微积分考试重点
高考数学中的微积分基本概念及应用
高考数学中的微积分基本概念及应用高考中的微积分基本概念及应用高考数学中的微积分是一项较为重要的知识点,它包含了微积分的基本概念和应用。
在高考阶段,学生需要掌握微积分的基础理论,同时还需要能够运用微积分的原理和公式解决一些实际问题。
因此,在备考高考数学考试时,学生需要认真学习微积分相关的知识。
微积分的基础理论微积分的基础理论包括导数、极限和微分三个方面。
导数是微积分中的一个基本概念,它表示函数在某一点处的变化率。
在高考中,学生需要理解导数的概念、公式和求导法则,能够计算各种函数的导数。
极限是微积分中的另一个重要概念,它指的是当自变量无限趋近于一个值时,函数的取值趋近于一个确定的数。
学生需要理解极限的概念和性质,能够求出各种函数的极限值。
微分是微积分中的一种运算,它指的是函数在某一点处的一个局部线性近似。
学生需要理解微分的概念和性质,能够求出各种函数的微分值。
微积分的应用微积分在实际生活中有广泛的应用,尤其是在自然科学和工程技术领域中。
在高考中,微积分也被广泛应用于各种实际问题的解决。
一、用微积分求函数的最值在高考数学中,经常会出现求函数的最大值或最小值的问题。
这时候,可以通过求函数的导数来解决问题。
具体来说,可以求出函数的导数,然后查找导数为0的点和导数不在定义域内的点,在这些点中找到最大值或最小值。
例如,对于函数y=x^3-3x^2+2,可以求它的导数为y'=3x^2-6x,然后找到导数为0的点为x=0和x=2,将这两个点代入函数中,可以得到最大值为y=2,最小值为y=-8。
二、用微积分求曲线长度在空间曲线、平面曲线等问题中,经常需要求曲线的长度。
这时候,可以通过求函数的微分来解决问题。
具体来说,可以根据微分公式得到微小长度dL,然后将所有微小长度相加得到曲线的长度L。
例如,对于曲线y=x^2,可以求出dx=1和dy=2x,然后根据微分公式得到微小长度为dL=sqrt(1+(dy/dx)^2)dx=sqrt(1+4x^2)dx,将所有微小长度相加得到曲线的长度为L=int(-1,1)sqrt(1+4x^2)dx=pi。
高等数学一微积分考试必过归纳总结要点重点
高等数学一微积分考试必过归纳总结要点重点微积分是高等数学一门重要的学科,对于大部分学习该学科的学生来说,微积分考试是一个必须要过的关卡。
为了帮助大家更好地应对微积分考试,下面将对微积分的重点内容进行归纳总结,希望对大家有所帮助。
1. 导数与微分- 定义:导数是描述函数在某一点的变化率,微分是导数的代数形式。
- 基本公式:常见函数的导函数,如幂函数、指数函数、对数函数等。
- 高阶导数:描述函数变化率变化的快慢程度。
2. 极限与连续性- 极限的概念:函数逐渐趋近于某一值的过程。
- 常见极限:基本极限,如常数极限、幂函数极限、指数函数极限等。
- 连续性:函数在某一点上没有间断的特性。
- 常见连续函数:多项式函数、三角函数、指数函数等。
3. 微分中值定理与导数应用- 中值定理:介于两个点之间存在某一点,该点的切线斜率等于这两个点的斜率之差。
- 增量与微分:增量是函数值的改变量,微分是函数值的无穷小部分。
- 泰勒展开:将函数表示为幂级数的形式,用来逼近函数在某一点附近的近似值。
4. 积分与定积分- 不定积分:求函数的原函数,即求导的逆运算。
- 定积分:表示曲线下面的面积。
- 牛顿-莱布尼兹公式:定积分与不定积分的关系。
5. 微分方程与应用- 常微分方程:描述变化的过程中,一些量的关系式。
- 一阶微分方程:只涉及到一阶导数的方程。
- 区分可分离方程、一阶线性方程、齐次方程、可化为齐次形式的方程等常见类型。
以上就是微积分考试的必过归纳总结要点重点,希望对大家的学习有所帮助。
无论是在理论还是实际应用中,微积分都是一门重要的学科,需要大家掌握扎实。
希望大家通过复习和练习,能够在微积分考试中取得好成绩。
祝愿大家学业进步!。
考试必过 微积分公式完全汇总
直线:K = 0; 1 半径为a的圆:K = . a
定积分的近似计算:
矩形法: ∫ f ( x) ≈
a b
b
b−a ( y 0 + y1 + L + y n−1 ) n b−a 1 [ ( y0 + y n ) + y1 + L + y n−1 ] n 2 b−a [( y0 + y n ) + 2( y 2 + y 4 + L + y n−2 ) + 4( y1 + y3 + L + y n−1 )] 3n
a b c = = = 2R sin A sin B sin C
余弦定理: c = a + b − 2ab cos C
2 2 2
α
2
正弦定理:
反三角函数性质: arcsin x =
π
2
− arccos x arctgx =
π
2
− arcctgx
高阶导数公式——莱布尼兹(L e i b n i z )公式:
sin 2α = 2 sin α cosα cos 2α = 2 cos2 α − 1 = 1 − 2 sin 2 α = cos2 α − sin 2 α ctg 2α − 1 ctg 2α = 2ctgα 2tgα tg 2α = 1 − tg 2α
半角公式:
sin 3α = 3 sin α − 4 sin 3 α cos 3α = 4 cos3 α − 3 cosα tg 3α = 3tgα − tg 3α 1 − 3tg 2α
基本积分表:
1 − x2 1 (arccos x)′ = − 1 − x2 1 (arctgx)′ = 1+ x2 1 (arcctgx)′ = − 1+ x2
微积分考试大纲
微积分一. 函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则(不包含柯西极限存在准则??)两个重要极限: 0sin 1lim 1,lim(1)x x x x e x x→→∞=+= 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2. 了解函数的有界性、单调性、周期性和奇偶性。
3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。
5. 了解数列和函数极限(包括左极限与右极限)的概念。
6. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本章考查焦点:1.极限的计算.2.函数连续性的性质及间断点的分类.二. 一元函数微分学考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
大一微积分期末考试题
大一微积分期末考试题一、选择题(共10题,每题2分,共20分)1.下列哪个选项是微积分的基本概念?A. 导数B. 积分C. 极限D. 无穷小量2.函数f(x)在x=2处的导数为3,那么函数f(x)在x=2处的切线斜率为:A. 2B. 3C. 4D. 53.函数y = x^2 + 3x - 2 的最大值是:A. -2B. 1C. 2D. 44.设函数y = e^x,则函数y = e^(-x)的导数为:A. e^xB. -e^(-x)C. -e^xD. e^(-x)5.曲线y = sin(x)在点(0,0)处的切线斜率为:A. 0B. 1C. -1D. 无穷大6.函数y = ln(x)的导数为:A. 1/xB. ln(x)C. -1/xD. 17.若函数f(x)满足f'(x) = 2x,则f(x)的原函数为:A. x^2 + CB. x^2 + 1C. x^3 + CD. x^3 + 18.函数y = sin^2(x)在区间[0, π]上的定积分值为:A. 0B. 1C. π/2D. π9.函数y = x^3在区间[0, 1]上的定积分值为:A. -1/4B. 1/4C. 1/3D. 110.若函数f(x) = 3x^2 - 2x + 1,则在区间[0, 2]上的定积分值为:A. 6B. 8C. 10D. 12二、计算题(共3题,共30分)1.计算函数y = sin(x) + cos(x)在区间[-π/4, π/4]上的定积分值。
解:∫[ -π/4, π/4 ] (sin(x) + cos(x)) dx = [-cos(x) + sin(x)]│[-π/4, π/4]= [(sin(π/4) + cos(π/4)) - (sin(-π/4) + cos(-π/4))]= [(1/√2 + 1/√2) - (1/√2 - 1/√2)]= 2/√2= √22.计算函数y = ln(x)在区间[1, e]上的定积分值。
微积分下考试重点全总结
抓住微积分,它是高数的核心,理解好导数和积分的含义。
题记―――高等数学,是某些自考专业的重要课程。
但对于如何通过考试,如何学好这门课程,许多朋友都是百展莫愁,头痛不已。
而高数及格率又是所有科目中及格率最低的几门之一,成为许多考生能否顺利完成专业课程的主要障碍。
数学,是一门深奥而又有趣的课程。
如果增加对这门课程的自信心,不要畏惧它,你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
培根说,“数学是科学的大门和钥匙。
”的确,数学是科学技术的基础。
高等数学与应用数学(包括线性代数、概率论与数理统计、复变函数、数学物理方程,等等)是各专业的重要基础理论课。
在会计专业里,比如财务成本管理,审计,评估,管理会计,……等等科目里都有高等数学的影子;在经济学领域里,更是如此。
无论微观经济还是宏观经济的经典理论里都有高等数学的烙印函数、极限与连续(一)基本概念1.函数:常量与变量,函数的定义2.函数的表示方法:解析法,图示法、表格法3.函数的性质:函数的单调性、奇偶性、有界性和周期性4.初等函数:基本初等函数,复合函数,初等函数,分段表示的函数,建立函数关系5.极限:数列极限、函数极限、左右极限、极限四则运算,无穷小量与无穷大量,无穷小量的性质,无穷小量的比较,两个重要极限6.连续:函数在一点连续,左右连续,连续函数,间断点及其分类,初等函数的连续性,闭区间上连续函数性质的叙述重点:函数概念,基本初等函数,极限的计算难点:建立函数关系,极限概念(二)基本要求·1·1. 理解函数的概念,了解分段函数。
能熟练地求函数的定义域和函数值。
2. 了解函数的主要性质(单调性、奇偶性、周期性和有界性)。
3. 熟练掌握六类基本初等函数的解析表达式、定义域、主要性质和图形。
4. 了解复合函数、初等函数的概念。
5. 会列简单应用问题的函数关系式。
6. 了解极限的概念,知道数极限的描述性定义,会求函数的左、右极限。
电大专科《微积分初步》复习题及答案
