BP神经网络介绍
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。
它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。
一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。
BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。
在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。
在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。
最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。
二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。
BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。
(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。