2016年福建省综合质检理科数学答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年福建省普通高中毕业班质量检查
理科数学试题答案及评分参考
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考
查内容比照评分标准制定相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难
度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.
一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. (1)B (2)C (3)D (4)A (5)B (6)C (7)B (8)C (9)D (10)D (11)A (12)B 二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分. (13)0.3 (14)3- (15
)5- (16)
26
3
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
(17)本小题主要考查正弦定理、余弦定理、三角形面积公式及三角恒等变换等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分12分. 解法一:
(Ⅰ)因为BCD S △
即1
sin 2
BC BD B ⋅⋅= ·
····················· 2分 又因为3
B π
=
,1BD =,所以4BC = . ················································· 3分 在△BDC 中,由余弦定理得,2
2
2
2cos CD BC BD BC BD B =+-⋅⋅, ··········· 5分 即2
1
161241132
CD =+-⨯⨯⨯
=
,解得CD =. ·
····························· 6分 (Ⅱ)在△ACD 中,DA DC =,可设A DCA θ∠=∠=,则ADC θ=π-2∠,
又AC =sin 2sin AC CD
θθ
=, ······································ 7分
所以2cos CD θ
=
. ·········································································· 8分
在△BDC 中, 22,23
BDC BCD θθπ
∠=∠=
-, 由正弦定理得,sin sin CD BD
B BCD =∠
,即12cos 2sin sin(2)33
θθ=ππ-, ··········· 10分
化简得2cos sin(2)3
θθπ
=-, 于是2sin()sin(2)23θθππ
-=-. ·
······················································· 11分 因为02θπ<<,所以220,222333
θθπππππ
<-<-<-<
, 所以2223θθππ-=-或2+2=23θθππ--π,
解得==618θθππ或,故=618
DCA DCA ππ
∠∠=或. ······························ 12分
解法二:(Ⅰ)同解法一. (Ⅱ)因为DA DC =, 所以A DCA ∠=∠. 取AC 中点E ,连结DE ,
所以DE AC ⊥. ··············································································· 7分 设DCA A θ∠=∠=,
因为AC =
2
EA EC ==. 在Rt △CDE
中,cos CE CD DCA =
=∠ ····································· 8分
以下同解法一.
(18)本小题主要考查空间直线与直线、直线与平面的位置关系及直线与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分. 解法一:(Ⅰ)连结1AB ,在1ABB △中,111,2,60AB BB ABB ==∠=,
由余弦定理得,222
11112cos 3AB AB BB AB BB ABB =+-⋅⋅∠=,
∴1AB =,…………………………………………1分
∴222
11BB AB AB =+,
∴1AB AB ⊥.………………………………………2分 又∵ABC △为等腰直角三角形,且AB AC =, ∴AC AB ⊥, 又∵1AC
AB A =,
∴AB ⊥平面1AB C . ········································································· 4分 又∵1B C ⊂平面1AB C ,
∴AB ⊥1B C .·················································································· 5分
(Ⅱ)∵11
1,2AB AB AC BC ====,
1
B
∴2
2
2
11
B C AB AC =+,∴1AB AC ⊥. ················································ 6分
如图,以A 为原点,以1,,AB AC AB 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, ······································································································ 7分 则(
)(()()1000,0,100010A B B C ,,0,,,,,,
∴()
()11,0,3,1,1,0BB BC =-=-. ···················································· 8分 设平面1BCB 的法向量(),,x y z =n ,
由10,0,BB BC ⎧⋅=
⎪⎨⋅=⎪⎩n n 得0,0,x x y ⎧-=⎪⎨
-+=⎪
⎩令1z =,得
x y ==
∴平面1BCB 的一个法向量为)
=
n . ……………………9分
∵()((1
1
1
0,1,0AC AC CC AC BB =+=+=+-
=-,
……………………………………………………………………………10分
∴111cos ,35||||AC AC AC ⋅<>=
=
=n n n ,….……………11分 ∴1AC 与平面1BCB 所成角的正弦值为35
. ······································ 12分 解法二:(Ⅰ)同解法一.