电大微积分初步考试小抄一、填空题 ⒈函数xx f -=51)(的定义域是→x <5⒉∞→xx x sin lim1sin lim =∞→x x ,01→∞→x 时, ⒊已知xx f 2)(=,则)(x f ''⒋若⎰+=c x F xx f )(d )(,则⎰-x x f d )32(⒌微分方程x y y x =+'''e sin )(y '''6.函数)2ln(1)(+=x x f }{}{}122-1ln )2(ln 2-x 02ln 0≠+⇒≠+⇒≠+x x x x ,>,>,> ∴{}1- 2-x |≠且>x 7.→x x x 2sin lim 0 211212lim 2sin lim 00=⋅=→→x x x x x x 21:222sin lim0==→x x x 8.若y = x (x – 1)(x – 2)(x – 3),则y '(0)y=x(x-1)(x-2)(x-3)=(x 2-x)(x 2-5x+6)=x 4-5x 3+6x x 2-6x=x 4-6x 3+11x 2-6x , 622184y 23x-+-='x x ⇐(把0带入X ),6)0(-='∴y 9.⎰-x x d ed 2)()(x f dx x f ='⎰)(或dx xf dx x f d )())((=⎰ 10.微分方程1)0(,=='y y y y y =' y dxdy= ⎰⎰==∴dx dy dx y dy y 两边积分 e c x y +=∴又y(0)=1 (x=0 , y=1) c x y +=∴ln 010==∴+c e c,11.函数24)2ln(1)(x x x f -++=的定义域是⎩⎨⎧-≠≤-⇒⎩⎨⎧≠+≤-⇒⎪⎩⎪⎨⎧≠+≤≤⇒⎪⎪⎩⎪⎪⎨⎧≠++≥-122122x 21ln )2ln(2-2x 2-0)2(ln 02042x x x x x x x x <<>> 12.若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则k )()(lim00x x f x f x =→ ()(x f 在x 0处连续) ∵k f =)0(113sin 0lim )13sin (0lim =+⋅→=+→∴xx x x x x(无穷小量x 有界函数) 13.曲线x y =在点)1,1(处的切线方程是xx y 2== , x y 2121-=' 切k y ==='∴211x |2121y)1(11y +=⇒-=-∴∴x x 方程 14.'⎰x x s d )in (15.微分方程y y x y sin 4)(5=+''16.函数)2ln()(-=x x x f {}3x 2x |122)2ln(20)2ln(02≠⇒⎩⎨⎧≠-⇒⎩⎨⎧≠-⇒⎩⎨⎧≠--且>>>>x x x n x x x x 17.∞→xx x 2sin lim 18.已知x x f 3)(+=,则)3(f '3ln 3)(2xx f +='3ln 2727)3(+='∴f19.⎰2de x 20.微分方程x y xyy sin 4)(7)4(=+ 二、单项选择题⒈设函数2e e xx y +=-,则该函数是(偶函数).∵所以是偶函数)(2e e )(x f x f xx =+=--⒉函数233)(2+--=x x x x f 的间断点是(2,1==x x )分母无意义的点是间断点∴2,1,0232===+-x x x x⒊下列结论中()(x f 在0x x =处不连续,则一定在0x 处不可导)正确.可导必连续,伹连续并一定可导;极值点可能在驻点上,也可能在使导数无意义的点上⒋如果等式⎰+-=c x x f x x 11e d e )(,则=)(x f)()1()()(,1u )(),()(,)()(111'-•='-•'='∴=-=='∴='∴+=⎰---x e xe e e y xe xf x F C x F dx x f u u x u x,令22112121)()()(xx f x e e x f xex e xxxu=∴=∴=•=----⒌下列微分方程中,(x yx y y sin =+' )是线性微分方程. 6.设函数2e e xx y --=,则该函数是(奇函数).7.当=k (2 )时,函数⎩⎨⎧=≠+=0,,2)(2x k xx x f 在0=x 处连续.8.下列函数在指定区间(,)-∞+∞上单调减少的是(x -3).9.11.设1)1(2-=+x x f,则(x f 12.若函数f (x )在点x 0处可导,但)(0x f A ≠)是错误的.13.函数2)1(+=x y 在区间)2,2(-是(先减后增) 14.=''⎰x x f x d )((c x f x f x +-')()()16.17.当=k (2)时,函数⎩⎨⎧=≠+=0,,1e )(x k x x f x 在0=x 处连续.18.函数12+=x y 在区间)2,2(-是(先单调下降再单调上升)19.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为(y = x 2+ 3).20.微分方程1)0(,=='y y y 的特解为(xy e =).三、计算题⒈计算极限423lim222-+-→x x x x . 解:41)2()1(lim 2)2(1(lim22=+-=---→→x x x x x x x ) ⒉设x x y x+=-2e,求y d . 解:x e x e xx 23221x2-+=⨯+-e y x 21-=e y u=1,u= -2x)(11e y u =′·(-2x)′=e u·(-2)= -2·e -2x∴y ′= -2e -2x +x 2123 ∴dy=(-2·e -2x+x2123)dx⒊计算不定积分x xx d sin ⎰解:令u=x21x =,u ′=xx 212121=-∴dx xdu21=∴u sin ·2du=⎰udu sin 2=2(-cos)+cc x x xde 210x∴⎰1u v ′dx=uv x vd u -110|'⎰1)(010101110|||=-'-=-=-⋅=∴⎰⎰e e ee ee e e x dxx dx x x x xx x∴原式=25.计算极限9152lim 223--+→x x x x34353lim )3)(3()3)(5(3lim =++→=+--+→x x x x x x x x6.设x x x y cos ln +=,求y d 解:x x x y xxcos ln cos ln 2321+=+⋅=y 1=lncosxy 1=lnu1,u=cosx ∴xx x u x u ycos sin )sin (1)(cos )(ln 11-=-⋅='⋅'=y 1=xxx cos sin 2321-∴dy=(xx x cos sin 2321-)dx7.计算不定积分x x d )21(9⎰-解:dx x ⎰-)21(9令u=1-2x , u ′= -2 ∴du dx x du 212-=⇒-=c c dudu x u u u+-=++⋅-=-=-⋅-⎰⎰20192121)21()21(1010998.计算定积分x x xd e 1⎰-解:u=x,e e xx v v ---==', )()(1111010|x d dxx dx x e e e e e xxx x--=--⋅-=⋅⎰⎰⎰-----=1)11(1|11=--=---ee e e x9.计算极限4586lim 224+-+-→x x x x x3212lim )4)(1()4)(2(lim 44=--=----→→x x x x x x x x 10.设x y x3sin 2+=,求y dy 1=sin3x y 1=sinu , u=3x ,x y3cos 3x 3sinu 1='⋅'=')()(∴y ′=2xln2+3cos3x ∴dy=(2xln2+3cos3x)dx 11.计算不定积分x x x d cos ⎰⎰xdx x cos u=x , v ′=cosx , v=sinx ⎰⎰+--=-⋅=cx x x xdx x x xdx x )cos (sin sin sin cos12.计算定积分x x x d ln 51e1⎰+⎰⎰⎰⎰+=+=+e e e edxx x dxx x x dxx x dx x 11e111ln 51ln 5ln ln 51|令u=lnx, u ′=x1, du=x 1dx , 1≤x ≤e 0≤lnx ≤1∴2121ln |102101===⎰⎰u udu dx x x e∴原式=1+5·21=2713.计算极限623lim 222-++-→x x x x x解:5131lim )2)(3x ()1)(2(lim22=+-=-+--→→x x x x x x x 14.设xx y 12e =,求y '解:ex xy 12⋅=(ey x11=) ,ey u=1, xu 1= ,xe x e e y xu u x 21211)1()1()(-=-⋅='⋅'=) ee xe x e e x e x x1x12x12x1x12x122)(2)()(y -=-⋅+='⋅+⋅'='∴x x15.计算不定积分x x d )12(10⎰-解:dx x ⎰-)12(10u=2x-1 ,d '=2 du=2dx∴c du du dx u uux +⋅=⋅=⋅=⎰⎰⎰-1121212111101010)12(c x +=-)(121121 16.计算定积分⎰1d e x x x解:dx x e x⎰⋅1u=x , e xv =' , e xv =1)1(1110|=--=-⋅=⎰⎰e e dx x dx x e e e xx x四、应用题(本题16分)用钢板焊接一个容积为43m 的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 解:设水箱的底边长为x ,高为h,表面积为s ,且有h=x24所以S(x)=x 2+4xh=x 2+x16'xx S 2162-='令S '(x )=0,得x=2因为本问题存在最小值,且函数的驻点唯一,所以x=2,h=1时水箱的表面积最小。
微积分期末试卷(考试必做)
一、填空题(每小题2分,共16分)1、=+⎰-22d )cos e(4ππx x x x 2 .fxe^(x^4)dx =0.5fe^(x^4)d(x^2)=1/(4x^2)*e^(x^4)+sinx+c2、=⎰∞+12d ln x x x. 1 ∫lnx/x ² dx = (-1/x)·lnx - ∫(-1/x)·(lnx)' dx= (-1/x)·lnx + ∫1/x ² dx = (-1/x)·lnx + (-1/x) = (-1/x)(lnx + 1)3、设x y y x z +=,则函数在)1,1(处的全微分为 dx+dy . (1,1) zx=y*x^(y-1)+y^x*lny=1 zy=1∴dz=dx+dyD 是由0,1,0,e ====y x x y x 所围成区域,则⎰⎰=Dσd e^x-1 .5、当a 满足 0<=a<0.5 时,∑∞=--121)1(n a nn条件收敛.lim(-1)^n/n^(1-2a)6、幂级数∑∞=⋅-14)1(n nnn x 的收敛域为 [-3,5) . 7、交换积分次序后 =⎰⎰-y yx y x f y d ),(d 10∫1/-1dx ∫x/x^2f(x,y)dy .8、微分方程1d d -=-xyx y 的通解为 y=cx-xlnx . dy/dx=y/x dy/y=dx/x lny=lnx+lnc y=cxc-y/x=-1 y/x=c+1 y=cx+x二、单项选择题(每小题3分,共15分)1、下列广义积分收敛的是( b ). (A )⎰∞+ 1d ln x x (B )⎰∞+ 12d 1x x(C )⎰∞+ 1 d 1x x (D )⎰∞+ 1 d e x x2、设f 是连续函数,积分区域01:22≥≤+y y x D 且,则⎰⎰+Dy x y x f d d )(22可化为( a ).(A )⎰1d )(r r f r π (B )⎰1d )(2r r f r π (C )⎰1d )(2r r f π (D )⎰1d )(r r f π3、设)s i n (2y x z +=, 则=∂∂22xz( a ).