广东省广州市番禺区2020年中考数学一模试卷 (含答案解析)
(答案)广东省2020年中考数学一模试题
2020年广东省中考数学一模试卷一.选择题(共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.D.【分析】根据求一个数的相反数就是在这个数前面添上“﹣”号,即可得出答案.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义,结合选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称的特点.3.(3分)2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15万=15×104=1.5×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)计算a4•a2的结果是()A.a8B.a6C.a4D.a2【分析】根据同底数幂的乘法法则计算即可.【解答】解:a4•a2=a4+2=a6.故选:B.【点评】本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.5.(3分)若在实数范围内有意义,则x的取值范围是()A.B.x<2C.D.x≥0【分析】根据二次根式的被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,1﹣2x>0,解得,x<,故选:A.【点评】本题考查的是二次根式、分式有意义的条件,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.6.(3分)不透明袋子中有3个红球和2个白球,这些球除颜色外无其他差别,从袋中随机取出1个球,是红球的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子装有3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)如图,直线AC和直线BD相交于点O,若∠1+∠2=70°,则∠BOC的度数是()A.100°B.115°C.135°D.145°【分析】根据对顶角和邻补角的定义即可得到结论.【解答】解:∵∠1=∠2,∠1+∠2=70°,∴∠1=∠2=35°,∴∠BOC=180°﹣∠1=145°,故选:D.【点评】本题考查了邻补角、对顶角的应用,主要考查学生的计算能力.8.(3分)若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣1【分析】根据根的判别式即可求出答案.【解答】解:当该方程是一元二次方程时,由题意可知:△=4+4k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,当该方程时一元一次方程时,k=0,满足题意,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9.(3分)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由y的值随着x值的增大而减小可得出2m﹣1<0,再利用一次函数图象与系数的关系可得出一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【解答】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<0.∵2m﹣1<0,1>0,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【点评】本题考查了一次函数图象与系数的关系以及一次函数的性质,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.10.(3分)如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y 轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6【分析】再根据反比例函数的比例系数k的几何意义得到|k|=2,然后去绝对值即可得到满足条件的k的值.【解答】解:∵AB⊥y轴,∴S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二.填空题(共7小题,每题4分,共28分)11.(4分)11的平方根是.【分析】根据正数有两个平方根可得11的平方根是±.【解答】解:11的平方根是±.故答案为:±.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.12.(4分)已知,|a﹣2|+|b+3|=0,则b a=9.【分析】根据非负数的性质可求出a、b的值,再将它们代b a中求解即可.【解答】解:∵|a﹣2|+|b+3|=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,则b a=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.(4分)分解因式:m4﹣81m2=m2(m﹣9)(m+9).【分析】首先提公因式m2,再利用平方差进行二次分解即可.【解答】解:原式=m2(m2﹣81),=m2(m﹣9)(m+9).故答案为:m2(m﹣9)(m+9).【点评】此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(4分)点M(3,﹣1)到x轴距离是1.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:1【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值是解题关键.15.(4分)圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为10π.【分析】由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式可得圆锥的侧面积,然后求得底面积,二者相加即可求得全面积.【解答】解:圆锥的侧面积=×3×2π×2=6π,底面积为22π=4π,所以全面积为:6π+4π=10π.故答案为:10π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.16.