(Ⅱ)过点A 作AH ⊥平面1BCB ,垂足为H ,连结1HC ,
则1AC H ∠为1AC 与平面1BCB 所成的角. ·····································
········· 6分 由(Ⅰ) 知,1AB AB ⊥,1AB =1AB AC ==,12B C =,
∴222
11AB AC B C +=,∴1AB AC ⊥,
又∵AB
AC A =,∴1AB ⊥平面ABC , ·
·······························
············ 7分 ∴1111113326
B AB
C ABC V S AB AB AC AB -=
⋅=⨯⨯⨯⨯=△. ······················· 8分 取BC 中点P ,连结1PB ,∵112BB B C
==,∴1PB BC ⊥.
又在Rt ABC △中,1AB AC ==
,∴BC
=
2
BP =
, ∴
12
PB ===, ∴1112B BC S BC B P =
⨯=△. ···························································· 9分
1
1
∵11A BCB B ABC V V --=,
∴
1136BCB S AH ⋅=△
,即13AH =
7
AH =. ············ 10分 ∵1AB ⊥平面ABC ,BC ⊂平面ABC ,∴1AB BC ⊥, 三棱柱111ABC A B C -中,11//BC B C ,112B C BC ==, ∴111AB B C ⊥
,∴1AC =
= ·
··································· 11分 在1Rt AHC △
中,11sin AH AC H AC ∠===
所以1AC 与平面1BCB
所成的角的正弦值为
35
. ································ 12分 (19)本小题主要考查古典概型、随机变量的分布列及数学期望等基础知识,考查运算求解能力、数据处理能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.满分12分. 解:(Ⅰ) 记“抽取的两天送餐单数都大于40”为事件M ,
则2
20210019
()495
C P M C ==. ····································································· 4分
(Ⅱ)(ⅰ)设乙公司送餐员送餐单数为a ,则 当38a =时,384152X =⨯=; 当39a =时,394156X =⨯=; 当40a =时,404160X =⨯=; 当41a =时,40416166X =⨯+⨯=; 当42a =时,40426172X =⨯+⨯=.
所以X 的所有可能取值为152,156,160,166,172. ······································· 6分 故X 的分布列为:
······································································································ 8分
11121
()1521561601661721621055510
E X =⨯
+⨯+⨯+⨯+⨯=所以. ·
····· 9分 (ⅱ)依题意, 甲公司送餐员日平均送餐单数为
380.2390.4400.2410.1420.139.5⨯+⨯+⨯+⨯+⨯=. ·
············ 10分
所以甲公司送餐员日平均工资为70239.5149+⨯=元. ·························· 11分 由(ⅰ)得乙公司送餐员日平均工资为162元.
因为149162<,故推荐小明去乙公司应聘. ········································· 12分
(20)本小题考查圆与抛物线的标准方程及几何性质、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、分类与整合思想等.满分12分. 解法一:(Ⅰ)将2
p x =
代入2
2y px =,得y p =±,所以2ST p =, ··················· 1分 又因为90SPT ∠=,所以△SPT 是等腰直角三角形, 所以SF PF =,即32
p p =-, 解得2p =,
所以抛物线2
:4E y x
=,…………………………………………3分
此时圆P =
所以圆P 的方程为()2
2
38x y -+=. ···························································· 4分
(Ⅱ)设()()()001122,,,,,M x y A x y B x y ,
依题意()2
2
0038x y -+=,即2200061y x x =-+-. ·········································
·· 5分
(ⅰ)当直线l 斜率不存在时,()
3M ±, ①当3x
=+2
4y x =,得()
2y =±
.
不妨设()()
32,32A B ++-, 则1,1,1,AF BF AF BF k k k k ==-=-
即AF BF ⊥.
②当3x =-AF BF ⊥.………………….6分 (ⅱ)当直线l 斜率存在时,因为直线l 与抛物线E 交于,A B 两点,
所以直线l 斜率不为零,01x ≠且00y ≠. 因为l MF ⊥,所以1l MF k k =-,
所以00
1l x k y -=,…………………………………………………..7分
直线()0
000
1:x l y x x y y -=
-+.
由()20
0004,1y x x y x x y y ⎧=⎪-⎨=-+⎪⎩
得,22
2
0000004444011y x y x y y x x +--+=-- , ················ 8分 即2
00004204011y x y y x x --
+=--,所以00121200
4204
,11y x y y y y x x -+==--, ············· 9分 所以()()121211FA FB x x y y ⋅=--+=22
12121144y y y y ⎛⎫⎛⎫
--+ ⎪⎪⎝⎭⎝⎭
·
······················ 10分 ()()()2
22
22
12
12121212123
1116
41642y y y y y y y y y y y y ++=-++=-++
()()
()
2
200
02
2
0005143061111x y x x x x --=-
++---()()()()()2
2
2
0000020514165111x y x x x x --+-+--=- ()
22
000
2
0244441x x y x ---=
-()
()
220002
046101x y x x -+-+=
=-,
所以AF BF ⊥. ··················································································· 12分 解法二:(Ⅰ)同解法一.