(A ))s i n (2y x +- (B ))c o s (2y x +- (C ))s i n (2y x + (D ))c o s (2y x + Cos(x+y^2)4、极限xt x x c o s 1dt)1ln(lim2sin 0-+⎰→等于( c ).(A )1 (B )2 (C )4(D )8(1+t)ln(1+t)-(1+t) -15、微分方程0=+''y y 的通解是( a ).(A )x C x C y sin cos 21+= (B )x x C C y -+=e e 21 (C )x x C C y e )(21+=(D )21e C C y x +=三、计算题(一)(每小题5分,共20分)1、已知⎰+=203d )()(x x f x x f , 求)(x f .设⎰=2d )(x x f I ,两边从0到2积分,I I x x I 242d 23+=+=⎰,即4-=I ,所以 4)(3-=x x f .2、设),(y x f z =是由方程0121e 2=-++z xyz z x 确定的隐函数,求yz x z ∂∂∂∂,. 方程两边关于x 求偏导,0221)()e e (=∂∂⋅⋅+∂∂++∂∂+xz z x z xy yz x z z xx , z xy yzz x z x x +++-=∂∂⇒e e (3分)方程两边关于y 求偏导,0221)(e =∂∂⋅⋅+∂∂++∂∂y zz y z xy xz y z x ,zxy xz y z x ++-=∂∂e3、判断∑∞=+-1)11ln()1(n n n 的敛散性;若收敛,指出是绝对收敛还是条件收敛.\ 解: 因为 11)11ln(lim =+∞→n n n , 而∑∞=11n n发散,故原级数非绝对收敛原级数为交错级数,且)}11{ln(n+单调下降趋向于零,故原级数条件收敛.4、求微分方程 5d d tan =-y xyx的通解. 另tanx dy/dx -y=0 dy/y=dx/tanx=cotxdx lny=ln|sinx|+ln|c| y=csinx tanx dy/dx -y=5 tanx*ccosx-y=5 csinx-y=5 y=csinx-5四、计算题(二)(每小题7分,共28分) 1、求⎰++3d 1ln)1(x x x .令t x =+1,⎰=41d ln 21t t t 原式⎰=412)d(ln 41t t)d 1|ln (41412412⎰⋅-=t tt t t )|214ln 16(41412t -= 8152ln 8-=. 2、计算 ⎰⎰-=110d e d 12xy y x xI .⎰⎰-=2210d 1d ey y x xy 原式⎰-=1d e 22y y y102ey --=.e11-= 3、求幂级数 ∑∞=⋅13n nnn x 的收敛域及和函数.4、求微分方程 x y y y sin 1034=+'-'' 的通解. y ’=dy/dx y ”=五、应用题(每小题8分,共16分)1、设某厂生产甲、乙两种产品,其销售单价分别为10万元、9万元。
微积分考试题库(附答案)
微积分考试题库(附答案)85考试试卷(⼀)⼀、填空1.设c b a,,为单位向量,且满⾜0=++c b a ,则a c c b b a ?+?+?= 2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ?dt t x 2sin 0,则)(x f '=5.?>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b⼆、选择1.曲线==-0122z y x 绕x 轴旋转⼀周所得曲⾯⽅程为()。
(A )12222=+-z y x ;(B )122222=--z y x ;(C )12222=--z y x ;(D )122222=+-z y x2.2)11(lim xx x x -∞→-+=()。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'?dx x f x f x )]()([()(A )c x xf +)(;(B )c x f x +')(;(C )c x f x +'+)(;(D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上⾄少有⼀点ξ,使得()(A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=?)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ()(A )0 (B )1 (C )2 (D )3 三、计算题1.求与两条直线??+=+==211t z t y x 及112211-=+=+z y x 都平⾏且过点(3,-2,1)的平⾯⽅程。
微积分考试题库(附答案)
85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。
(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。
微积分常见题型与解题方法归纳(1)中级版
微积分常见题型与解题方法归纳(1)中级版微积分是数学中的重要学科,常见的题型主要包括函数求导、函数积分和曲线拟合等。
通过研究和掌握常见的解题方法,可以帮助我们更好地理解微积分的概念和应用。
函数求导题型1. 常函数求导:常函数的导函数为零,即 $y = c$,导数 $y' =0$。
常函数求导:常函数的导函数为零,即 $y = c$,导数 $y' = 0$。
2. 一次函数求导:一次函数 $y = ax + b$,导数 $y' = a$。
一次函数求导:一次函数 $y = ax + b$,导数 $y' = a$。
3. 幂函数求导:对幂函数 $y = x^n$,当 $n \neq 0$ 时,导数$y' = nx^{n-1}$。
幂函数求导:对幂函数 $y = x^n$,当 $n \neq0$ 时,导数 $y' = nx^{n-1}$。
4. 指数函数求导:对指数函数 $y = a^x$,导数 $y' = a^x \ln(a)$。
指数函数求导:对指数函数 $y = a^x$,导数 $y' = a^x \ln(a)$。
5. 对数函数求导:对对数函数 $y = \log_a{x}$,导数 $y' =\frac{1}{x\ln(a)}$。
对数函数求导:对对数函数 $y = \log_a{x}$,导数 $y' = \frac{1}{x\ln(a)}$。
函数积分题型1. 常函数积分:常函数的积分为常数乘以自变量加上一个常数,即 $\int{c}dx = cx + C$。
常函数积分:常函数的积分为常数乘以自变量加上一个常数,即 $\int{c}dx = cx + C$。
2. 一次函数积分:一次函数的积分为一次函数的系数乘以自变量的平方再除以2,即 $\int{ax + b}dx = \frac{a}{2}x^2 + bx + C$。
一次函数积分:一次函数的积分为一次函数的系数乘以自变量的平方再除以2,即 $\int{ax + b}dx = \frac{a}{2}x^2 + bx + C$。
高等数学C类(微积分)上考试大纲
《微积分(上)》考试大纲(C 类)一、考试的基本要求要求考生较系统地掌握《微积分》中函数、极限、连续、一元函数微分学、不定积分的基本概念和基本理论;掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
二、试卷满分及考试时间试卷满分为100分,考试时间为120分钟。
三、答题方式答题方式为闭卷、笔试。
四、试卷题型结构及比例单项选择题 5小题,每小题3分,共15分填空题 5小题,每小题3分,共15分解答题 7小题,每小题8分,共56分证明题 2小题,共14分五、考试内容及要求一、函数、极限和连续考试内容函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;经济学中几个常见的函数;函数关系的建立。
数列极限与函数极限的定义及其性质;函数的左极限与右极限;无穷小量与无穷大量的概念极其关系;无穷小的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:1sin lim 0=→x x x ,e xx x =+∞→)11(lim 。
函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质。
考试要求1.理解函数的概念,掌握函数的表示法,会建立简单实际问题的函数关系式。
2.理解函数的单调性、奇偶性、有界性和周期性。
3.理解复合函数及分段函数的概念,熟练掌握复合函数的复合过程。
4.了解反函数的概念,了解函数)(x f y =与其反函数)(1x fy -=之间的关系(定义域、值域、图象),会求单调函数的反函数。
考试必备 高数微积分公式大全
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()s i n c o s x x '= ⑷()cos sin x x '=- ⑸()2t a n s e c x x '=⑹()2c o t c s c x x '=-⑺()sec sec tan x x x '=⋅ ⑻()c s c c s c c o tx x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a'=⒀()a r c s i n x '=⒁()a r c c o s x '=-⒂()21arctan 1x x'=+ ⒃()21a r c c ot 1x x'=-+⒄()1x '=⒅(1'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cux =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k kk nk u x v x cux v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n n x n = (2)()()n ax bnax bea e++=⋅ (3)()()ln n x x na a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n nnn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1nn n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1dx xd xμμμ-= ⑶()s i n c o s d x x d x= ⑷()cos sin d x xdx =- ⑸()2t a n s e c d x x d x =⑹()2c o t c s cd x x d x=- ⑺()sec sec tan d x x xdx =⋅ ⑻()c s c c s c c o t d x xx d x=-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x =⑿()1logln x a d dx x a=⒀()1arcsin d x =⒁()1a r c c o s d x d x=-⒂()21arctan 1d x dx x=+ ⒃()21a r c c o t 1d x d xx=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11xx d x cμμμ+=++⎰ ⑶ln dx x c x=+⎰⑷ln xxaa dx c a=+⎰ ⑸x xe dx e c =+⎰ ⑹c o s s i n x d x xc=+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221s e c t a n c o s d x x d xx c x ==+⎰⎰ ⑼221csc cot sin xdx x c x==-+⎰⎰ ⑽21a r c t a n 1d x x c x=++⎰⑾arcsin x c =+⎰八、补充积分公式tan lncos xdx x c =-+⎰c o t l n s i n xd x x c=+⎰ sec ln sec tan xdx x x c =++⎰c s c l n c s cc o t xd x x x c=-+⎰ 2211arctanx dx c axaa=++⎰2211ln2x a dx c x a ax a-=+-+⎰arcsinx c a=+⎰ln dx x c =++⎰九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx = 形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