(4分)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE =2cm,则这个六边形的周长等于17cm.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.17.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为②④.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),【分析】根据抛物线开口方向得到a>0,根据抛物线对称轴为直线x=﹣=﹣1,得到b=2a,则b>0,根据抛物线与y轴的交点在x轴下方得到c<0,所以abc<0;由x=,y=0,得到a+b+c=0,即a+2b+4c=0;由a=b,a+b+c>0,得到b+2b+c >0,即3b+2c>0;由x=﹣1时,函数值最小,则a﹣b+c≤m2a﹣mb+c(m≠1),即a ﹣b≤m(am﹣b).【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,则2a﹣b=0,所以③错误;∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵x=时,y=0,∴a+b+c=0,即a+2b+4c=0,所以②正确;∵a=b,a+b+c>0,∴b+2b+c>0,即3b+2c>0,所以④正确;∵x=﹣1时,函数值最小,∴a﹣b+c≤am2﹣mb+c,∴a﹣b≤m(am﹣b),所以⑤错误.故答案为②④.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)计算:+()0+•sin45°﹣(π﹣2019)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=3+1+×﹣1=4+1﹣1=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.【点评】此题主要考查了分式的化简求值,关键是掌握计算顺序,正确把分式进行化简.20.(6分)已知:△ABC中,AB=AC.(1)求作:△ABC的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=12,求⊙O的面积.【分析】(1)作线段BC的垂直平分线AD,线段AB的垂直平分线EF,最小AD交EF 于点O,以O为圆心,OA为半径作⊙O即可.(2)设BC的垂直平分线交BC于点D,连接OB.利用勾股定理求出OB2即可.【解答】解:(1)如图,⊙O即为所求.(2)设BC的垂直平分线交BC于点D,连接OB.由题意得:OD=4,BD=CD=BC=6,在Rt△OBD中,OB2=OD2+BD2=42+62=52,∴⊙O的面积=π•OB2=52π.【点评】本题考查﹣复杂作图,等腰三角形的性质,三角形的外接圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四.解答题(二)(共3小题,每题8分,共24分)21.(8分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为120°,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;据此即可补全条形图;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好选到一男一女的概率结果数,利用概率公式计算可得.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.22.(8分)如图,一名滑雪爱好者先从山脚下A处沿登山步道走到点B处,再沿索道乘坐缆车到达顶部C.已知在点A处观测点C,得仰角为35°,且A,B的水平距离AE=1000米,索道BC的坡度i=1:1,长度为2600米,求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,结果保留整数)【分析】作CD⊥AE于点D,BF⊥CD于点F.证四边形BEDF是矩形,由BC=2600米知米、米.由AE=1000米知米.结合∠CAD=35°求解可得.【解答】解:如图,作CD⊥AE于点D,BF⊥CD于点F.又∵BE⊥AD,∴四边形BEDF是矩形.在Rt△BCF中,∵BC的坡度i=1:1,∴∠CBF=45°.∵BC=2600米,∴米.∴米.∵A,B的水平距离AE=1000米,∴米.∵∠CAD=35°,∴(米).答:山高CD约为1983米.【点评】本题考查解直角三角形﹣坡度坡角问题,解题的关键是明确题意,找出所求问题需要的条件.23.(8分)某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B 种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让顾客得到更多的优惠,该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请设计获利最大的进货方案,并求出最大利润.【分析】(1)直接利用A种水杯单价每降低1元,平均每天的销量可增加10个,用m 表示出A种水杯的销量,再根据销量×每件利润=630,进而解方程得出答案;(2)设购进A种水杯x个,则B种水杯(120﹣x)个.求得利润y关于x的一次函数,再利用x的取值范围和一次函数的增减性求出y的最大值.【解答】解:(1)超市将A种水杯售价调整为每个m元,则单件利润为(m﹣15)元,销量为[60+10(25﹣m)]=(310﹣10m)个,依题意得:(m﹣15)(310﹣10m)=630,解得:m1=22,m2=24,答:为了尽量让顾客得到更多的优惠,m=22.(2)设购进A种水杯x个,则B种水杯(120﹣x)个.设获利y元,依题意得:,解不等式组得:40≤x≤53,利润y=(25﹣15)x+(120﹣x)(20﹣12)=2x+960.∵2>0,∴y随x增大而增大,当x=53时,最大利润为:2×53+960=1066(元).答:购进A种水杯53个,B种水杯67个时获利最大,最大利润为1066元.【点评】此题考查了一元二次方程的应用以及一次函数的应用,一元二次方程应用的关键是理解题意找到等式两边的平衡条件,列出方程.求一次函数应用最值关键是求出自变量的取值范围.五.