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、

F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,

PF=﹣m2+m+4﹣4=﹣m2+m.

若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,

即(﹣m2+m):(3﹣m)=m:(﹣m+4),

∵m≠0且m≠3,

∴m=.

∵△PFC∽△AEM,∴∠PCF=∠AME,

∵∠AME=∠CMF,∴∠PCF=∠CMF.

在直角△CMF中,∵∠CMF+∠MCF=90°,

∴∠PCF+∠MCF=90°,即∠PCM=90°,

∴△PCM为直角三角形;

②若△CFP∽△AEM,则CF:AE=PF:EM,

即m:(3﹣m)=(﹣m2+m):(﹣m+4),

∵m≠0且m≠3,

∴m=1.

∵△CFP∽△AEM,∴∠CPF=∠AME,

∵∠AME=∠CMF,∴∠CPF=∠CMF.

∴CP=CM,

∴△PCM为等腰三角形.

综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.

点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.

【例4】.(2013•本溪)如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A 在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经

过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;

(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;

(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

相关文档
最新文档