大一微积分基础考试必背知识点
大一微积分基础考试必背知识点微积分是数学的一门重要分支,也是大学数学教学中的一门必修课程。
在大一微积分基础考试中,掌握一些必备的知识点能够帮助学生更好地应对考试,提高成绩。
本文将介绍大一微积分基础考试中的一些必背知识点,以供参考。
一、函数与极限1. 函数的定义与分类:函数的定义,常见函数的分类(多项式函数、指数函数、对数函数、三角函数等)。
2. 函数的极限:极限的定义,极限的运算法则,常用极限公式(如sin x/x的极限等),函数的左右极限与无穷远处的极限。
3. 无穷小与无穷大:无穷小的定义与性质,无穷大的定义与性质,无穷小的比较、运算法则。
二、导数与微分1. 导数的概念与计算方法:导数的定义,导数的几何意义,导数的计算方法(基本初等函数的导数、常数乘法法则、和差法则、乘积法则、商法则等)。
2. 高阶导数与高阶微分:高阶导数的概念与计算,高阶微分的概念与计算。
3. 微分与线性近似:微分的几何意义,微分的应用(线性近似、误差估计等)。
三、微分中值定理1. 罗尔定理:罗尔定理的条件和结论,罗尔定理的几何解释。
2. 拉格朗日中值定理:拉格朗日中值定理的条件和结论,拉格朗日中值定理的几何解释。
3. 柯西中值定理:柯西中值定理的条件和结论,柯西中值定理的几何解释。
四、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的定义,常用不定积分公式(如基本初等函数的不定积分、分部积分法、换元积分法等),定积分与不定积分的关系。
2. 定积分的定义与性质:定积分的定义,定积分的几何意义,定积分的性质(线性性、可加性、保号性等)。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式的表述与应用。
以上是大一微积分基础考试中的一些必背知识点,希望对你的备考有所帮助。
在复习中,要结合教材和课堂笔记进行系统学习,多做一些相关的例题和习题,加强对概念的理解和运用能力。
同时,也要注重对公式和性质的记忆,以便在考试中能够熟练运用。
加油,祝你考试顺利!。
高等数学-一-微积分-考试必过归纳总结-要点重点
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续〔包括级数〕 第二部分 导数及其应用〔包括多元函数〕第三部分 积分计算及其应用 〔包括二重积分和方程〕第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
例1..函数___________.知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
浙江大学《微积分》课程期末考试试卷课程内容精选
浙江大学2004-2005学年秋冬季学期《微积分》课程期末考试试卷一、填空题1.21lim()xx x e x →-= .2.设()f x 可导,2(cos )f x y x =则d d yx= . 3.ln (0)xy x x=>的值域范围为 .4.3121x x -+=⎰5.设,arcsin x y t⎧⎪=⎨=⎪⎩则22d d y x = . 6.当0x →时,20cos d 2x tx e t t x --⎰与BAx 等价无穷小,则常数A = ,B = .二、计算题 1.求221d .22x x x x +++⎰2.已知(0),(),f a f b π==且()f x ''连续,求[]0()()sin d f x f x x xπ''+⎰.3.求2+∞⎰.4.求曲线sin (0)y x x π=≤≤与x 轴围成的平面图形分别绕x 轴和y 轴旋转一周所得的旋转体体积x V 和y V .5.在曲线段 2(08)y x x =≤≤上, 求一点2(,)P a a 使得过P 点的切线与直线0,8y x ==所围成的三角形的面积最大.三、求幂级数2021!n n n x n ∞=+∑的收敛区间以及在收敛区间上的和函数,并求级数0212!nn n n ∞=+∑的和. 四、证明若2,e a b e <<<则2224ln ln ()b a b a e ->-⋅ 五、已知sin 0()0x e x x F x xa x ⎧≠⎪=⎨⎪=⎩为连续函数.(1)求常数a ; (2)证明()F x 的导函数连续.浙江大学2004-2005学年秋冬学期《微积分》课程期末考试试卷答案一、填空题1.2112ln()lim()lim x xx x x x e x e x e→→--=1002ln()1lim lim 22()x x x x e x e x x e x x ee e →→---===.2. 22(cos )d (cos )[2(cos )(cos )sin ln ]d f x y f x x f x f x x x x x'=-⋅. 3. (1,]e-∞ . 4.3121x x -⎰.111x x x --=+⎰⎰12x x =⎰, 令sin x t =222222001312sin cos td 2sin (1-sin t)d 2()224228t x t x πππππ===⋅-⋅⋅=⎰⎰.5.由x =d d x t =, arcsin y t =,d d y t =d 1d y x t =-, 22231d d yt t xt==--. 6. 由洛必达法则20100cos d cos 12lim lim x tx B B x x x e t t x e x xAx ABx-→→----=⎰, 2323310[1()][1()]12!3!2!lim B x x x x x o x o x xABx-→++++-+--=, 其中:232331(),cos 1()2!3!2!xx x x e x o x x o x =++++=-+33101()3lim 1B x x o x ABx -→-+==, 得13,13B AB -=⎧⎪⎨=-⎪⎩,即1,412A B =-=. 二、计算题 1.22221221d d d 22221(1)x x x x x x x x x x ++=-++++++⎰⎰⎰=2ln(22)arctan(1)x x x C ++-++.2.[]00()()sin d ()sin d ()sin d f x f x x x f x x x f x x x πππ''''+=+⎰⎰⎰()sin d sin d ()f x x x x f x ππ'=+⎰⎰00()sin d sin ()()cos d f x x x xf x f x x x πππ''=+-⎰⎰00()sin d cos ()()sin d f x x x xf x f x x x πππ=--⎰⎰=a b +.3.221x +∞+∞=-⎰⎰21arcsinx +∞=-=6π . 4. 22sin d 2x V x x πππ==⎰,2002sin d 2cos 2cos d 2y V x x x x x x x πππππππ==-+=⎰⎰.5. 解:(1)过点2(,)P a a 的切线方程为 22()y a a x a -=-, 令0y =,得22()a a x a -=-,得2a x =, 令8x =,得222(8)16y a a a a a =+-=-,令221()(8)(16)(8)222a a S a a a a =--=-, 213()(8)2(8)()(8)(8)22222a a a aS a a '=-+--=-- ,令()0S a '=,得163a =,16a =(舍).1333()(8)(8)1622222a a S a a ''=----=- ,16316()1680323S ''=⋅-=-<,所以,当163a =时,三角形面积最大.三、因为 2220102121()!(1)!!n n n n n n n x x x n n n ∞∞∞===+=+-∑∑∑ 2220()2!n x n x x e n ∞==+∑222222(21)x x x x e e e x =+=+,所以2220021212(221)5!!n n n n n n e e n n ∞∞==++==⋅+=∑∑. 四、 设 2()ln ,()f x x g x x ==,在[,]a b 上由柯西定理,有222ln ln ln 2,b a e a b e b a ξξξ-=<<<<- .再令2ln 1ln (),()0()x xx x e x x x ϕϕ-'==<<,故()x ϕ单调下降,得222(),()x e x e e ϕ><<,有2ln 2e ξξ>,得2224ln ln ()b a b a e ->-. 五、 (1)因为 0sin lim1x x e xx→=, 所以1a =. (2)0sin 1(0)lim x x e xx F x→-'=20sin lim x x e x x x→-= 00sin cos 12cos lim lim 122x x x x x e x e x e x x →→+-===, 所以,2(sin cos )sin ,0;()1,0.x x x x e x e x e xx F x x x ⎧+-≠⎪'=⎨⎪=⎩而 20sin cos sin limx x x x xe x xe x e x x →+-02cos lim 12x x xe xx →==,所以 ()F x '在(,)-∞+∞上是连续的.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷一、 计算题1.已知抛物线2y ax bx c =++过点(1,2),且在该点的曲率圆方程为22151()(),222x y -+-=则a = ,b = ,c = 2.