解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.【分析】(1)连接AF,分别证∠BGF+∠AFG=90°,∠BGF=∠AFB,即可得∠OFG =90°,进一步得出结论;(2)①连接CF,则∠ACF=∠ABF,证△ABO≌△ACO,推出∠CAO=∠ACF,证△ADO∽△CDF,可求出DF,BD的长,再证△ADB∽△FDC,可推出AD•CD=7,即AD2=7,可写出AD的长;②因为△ODC为直角三角形,∠DCO不可能等于90°,所以存在∠ODC=90°或∠COD=90°,分两种情况讨论:当∠ODC=90°时,求出AD,AC的长,可进一步求出△ABC 的面积;当∠COD=90°时,△OBC是等腰直角三角形,延长AO交BC于点M,可求出MO,AM的长,进一步可求出△ABC的面积.【解答】(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠F AG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,∴S△ABC=×4×6=12;当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,∴S△ABC=×4×(4+2)=8+8,∴△ABC的面积为12或8+8.【点评】本题考查了圆的有关概念及性质,切线的判定定理,相似三角形的判定及性质,直角三角形的存在性质等,解题关键是在求直角三角形的存在性及三角形ABC的面积时注意分类讨论思想的运用等.25.(10分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.【分析】(1)由题意可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,则可求解析式;(2)连接PO,设P(n,﹣n2+2n+3),分别求出S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,所以S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,当x=时,S△ABP的最大值为;(3)设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,在Rt△CGD中,CG==DG,所以(t﹣3)=t2﹣2t+3,求出D(3+,﹣3),所以AG=3,GD=3,连接AD,在Rt△ADG中,AD=AC=6,∠CAD=120°,在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2=36,求出m=3或m=﹣3,即可求Q.【解答】解:(1)抛物线顶点坐标为C(3,6),∴可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,∴y=﹣x2+2x+3;(2)连接PO,BO=3,AO=3,设P(n,﹣n2+2n+3),∴S△ABP=S△BOP+S△AOP﹣S△ABO,S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,∴S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,∴当x=时,S△ABP的最大值为;(3)存在,设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,∴∠ACD=30°,∴2DG=DC,在Rt△CGD中,CG==DG,∴(t﹣3)=t2﹣2t+3,∴t=3+3或t=3(舍)∴D(3+,﹣3),∴AG=3,GD=3,连接AD,在Rt△ADG中,∴AD==6,∴AD=AC=6,∠CAD=120°,∴在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2,∴AQ2=AC2,∴9+m2=36,∴m=3或m=﹣3,综上所述:Q点坐标为(0,3)或(0,﹣3).【点评】本题考查二次函数的综合题;熟练掌握二次函数的图象及性质,能够利用直角三角形和圆的知识综合解题是关键.。
2020年广东省广州市中考数学一模试卷(含答案解析)
2020年广东省广州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在实数−3,0,5,3中,最小的实数是()A. −3B. 0C. 5D. 32.如图是五个相同的小正方体搭成的几何体,其俯视图是()A.B.C.D.3.下列计算中,正确的是()A. (a2)3⋅a3=a9B. (a−b)2=a2+2ab−b2C. x2⋅x4=x8D. √2⋅√3=√54.如图,将△ABC沿AB方向平移至△DEF,且AB=5,BD=2,则CF的长度为()A. 4B. 5C. 3D. 25.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则参加绘画兴趣小组的频数是()。
A. 8B. 9C. 11D. 126.在下列性质中,菱形具有而矩形不具有的性质是()A. 内角和等于360°B. 对角相等C. 对角线平分一组对角D. 邻角互补7.不等式组{2x−1>1−x≤2的解集为()A. x>1B. −2≤x<1C. x≥−2D. 无解8.已知:如图,将∠ABC放置在正方形网格纸中,其中点A、B、C均在格点上,则tan∠ABC的值是()A. 2B. 12C. √52D. 2√559.已知一元二次方程x2−2018x+10092=0的两个根为α,β,则α2β+αβ2=()A. 10093B. 2×10093C. −2×10093D. 3×1009310.如图,在平面直角坐标系中,点A坐标为(2,1),直线l与x轴,y轴分别交于点B(−4,0),C(0,4),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是()A. (−2,2)B. (−32,52) C. (−12,72) D.(1,0)二、填空题(本大题共6小题,共18.0分)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.12.已知a<0,b>0,化简√(a−b)2=______.13.分式方程2xx−3=1的解是______.14.如图,已知∠ABC=30°,以O为圆心、2cm为半径作⊙O,使圆心O在BC边上移动,则当OB=______ cm时,⊙O与AB相切.15.