(Ⅱ)设()00,M x y ,依题意()2
2
0038x y -+=,即2200061y x x =-+-, (*) ······ 5分
设()22121212,,,44y y A y B y y y ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,则()2
2
2100211,,,4y y FM x y AB y y ⎛⎫-=-=- ⎪⎝⎭,
2212010020,,,44y y MA x y y MB x y y ⎛⎫⎛⎫
=--=-- ⎪ ⎪⎝⎭⎝⎭
, ·
······································· 6分 由于FM AB ⊥,//MA MB ,
所以()()()()22
21002122
1202001010,40.44y y x y y y y y x y y x y y ⎧--+-=⎪
⎪⎨⎛⎫⎛⎫⎪-----= ⎪ ⎪⎪⎝
⎭⎝⎭⎩ ································ 7分 注意到12y y ≠,()()()
()()
1200120120140,140.
2y y x y y y y y y x +-+=⎧⎪⎨
-++=⎪⎩ ························ 8分 由(1)知,若01x =,则00y =,此时不满足(*),故010x -≠,
从而(1),(2)可化为00121200
4204
,11y x y y y y x x -+==--. ························· 9分 以下同解法一.
(21)本小题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分
12分.
解法一:(Ⅰ)因为()()1
11
f x a x x '=-
>-+,()e 1x g x '=-, ·
··························· 2分 依题意,()()00f g ''=,解得1a =, ························································ 3分 所以()111f x x '=-
+1
x
x =
+,当10x -<<时,()0f x '<;当0x >时,()0f x '>. 故()f x 的单调递减区间为()1,0-, 单调递增区间为()0,+∞. ···················· 5分 (Ⅱ)由(Ⅰ)知,当0x =时,()f x 取得最小值0.
所以()0f x ≥,即()ln 1x x +≥,从而e 1x x +≥. 设()()()()()e ln 111,x F x g x kf x k x k x =-=++-+- 则()()()e 11111
x k k
F x k x k x x '=+
-+++-+++≥, ·
···································· 6分 (ⅰ)当1k =时,因为0x ≥,所以()1
1201
F x x x '++
-+≥≥(当且仅当0x =时等号成立)
, 此时()F x 在[)0,+∞上单调递增,从而()()00F x F =≥,即()()g x kf x ≥. ······ 7分 (ⅱ)当1k <时,由于()0f x ≥,所以()()f x kf x ≥. ································ 8分 由(ⅰ)知()()0g x f x -≥,所以()()()g x f x kf x ≥≥,故()0F x ≥,即()()g x kf x ≥. ······································································································ 9分
(ⅲ)当1k >时, 令()()e 11x k
h x k x =+
-++,则()()
2
e 1x k h x x '=-+,
显然()h x '在[)0,+∞上单调递增,又())
1
010,110h k h ''
=-<=->,
所以()h x '在()
1-上存在唯一零点0x , ··········································· 10分 当()00,x x ∈时,()0,h x '<所以()h x 在[)00,x 上单调递减, 从而()()00h x h <=,即()0,F x '<所以()F x 在[)00,x 上单调递减,
从而当()00,x x ∈时,()()00F x F <=,即()()g x kf x <,不合题意.·········· 11分 综上, 实数k 的取值范围为(],1-∞. ··················································· 12分 解法二:(Ⅰ)同解法一.
(Ⅱ)由(Ⅰ)知,当0x =时,()f x 取得最小值0.