设12()sin d xf x t t =⎰,则(1)10()d f x x =⎰;(2) 1()lim1x f x x →=- 3.若01,2x →=则a = 4.当x = 时,函数2xy x =⋅取得极小值.5.曲线arctan y x =在横坐标为1的点处的切线方程为 *6.已知01(cos sin ),(0,2),2n n n xa a nxb nx x ππ∞=-=++∈∑则5b = (此题不作要求)二、求极限1.0sin tan lim tan (1)ln(1)x x x x x e x →--- 2. 21sin 0lim(cos )xx x → 三、求导数1.设函数()x x y =由sin 0y x x -+=所确定,求22d d ,d d x xy y2.设sin arctan ,ln(x t t y t =-⎧⎪⎨=+⎪⎩ 求22d d ,d d y y x x 3.设()arccot xy x e =-求()y x '.四、求积分 1.21d (1)(1)x x x ++⎰ .2.x .3.1321(x x x -+⎰. 4.20sin 2d 1cos xxx xπ+⎰.五、设曲线21:1(01),C y x x =-≤≤x 轴和y 轴所围区域被曲线22:(0)C y ax a =>分为面积相等的两部分,试求常数a .六、将函数12()arctan 12x f x x -=+展开成x 的幂级数,并求级数0(1)21nn n ∞=-+∑的和.七、设()f x 在(,)a +∞内可导,且lim (),x f x a →∞'=证明:()limx f x a x→∞=.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷答案一、计算题1. 由2y ax bx c =++,有2,2y ax b y a '''=+=,得112,2,2x x a b c y a b y a =='''++==+= 由曲率圆方程22151()(),222x y -+-=两边求导,152()2()022x y y '-+-=,得1,21x y y =='=,5222()02x y y y y ''''++-=,得1,24x y y ==''=根据2y ax bx c =++与曲率圆22151()(),222x y -+-=在点(1,2)有相同的,,y y y ''';得到 24,21,2a a b a b c =⎧⎪+=⎨⎪++=⎩, 所以有2,3,3a b c ==-=.2. (1)11120()d (sin d )d xf x x t t x =⎰⎰⎰=111220sin d sin d xxt t x x x +⎰⎰12201=sin d 2x x ⎰ =12011cos (1cos1)22x -=- .(2)1211sin d ()limlim 11xx x t tf x x x →→=--⎰21sin lim sin11x x →-==-.3. 因为,当0x →时2112x,所以200112lim ,2a x x x x →→==得 2a = . 4. ()2x y x x =⋅,()22ln 2x xy x x '=+,令()0,22ln 20xxy x x '=+=,解得 1ln 2x -=, 由于2()2ln 22ln 22ln 22ln 2(2ln 2)xxxxy x x x ''=++=+, 当1ln 2x =-时,1()0ln 2y -''>,所以当1ln 2x -=时,()2xy x x =⋅取到极小值.5. 因为, 21111arctan ,,,arctan1124x x y x y y y x π==''=====+, 所以,切线方程为 1(1)24y x π=-+. 6. 515b =.二、求极限1. 0sin tan lim tan (1)ln(1)x x x x x e x →---=30sin (cos 1)cos lim x xx x x→--,注:当0x →时1,ln(1)x e x x x --- ,20cos 11lim2x x x →-==-. 2. 因为 ,21sin 0lim(cos )xx x →=2cos 11cos 1sin 0lim[1(cos 1)]x x xx x -⋅-→+- ,而 20cos 11lim sin 2x x x →-=-,1cos 1lim[1(cos 1)]x x x e -→+-=, 所以 211sin2lim(cos )xx x e-→=.三、求导数1. 对方程sin 0y x x -+=两边关于y 求导数,注意到()x x y =,有 d d 1cos 0d d x x x y y-+=,得 d d x y =11cos x -,222d 1d()d()(cos )d d 1-cos d d d (1-cos )y xx xyx yy y x '--===3sin (1cos )x x -=-. 2. 2d 1sin arctan ,cos d 1x x t t t t t=-=-+, ln(y t =,d d y t =2d d d d d (1)cos 1d yy t x x t t t==+-, 222d d (1)cos 1yxt t =⎡⎤+-⎣⎦.3.111()arccot arccot [ln ln(1)]arccot ln(1)222xx x x x xy x e e e e e x e =-=--+=-++, 2211()122(1)12(1)x x x x x x xe e e y x e e e e '=--+=--++++. 四、 1.21d (1)(1)x x x ++⎰=22111()d 2111x x x x x -++++⎰2111ln 1ln(1)arctan 242x x x C =+-+++. 2. (令15x t =)x =145315d t t t t +⎰=11215d 1t t t +⎰ =9753215()d 1tt t t t t t t -+-+-+⎰ =108642211111115[ln(1)]1086422t t t t t t C -+-+-++=28242231551515153155151515ln(1)282422x x x x x x C -+-+-++.3.1321(x x x -+⎰11xx -=⎰22202sin cos d t t t π=⎰ 注:令sin x t =22202sin (1sin )d t t t π=-⎰1312()224228πππ=⋅-⋅⋅=. 4. 20sin 2d 1cos x x x x π+⎰=220dcos 1cos x x xπ-+⎰=20dln(1cos )x x π-+⎰ 2200ln(1cos )ln(1cos )d x x x x ππ=-+++⎰=22(cos )ln 2(1)2d 1n nn x x n ππ+∞=-+-⋅⋅+∑⎰1201(1)ln 2cos d n nn x x n ππ-∞=-=-+∑⎰ 12201(1)ln 22cos d n n n x x n ππ-∞=-=-+⋅∑⎰=11(1)(21)!!ln 22(2)!!2n n n n n ππ-∞=---+⋅⋅⋅∑.五、由 221,y x y ax⎧=-⎪⎨=⎪⎩得交点0x =, 311212002(1)d ()33x S S x x x +=-=-=⎰, 0022310012[(1)]d ()33x x a S x ax x x x +=--=-=⎰由12S S =,得212323=⋅, 所以 3a =.六、由12()arctan 12x f x x -=+, 2221()2(1)4,142n n nn f x x x x ∞=-'==--<+∑, 21(1)4()()d (0)2421n n x n n f x f x x f x n π∞+=-'=+=-+∑⎰,当12x =时,21(1)41024212n n n n n π∞+=-=-+∑, 得 0(1)214n n n π∞=-=+∑.七、解法一:由洛必达法则, ()()lim lim 1x x f x f x a x →+∞→+∞'==.解法二:① 若0a =,由lim ()0x f x →+∞'=,按定义知0ε∀>,10x ∃>,当1x x >时,恒有()2f x ε'<.1(,)b x ∀∈+∞,当x b >时,有()()()2f x f b f x b x b εξ'-=-<-,由于()()()()2f x f b f x f b x b ε-≤-<-,有()()2f x f b x b ε≤+-,再取2x b >,使得2()2f b x ε<,当2x x >时, 有2()()()()()()2222x bf b x b f b f x f x f b f b x x x x x x εεεεε---+=<+<+<+=, 所以,()lim0x f x x→+∞=. ② 若0a ≠,由lim ()x f x a →+∞'=,则有 lim[()]0x f x ax →+∞'-=, 设()()F x f x ax =-,有lim ()0x F x →+∞'=,由①知,()()limlim 0x x F x f x axx x→+∞→+∞-==,得证.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷一、求导数或微积分 (1)设sin 43(arctan 2)ln 2xy xx =++,求d d y x.(2)设220d ,sin()d t ts x e s y t s s -==-⎰⎰,求t =d d y x 及22d d y x .(3)设()y y x =是由方程210x ye x xy +---=确定的x 的可导函数,求0d x y =.二、求积分(4)求60x ⎰.(5)求2arctan d xxe x e ⎰. (6)求1+∞⎰.三、求极限 (7)求3012cos lim[()1]3x x x x →+-. (8)设()f a ''存在,()0f a '≠,求11lim[]()()()()x af a x a f x f a →-'--.(9)设1121)1))nn n u n n n⎡⎤=+++⎢⎥⎣⎦(((1,求lim n n u →∞. 四、选择题(10)设2620arcsin d ,(1)d xt t t e t αβ==-⎰⎰,则0x →时 [ ](A)αβ与是同阶但不等价无穷小. (B)αβ与是等价无穷小. (C)αβ是的高价无穷小. (D)βα是的高价无穷小.(11)设级数1nn a∞=∑收敛,则下述结论不正确的是[ ](A)11()nn n aa ∞+=+∑必收敛. (B)2211()n n n a a ∞+=-∑必收敛.(C)2211()nn n aa ∞+=+∑必收敛. (D)2211()n n n a a ∞+=-∑必收敛.(12)设1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则()0F x x =在处[ ](A)极限不存在 (B)极限存在,但不连续(C)连续但不可导 (D)可导(13)设()y f x =为连续函数,除点x a =外,()f x 二阶可导,()y f x ''=的图形如图, 则() [ ]y f x =(A)有一个拐点,一个极小值点,一个极大值点. (B)有二个拐点,一个极小值点,一个极大值点. (C)有一个拐点,一个极小值点,二个极大值点. (D)有一个拐点,二个极小值点,一个极大值点.五、(14)设曲线2y ax =(0,x ≥常数0)a >与曲线21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面形D .(I) 求D 绕x 轴旋转一周所成的旋转体体积()V a ;(II)求a 的值使()V a 为最大. 六、(15)将函数21()arctan ln(1)2f x x x x =-+在0x =处展开成泰勒级数(即麦克劳林级数)并指明成立范围.七、(16)设0,x >证明2()(4)(2)20x xf x x e x e =---+<.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分 (1)sin 4sin 4122d 14cos 4ln sin 46(arctan 2)d 14x x y x x x x x x x x-=⋅+⋅++. (2) 由 20d t s xe s -=⎰,得2d d t xe t -=,由20sin()d t y t s s =-⎰,令t s u -=,得220sin d sin d t ty u u u u =-=⎰⎰,得2d sin d y t t =,所以222d d sin ,d d t t y ye t e x x π==,2222222222(sin )d 2sin 2cos d t t t tt t e t y te t te t x e e--'+== 22222(sin cos )t te t t =+, 22d d t y x π=.(3) 由 210x yex xy +---=及0x =,得0y =,对方程 210x ye x xy +---= 两边取微分有(d d )2d (d d )0x y e x y x x y y x ++--+=,将0x =,0y =代入,得 0d d x y x ==.二、求积分 (4)解66x x =⎰⎰6x =⎰ (令33sin x t -=)2227(1sin )cos cos d t t t t ππ-=+⎰22012754cos d 54222t t πππ==⋅⋅=⎰.(5)解 令xe t =,2arctan d x x e x e ⎰=3arctan d t t t ⎰211arctan d 2t t =-⎰ 2221arctan 1[d ]2(1)t t t t t =--+⎰ 2221arctan 11[d d ]21t t t t t t=--++⎰⎰ 21arctan 1[arctan ]2t t C t t=-+++ 21arctan [arctan ]2x x xxe e e C e-=-+++. (6)解t =, 1+∞⎰=202d 1t t +∞+⎰02arcta n t π+∞==. 三、求极限 (7) 解 3012cos lim[()1]3xx x x →+- 2cos ln()3301lim [1]x x x e x +→=- 注2cos ln()32cos [1ln(),(0)]3xx x e x x ++-→ 2012cos limln()3x xx →+= 201cos 1lim ln(1)3x x x →-=+ 注[cos 1cos 1ln(1),(0)33x x x --+→] 201cos 11lim ()36x x x →-==. (8) 解 11lim[]()()()()x af a x a f x f a →-'--()()()()lim()()(()())x af x f a f a x a f a x a f x f a →'---='--=()()lim()(()())()()()x af x f a f a f x f a f a f x x a →''-'''-+-2()()()lim ()(()())2(())()()x a f x f a f a x a f a f x f a f a f a f x x a→''-''-=='-'''+-.(9)解 由 112[1)1))]nn n u n n n=+++(((1, 取11ln ln(1)n n i i u n n ==+∑, 则 11100011lim ln lim ln(1)ln(1)d ln(1)d 2ln 211n n n n i i x u x x x x x n n x →∞→∞==+=+=+-=-+∑⎰⎰, 所以 2ln 214lim n n u ee-→∞==. 四、(10)解:因为2620000arcsin d lim lim (1)d x x x tt t e tαβ→→=-⎰⎰ 注:由洛必达法则 2222331arcsin 3lim 1x x x x x e -→⋅=- 注:221,(0)x e x x -→ 22320231arcsin 1lim33x x x x x →==⋅, 所以,αβ与是同阶但不等价无穷小,则选 A.(11)解:(A) 因为11111()nn n n n n n aa a a ∞∞∞++===+=+∑∑∑11212n n n n n n a a a a ∞∞∞====+=+∑∑∑,而1nn a∞=∑收敛,所以11()nn n aa ∞+=+∑必收敛,(B)因为222222222221122311211()n n n n n n n aa a a a a a a a a a ∞++++=-=-+-++-+-=∑,所以2211()n n n aa ∞+=-∑必收敛.(C)因为2212345221111()nn n n n n n aa a a a a a a a a ∞∞++==+=+++++++=-∑∑所以2211()nn n aa ∞+=+∑必收敛,(D)221234522112()(1)n n n n n n n n aa a a a a a a a ∞∞++==-=-+-++-+=-∑∑未必收敛,例如 1(1)n n n ∞=-∑收敛, 但221(1)nn n n a n ∞∞==-=∑∑发散,则结论不正确的是D,本题选D(12)解:由1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则 11121,0,()11,02x t x x t e dt e e x F x e dt e x x ----⎧=-≤⎪=⎨⎪=-+>⎩⎰⎰,即 112,0,()11,02x e e x F x e x x --⎧-≤⎪=⎨-+>⎪⎩, 因为 12101lim ()lim(1)12x x F x e x e ++--→→=-+=-, 11lim ()lim()1x x x F x e e e ----→→=-=- 所以 ()F x 在0x =处连续.因为 2012(0)lim 0x x F x++∆→∆'==∆, 01(0)lim 1xx e F x-∆-∆→-'==∆,(0)(0)F F +-''≠所以,()F x 在0x =不可导,所以选C. (13)如图,在点(,0)b 处,左边0y ''>,右边0y ''<,而点(,0)b 处0y ''=,所以点(,0)b 为曲线的拐点; 同理,在点(0,)d 处,左边0y ''<,右边0y ''>,而点(0,)d 处0y ''=,所以点(0,)d 为曲线的拐点; 在点(,0)c 处,左边0y'<,右边0y'>,而点(,0)c处0y'=,所以点x c=为函数的极小值点;在点(,0)a处,左边0y'>,右边0y'<,而点(,0)a处0y'=,所以点x a=为函数的极大值点, 所以,曲线有二个拐点,一个极小值点,一个极大值点. 选(B)五、解:由22,1y axy x⎧=⎪⎨=-⎪⎩求得交点()11aAaa++(如图),直线OA的方程1y xa=+.(I) 旋转体体积()V a22241()d1aax a x xaπ+=-+=25/2215(1)aaπ⋅+,(II)53222552(1)(1)d()22d15(1)a a a aV aa aπ+-+=⋅+27/2(4)15(1)a aaπ-=+.在0a>处有唯一驻点4a=,当04a<<时d()dV aa>,当4a>时,d()dV aa<,故4a=为唯一极大值点,为最大值点.六、(15)解:由21()arctan ln(1)2f x x x x =-+ 21()arctan ,(),1f x x f x x'''==+展开之, 20()(1),(1,1)n n n f x x x ∞=''=-∈-∑,两边积分,得212100(1)(1)()(0),(1,1)2121n n n n n n f x f x x x n n ∞∞++==--''=+=∈-++∑∑,再次两边积分,得220(1)()(0)(21)(22)nn n f x f x n n ∞+=-=+++∑220(1),(1,1)(21)(22)nn n x x n n ∞+=-=∈-++∑. 右边级数在1x =±处收敛,左边函数在1x =±处连续,所以成立范围可扩大到闭区间[1,1]-. 七、(16)证法1:由2()(4)(2)2x xf x x e x e =---+2(0)0,()(1)(1),2xx xf f x e x e '==---(0)0f '=2221()()44x x x x x f x e xe xe e ''=-=-.而当0x >时2114x e >>,所以当0x >时()0f x ''<, 于是知,当0x >时,()0f x '<,从而知,当0x >时,()0f x <. 证法2:由证法一,有 2211()(0)(0)()()022f x f f x f x f x ξξ''''''=++=< 证法3:由2()(1)(1)2xxx f x e x e '=---()1()2x x xx e x ξ='⎡⎤=--⎣⎦()02xe ξξ=-<,所以()0f x <.注:设()(1)xg x x e =-,在[,]2x x 上的拉格郎日中值定理,有()2(1)(1)1(),222xx x x x x x e x e x e x x ξξ='⎡⎤---=--<<⎣⎦ .浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷一、(每小题6分) (1)设4cos 1tan 5ln 2x x y x e x π=++,求d d y x .(2)设由参数式22ln(1)x t ty t t ⎧=+⎨=-+⎩,确定了y 为x 的函数()y y x =,求曲线()y y x =的凹、凸区间及拐点坐标(区间用x 表示,点用(,)x y 表示).(3)求210sin lim()x x x x→ (4)求lim (2)]x x →+∞+二、(每小题6分) (5)求21d (1)x x x +⎰.(6)求arcsin d xxe x e ⎰. (7)求230d x xe x +∞-⎰.三、(第(8)-(11)小题每小题8分,第(12)小题6分) (8)(8分) 设()y y x =是由32210y xy x x ++-+=及(1)0y =所确定,求131()d lim(1)x x y t tx →-⎰.(9)(8分)设2()231x f x x x =-+,试将()f x 展开成x 的幂级数,并求()(0)(1)n f n ≥.(10)(8分) 设常数0a >,讨论曲线y ax =与2ln y x =在第一象限中公共点的个数.