所以()0f x ≥,即()ln 1x x +≥,从而e 1x x +≥. 设()()()()()e ln 111,x F x g x kf x k x k x =-=++-+- 则()()()e 11111x k k F x k x k x x '=+
-+++-+++≥()11
x
x k x =+-+, ·
·············· 6分
(ⅰ)当1k ≤时,()0F x '≥在[)0,+∞恒成立,所以()F x 在[)0,+∞单调递增. 所以()()00F x F =≥,即()()g x kf x ≥. ··················································· 9分 (ⅱ)当1k >时,由(Ⅰ)知,当1x >-时,e
1x
x +≥
(当且仅当0x =时等号成立)
, 所以当01x <<时,e
1x
x ->-+,1
e 1x x
<
-. 所以1()e 1(1)e 111
x
x kx F x k x x '=---=--
++ 1111kx x x <
---+11
x kx
x x =--+()2
1
1()11k k x x k x -+-
+=-. ··············· 10分
于是当101k x k -<<
+时,()0,F x '<所以()F x 在10,1k k -⎡⎫
⎪⎢+⎣⎭
上单调递减.
故当1
01
k x k -<<
+时,()(0)0F x F <=,即()()g x kf x <,不合题意. ······ 11分 综上, 实数k 的取值范围为(],1-∞. ··················································· 12分 解法三:(Ⅰ)同解法一.
(Ⅱ)(ⅰ)当0k ≤时,由(Ⅰ)知,当0x =时,()f x 取得最小值0. 所以()0f x ≥,即()ln 1x x +≥,从而e 1x x +≥,即()0g x ≥.
所以()0kf x ≤,()0g x ≥,()()g x kf x ≥. ················································ 6分 (ⅱ)当0k >时,
设()()()()()e ln 111,x F x g x kf x k x k x =-=++-+-则()()e 11
x k
F x k x '=+-++, 令()()h x F x '=,则()()
2
=e 1x k
h x x '-
+.
显然()h x '在[)0,+∞上单调递增. ·························································· 7分 ①当01k <≤时,()()'010h x h k '=-≥≥,所以()h x 在[)0,+∞上单调递增,()()00h x h =≥; 故()0F x '≥,所以()F x 在[)0,+∞上单调递增,()()00F x F =≥,即()()g x kf x ≥. ······································································································ 9分 ②当1k >时,由于(
)
)
1
'010,'
110h k h =-<=->,
所以()h x '
在()
1-上存在唯一零点0x , ··········································· 10分 当()00,x x ∈时,()0,h x '< ()h x 单调递减,
从而()()00h x h <=,即()0,F x '<()F x 在[)00,x 上单调递减,
从而当()00,x x ∈时,()()00F x F <=,即()()g x kf x <,不合题意.·········· 11分 综上, 实数k 的取值范围为(],1-∞. ··················································· 12分
请考生在第(22),(23),(24)题中任选一题作答,如果多做,则按所做的第一题计分,作
答时请写清题号.
(22)选修41-:几何证明选讲
本小题主要考查圆周角定理、相似三角形的判定与性质、切割线定理等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想等.满分10分.
解法一:(Ⅰ)连结DE ,因为,,,D C E G 四点共圆,则ADE ACG ∠=∠. ········· 2分 又因为,AD BE 为△ABC 的两条中线, 所以点,D E 分别是,BC AC 的中点,故DE
AB . ·
··········································· 3分 所以BAD ADE ∠=∠, ················································································ 4分 从而BAD ACG ∠=∠. ················································································ 5分 (Ⅱ)因为G 为AD 与BE 的交点,
故G 为△ABC 的重心,延长CG 交AB 于F ,
则F 为AB 的中点,且2CG GF =. ······························································· 6分 在△AFC 与△GFA 中,因为FAG FCA ∠=∠,AFG CFA ∠=∠,
所以△AFG ∽△CFA , ······································································· 7分 所以
FA FG
FC FA
=
,即2FA FG FC =⋅.………………………………………………………9分 因为12FA AB =,12FG GC =,3
2
FC GC =, 所以
2213
44
AB GC =
,即AB =, 又1GC =
,所以AB =. ········································································ 10分 解法二:(Ⅰ)同解法一. ······································································· 5分 (Ⅱ) 由(Ⅰ) 知,BAD ACG ∠=∠,
因为,,,D C E G 四点共圆,所以ADB CEG ∠=∠, ·········································· 6分
所以ABD △∽CGE △,所以
AB AD
CG CE
=, ……………………………………………7分 由割线定理,AG AD AE AC ⋅=⋅, ······························································ 9分
又因为,AD BE 是ABC △的中线,所以G 是ABC △的重心, 所以2
3AG AD =
,又=2=2AC AE EC , 所以22
2=23AD EC
,所以
AD CE
= F
A
B
C
D
E
G。