(11)(8分) 设0a <,曲线2y ax bx =+当01x ≤≤时0y ≥.又已知该抛物线与x 轴及直线1x =所围成的图形的面积13D =,试确定常数a 与b 使该图形绕x 轴旋转一周而成的旋转体体积V 最小. (12)(6分) 设()f x 在区间(0,1)内可导,且()f x M '≤(M 为常数)证明:① 级数1111(()())22n n n f f ∞+=-∑绝对收敛; ② 1lim ()2n n f →∞存在.四、选择题(四选一,每小题4分)(13)设()()(),()()()f x u x v x g x u x v x =+=-,并设0lim ()x u x →与0lim ()x v x →均不存在,则下列结论正确的是 [ ](A)若0lim ()x f x →不存在,则0lim ()x g x →必存在.(B)若0lim ()x f x →不存在,则0lim ()x g x →必不存在.(C)若0lim ()x f x →存在,则0lim ()x g x →必不存在.(D)若0lim ()x f x →存在,则0lim ()x g x →必存在.(14)曲线1ln(1)(1)x y e x x =++-的渐近线的条数 [ ](A)4条 (B)3条. (C)2条. (D)1条.(15)设2122()lim 1n n n x x xf x x -→∞++=+,则()f x 的不连续点的个数为 [ ] (A)0个 (B)1个. (C)2个. (D)多于2个.(16)设()f x [,]a b 上可导,且()0,()0,f a f b ''><下述结论不正确的是[ ] (A)至少存在一点0(,)x a b ∈使0()()f x f a >; (B)至少存在一点0(,)x a b ∈使0()()f x f b >; (C)至少存在一点0(,)x a b ∈使0()0f x '=; (D)至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+. (17)设0(1,2,)n a n >=,下列结论正确的是[ ](A)若存在0N >,当n N >时均有11n n a a +<,则1n n a ∞=∑必收敛. (B)若存在0N >,当n N >时均有11n n a a +>,则1n n a ∞=∑必发散. (C)若1n n a ∞=∑收敛.则必存在0N >,当n N >时必有11n na a +<, (D)若1n n a ∞=∑发散.则必存在0N >,当n N >时必有11n na a +>.浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷答案一、(每小题6分) (1)24cos 4cos d 5cos sec 54(sin ln )d 2x x x x y x x e x e x x x x x=++-. (2)由22x t t =+,d 2(1)d x t t=+,ln(1)y t t =-+,d d 1y t t t =+,2d d 2(1)yt x t =+, 224d 1d 2(1)y tx t -=+,令 22d 0d y x =, 得 1t = 当11t -<<时,22d 0d yx> 曲线凹;当1t >时,22d 0d yx< 曲线凸,当1t =时,对应拐点.换成,x y ,当13x -<<时, 曲线()y y x =凹; 当3x >时, 曲线当()y y x =凸,点(3,1ln 2)-为拐点.(3)解 因为2211sin ln()00sin lim()lim xxx x x x x e x→→= ,而22001sin 1sin limln lim ln(11)x x x x x x x x→→=+-,201sin lim (1)x x x x →=- 注sin sin ln(11)1,(0)x xx x x+--→ 3200sin cos 11lim lim 36x x x x x x x →→--===-, 所以 21160sin lim()x x x e x-→=. (4)lim (2))xx →+∞+2lim (1)]x x x→+∞=+ 222sin 2(1(1))limx x x ++-+=22sin 24()lim x x x --=sin 42lim 1x x --==- .二、 (5)22111d ()d (1)(1)x x x x x x x -=-+++⎰⎰=1ln ln 1x x C x--+++. (6) 方法1:令 arcsin xe t =,则cos sin ,ln sin ,d d sin xte t x t x t t===2arcsin cos d d sin x x e t t x t e t =⎰⎰1d()sin t t =-⎰1d sin sin t t t t =-+⎰ ln csc cot sin t t t C t =-+-+arcsin ln x x x e e e e C ---=-+-+,或写成arcsin ln 1x x e e x C -=--+. 方法2:令 xe t =,则1ln ,d d ,(0)x t x t t t==>2arcsin arcsin 1d d arcsin d x xe t x t t e t t==-⎰⎰⎰arcsin t t =-+arcsin tt=-+arcsin 1ln t C t t =--++arcsin ln 1x x e e x C -=+-+.(7)2232200011d d d 22x x tx ex x e x te t +∞+∞+∞---==⎰⎰⎰001[d ]2t t te e t +∞+∞--=-+⎰011[]22t e +∞-=-=.三、(8)解 由32210y xy x x ++-+=,1lim ()0x y x →=两边关于x 求导数,有23220y y xy y x ''+++-=,得222()3x yy x y x --'=+,1lim ()0x y x →'=,222(3)(2)(22)(61)()(3)y x y x y yy y x y x ''+-----+''=+,1lim ()2x y x →''=-. 由洛必达法则,1321111()d ()()()1limlimlim lim (1)3(1)6(1)63x x x x x y t ty x y x y x x x x →→→→'''====----⎰. (9)解:()(21)(1)xf x x x =--1111121112x x x x-=-=+---- 0(2)nn n n x x ∞∞===-+∑∑1(21),2n n n x x ∞==-<∑ ()(0)(21)!,1n n f n n =-≥(10)解:令()2ln f x ax x =-,有2()f x a x'=-, 令()0f x '=,得2x a=, 22()f x x''=, 由于()0f x ''>, 所以22()22ln f a a=-为()f x 的唯一极小值,为最小值.以下讨论最小值的符号.①若2 22ln0a->,即2ae>时,()0f x>,()f x无零点,两曲线无公共点;②若2ae=,则当且仅当a e=时,()0f x=,()f x有唯一零点,两曲线在第一象限中相切;③若20ae<<,有2()0fa<时,有因lim()xf x+→=+∞,lim()xf x→+∞=+∞,所以在区间2(0,)a与2(,)a+∞内,()f x各有至少一个零点,又因为在这两个区间中()f x分别是严格单调的,所以()f x正好有两个零点,即两曲线在第一象限中有且仅有两个交点.(11)解:因0a<,且当01x≤≤时,0y≥,所以如下图1211()d323bax bx x a+=+=⎰,所以312a b=-,22122()d()523a ab bV ax bx xππ=+=++⎰21()51030b bπ=-+,d1()d1015V bbπ=-+,22dd15V bbπ=,令ddVb=,32b=,2232ddbVb=>,为唯一极小值,故32bV=为最小值,此时53,42a b=-=.(12)①由拉格朗日中值定理1111111111()()()()()()222222n n n n n nf f f f Mξξ++++''-=-=≤,而1112nn∞+=∑收敛,所以,1111[()()]22n nnf f∞+=-∑绝对收敛;②111()()22n nS f f+=-,因为limnnS→∞存在,所以1lim()2nnf→∞存在.四、 (13)解 (A)若0lim ()x f x →不存在,则0lim ()x g x →必存在.不正确,例如 211(),()u x v x x x ==, 221111(),()f x g x x x x x=+=-, 此时0lim ()x f x →不存在,0lim ()x g x →也不存在.(B)若0lim ()x f x →不存在,则0lim ()x g x →必不存在.不正确,例如 11(),()u x v x x x ==,2(),()0f x g x x==, 此时0lim ()x f x →不存在,0lim ()0x g x →=存在.(C)若0lim ()x f x →存在,则0lim ()x g x →必不存在.假设0lim ()x g x →存在,由()()2()f x g x u x +=,得0lim ()x u x →存在,与已知矛盾,所以结论正确.(D)若0lim ()x f x →存在,则0lim ()x g x →必存在.由上述(C),说明0lim ()x g x →必存在不正确.所以结论正确的是C,本题选C. (14)解,因为11lim[ln(1)](1)x x e x x →++=∞-,1lim[ln(1)](1)x x e x x →++=∞-,有铅垂渐近线(0,1x x ==)2条,因为1lim [ln(1)]0(1)x x e x x →-∞++=-,有水平渐近线(0y =)1条,又因为 2()1ln(1)limlim []1,1(1)x x x f x e a x x x x→+∞→-∞+=+==-, 1lim [()]lim [ln(1)](1)x x x f x ax e x x x →+∞→+∞-=++--lim[ln (1)]lim[ln ln(1)]x x x x x x e e x e e x --→+∞→+∞=+-=++-lim ln(1)0x x e -→+∞=+=,有斜渐近线(y x =)1条,所以本题共有4条渐近线,选A.(15)解22122,1,3,1,2()lim 11,121,1,n n n x x x x x x x f x x x x x-→∞⎧+<⎪⎪=⎪++⎪==⎨+-=-⎪⎪⎪>⎪⎩, 则()f x 的不连续点(1,1x x =-=)的个数为2个所以选C. (16)解 取2()4,[1,1],1,1,()3,()3f x x x a b f a f b =-∈-=-===,当(1,1)x ∈-时()3f x >,()2,()2,()2f x x f a f b '''=-==-,满足题目条件:(A)至少存在一点0(,)x a b ∈使0()()f x f a >,成立, (B)至少存在一点0(,)x a b ∈使0()()f x f b >;成立, (C)至少存在一点0(,)x a b ∈使0()0f x '=;成立, (D)至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+.不成立. 所以本题选D (17)解 (A)不成立,例如11n n ∞=∑,满足当1n >时 111n n a n a n +=<+, 但11n n∞=∑发散, (B)成立,若存在0N >,当n N >时均有111,n n n na a a a ++>>, 则必有lim 0n n a →∞≠ 则1nn a∞=∑必发散.(C)不成立, 例如 21(1)2n n n ∞=-+∑收敛,但不存在0N >,当n N >时必有11n n a a +<, (D)不成立,例如 11n n ∞=∑发散,但则存在0N >,当n N >时有111n na n a n +=<+.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷一、求导数或微分(每小题6分) (1)设sin 3(cos )(arcsin 2)xy x x e π=++,求d y .(2)设由参数式3arctan 16x t t y t t =++⎧⎨=+⎩,所确定的函数()y y x =在1t =-处的一阶导数d d y x, 及二阶导数22d d yx.二、求极限(每小题6分)(3)011lim()1x x x e →--,(4)limx , (5)21lim(sin cos )x x x x x →+.三、求积分(每小题6分)(6) 221ln d (1)x x x x x x -+-⎰,(7)11(2)x x x -+⎰, (8)已知2d 2x ex +∞-=⎰,求xx -+∞⎰.四、(每小题6分) (9)试将函数12()arctan12xf x x-=+展开成x 的幂级数,并写出此展开式成立的开区间. (10)求幂级数1!nn n n x n ∞=∑的收敛半径及收敛区间,并讨论收敛区间端点处级数的敛散性. 五、(每小题8分)(11) 求由方程3222220y y xy y x -++-=确定的函数()y y x =的极值,并问此极值是极大值还是极小值,说明理由.(12)求由曲线2y x =与2y x =+围成的图形绕水平线4y =旋转一周所生成的旋转体体积V .(13)设()f x 在[0,1]上连续,(0)0f =,并设()f x 在0x =处存在右导数(0)1f +'=,又设0x +→时,220()()d ()d x x F x xf u u u u =-⎰⎰与n Ax 为等价无穷小,求常数n 及A 的值.六、(每小题8分)(14)设()f x 在闭区间[,]a b 上连续,(,)a b 内可导, (I)叙述并证明拉格朗日中值定理;(II)如果再设()()f a f b =,且()f x 不是常数,试证明至少存在一点(,)a b ξ∈,使()0f ξ'>.(15)设n 为正整数,24021()d d 1nxxe t F x e t t t -=++⎰⎰(I)试证明:函数()F x 有且仅有一个(实)零点(即()0F x =有且仅有一个实根),并且是正的,记此零点n x ;(II)试证明级数21nn x∞=∑收敛.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分(每小题6分)(1)sin 2d [(cos )(cos ln cos tan sin )6(arcsin 2)xy x x x x x x x =-+.(2)222d 2d ,3(2)d 1d x t y t t t t+==++,21d d 3(1),6d d t y y t x x =-=+= 222222d d()d 66(1)d 2d d 21y yt t t x t x x t t +===+++, 221d 4d t y x =-=-.二、求极限(每小题6分)(3)00111lim()lim 1(1)x x x x x e x x e x e →→---=-- 注1,0xe x x -→ 201lim x x e x x →--= 011lim 22x x e x →-==.(4)limlim ln x x xx x→-∞=+lim2x ==-.(5)2121ln(sin cos )lim(sin cos )lim xx x x x x x x x x e →→++=,而22001ln(1sin cos 1)limln(sin cos )lim x x x x x x x x x x→→++-+= 20sin cos 11lim 2x x x x x →+-==, 注:ln(1sin cos 1)sin cos 1,0x x x x x x x ++-+-→所以,21lim(sin cos )x x x x x →+=三、求积分(6) 222111ln d ()ln d (1)(1)x x x x x x x x x x -+=+--⎰⎰ 1ln d ln ln d()1x x x x =--⎰⎰ 21ln 1ln d 21(1)x x x x x x =-+--⎰ 21ln 11ln ()d 211x x x x x x =-+---⎰ 21ln ln ln 1ln 21x x x x C x =-+--+-.(7)112211(2)(24x x x x x x x x --+=++⎰⎰110x x =⎰ 令sin x t =22210sin cos d t t t π=⎰222010sin (1sin )d x x x π=-⎰131510()224228πππ=⋅-⋅⋅=.(8)2(1xxx e -+∞+∞-=--⎰⎰]xx -+∞=--⎰2024d xu u e u -+∞+∞-==⎰⎰四、(9)12()arctan12xf x x -=+, 221(12)(2)(12)2()12(12)1()12x x f x x x x +---'=-+++ 22422814x x -==-++ 21212012(4)(1)2,2n n n n n x x x ∞∞++===--=--<∑∑, 12120()(0)(1)2d x n n n n f x f x x ∞++==+-∑⎰12121011(1)2,4212n n n n x x n π∞+++==+-<+∑.(10)记! n nn an=,由11(1)!11(1)lim lim lim lim!1(1)(1)nnnnn n n n nnnna nnna n en n++→∞→∞→∞→∞++====++.所以,收敛半径R e=,收敛区间为(,)e e-,在x e=±处,级数成为1!()nnnnen∞=±∑, 考察!nn nnu en=,有111(1)nnnu eun+=>+,所以lim0nnu→∞≠,并且也有lim(1)0nnnu→∞-≠,所以在x e=±处,该级数都发散.(11)由3222220y y xy y x-++-=, 求导有2(6421)220y y x y y x'-+++-=, 令0y'=,得y x=与3222220y y xy y x-++-=联立,有3222(21)0x x x x x x-+=-+=,解之得唯一解0x=.相应地有0y=, 此时的确可由2(6421)220y y x y y x'-+++-=解出y',故0x=为驻点.再有222()6421x yyy y x-'''=-++2222(6421)(22)2()(6421)(6421)y y x y x y y y xy y x''-++----++=-++.以0x y==,及0y'=代入,得20y''=>,故当0x=时, y为极小值,极小值0y=.(12)由2,2y xy x⎧=⎨=+⎩得交点(1,1),(2,4)-,则由上图22221[(4)(4(2)]dV x x xπ-=---+⎰2241(1249)dx x x xπ-=+-+⎰235211108[1223]55x x x xππ-=+-+=.。
微积分考试题库(附答案)
85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。
(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。
(完整word版)微积分考试试题
《微积分》试题一、选择题(3×5=15)1、.函数f (x)=1+x3+x5,则f (x3+x5)为( d )(A)1+x3+x5(B)1+2(x3+x5)(C)1+x6+x10(D)1+(x3+x5)3+(x3+x5)52、.函数f(x)在区间[a,b] 上连续,则以下结论正确的是( b )(A)f (x)可能存在,也可能不存在,x∈[a,b]。
(B)f (x)在[a,b] 上必有最大值。
(C)f (x)在[a,b] 上必有最小值,但没有最大值。
(D)f (x)在(a,b) 上必有最小值。
3、函数的弹性是函数对自变量的( C )A、导数B、变化率C、相对变化率D、微分4、下列论断正确的是( a )A、可导极值点必为驻点B、极值点必为驻点C、驻点必为可导极值点D、驻点必为极值点5、∫e-x dx=( b )(A)e-x+c (B)-e-x+c (C)-e-x(D)-e x +c二、填空题(3×5=15)1.设,则 。
[答案: ]2.函数y=x+ex 上点 (0,1) 处的切线方程是_____________。
[答案:2x-y+1=0]3、物体运动方程为S=11+t (米)。
则在t=1秒时,物体速度为V=____,加速度为a=____。
[答案:41-,41]4.设,则 。
[答案:34]5.若⎰+=c e 2dx)x (f 2x ,则f(x)=_________。
[答案:2x e ]三、计算题 1、设x sin ey x1tan = ,求dy 。
(10分)解:dy=d x sin ex1tan =dx x sin x 1sec x 1x cos e22x1tan⎪⎭⎫ ⎝⎛-2.计算⎰+2x )e 1(dx。
(15分)解:原式=⎰+-+dx )e 1(e e 12x x x =⎰⎰++-+2x x x )e 1()e 1(d e 1dx =⎰+++-+x x x x e 11dx e 1e e 1 =x-ln(1+e x )+xe11+ +c3.求(15分)解:4.设一质量为m的物体从高空自由落下,空气阻力正比于速度( 比例常数为k)0 )求速度与时间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分考试重点
一、题型和比例
1.客观题——填空题(12%)、单项选择题(12%)
2.主观题——计算解答题(49%)、综合题(27%)
二、考查重点
1.客观题主要考查各章基本概念。
1)第七章:方程在空间中表示的几何图形;
2)第八章:二元函数的定义域、函数的偏导数;
3)第九章:交换二重积分的积分次序、极坐标系二重积分
计算公式;偏导数、连续、可微之间的关系;二重积分
的性质
4)第十章:微分方程阶数、齐次或通解的概念
2.主观题主要考查各章基本计算能力。
1)第八章:高阶偏导数;全微分在近似计算中的应用;多
元复合函数求导法则;隐函数求导公式;二元函数的极
值;二元函数极限相关;二元函数极值的应用;
2)第九章:计算二重积分(含坐标系);曲顶柱体的体积;
3)第十章:求齐次或一阶线性非齐次微分方程的通解;
注:绝大多数题目来源于书中中等难度例题或习题,且大多数题目略微修改了数据或参数。