一个圆锥的高线长是8cm,底面直径为12cm,则这个圆锥的侧面积是______.16.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3√5,且∠ECF=45°,则CF的长为__________.三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:a2−2aba−b −b2b−a,其中a=1+√3,b=−1+√3.四、解答题(本大题共8小题,共92.0分)18.计算:√83−2cos60°−(π−2018)0+|1−√4|19.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.20.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.21.已知一次函数y=ax+b与反比例函数y=3b−ax 的图象交于点(12,2),求:(1)这两个函数的解析式;(2)两个函数图象另一个交点的坐标.22.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?23.尺规作图(保留作图痕迹,不写作法和证明)如图,已知:△ABC,∠ACB=90°,求作:⊙O,使圆心O在AC边上,且⊙O与AB,BC均相切.24.如图,在平面直角坐标系中.直线y=−x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A(−1,0),连结AC.(1)求抛物线的解析式;(2)如图1,若点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)如图2,若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.25.如图,∠ABD=∠BCD=90°,DB平分∠A DC,过点B作BM//CD交AD于M,连接CM交DB于N。
2020年广东省广州市番禺区中考数学一模试卷
2020年广东省广州市番禺区中考数学一模试卷
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3分)下列计算正确的是()
A.2a2•3a2=6a2B.(﹣3a2b)2=6a4b2
C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2
2.(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是()
A.B.
C.D.
3.(3分)在某学校“我的中国梦”演讲比赛中,有7名学生参加决赛,它们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前3名,不仅要知道自己的成绩,还要了解这7名学生成绩的()
A.平均数B.中位数C.众数D.方差
4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()
A.ac>0B.|b|<|c|C.a>﹣d D.b+d>0
5.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=25°,则下列说法中正确的是()
A.∠OCE=50°B.CE=OE C.∠BOC═50°D.BD=OC
6.(3分)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()。
2024年广东省广州市番禺区初三一模数学试题含答案解析
2024年广东省广州市番禺区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中运算正确的是( )A .321a a -=B .()11a a --+=-C .()22330-+-=D .()3326a a -=【答案】C【分析】本题考查了合并同类项,去括号,有理数的乘方和积的乘方,根据合并同类项,有理数的乘方,去括号和积的乘方运算法则逐项判断即可,熟知相关计算法则是解题的关键.【详解】A 、32a a a -=,原选项计算错误,不符合题意;B 、()1121a a a a a --+=+-=-,原选项计算错误,不符合题意;C 、()2233990-+-=-+=,原选项计算正确,符合题意;D 、()3328a a -=-,原选项计算错误,不符合题意;故选:C .2.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题主要考查了轴对称图形和中心对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,熟练掌握轴对称图形和中心对称图形的概念是解题的关键.【详解】A .不是轴对称图形,是中心对称图形,故本选项不符合题意;B .即是轴对称图形,又是中心对称图形,故本选项符合题意;C .是轴对称图形,不是中心对称图形,故本选项不符合题意;D .是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B .3.实数a 、b 、c 在数轴上的位置如图所示,则下列各式中正确的个数有( )(1)0abc >;(2)c a b ->>-;(3)11b a> ;(4)c a >A .1个B .2个C .3个D .4个4.深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320000万吨钢材,320000这个数用科学记数法表示为( )A .93.210⨯B .60.3210⨯C .43210⨯D .53.210⨯5.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于13【答案】B【分析】根据事件发生的可能性大小判断即可.【详解】解:A 、点数和为1,是不可能事件,不符合题意;B 、点数和为6,是随机事件,符合题意;C 、点数和大于12,是不可能事件,不符合题意;D 、点数的和小于13,是必然事件,不符合题意.故选:B .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图, 在ABCD Y 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形,则a 的值可以为( )A .2B .3C .23D .32【答案】A【分析】本题主要考查了菱形的判定,平行四边形的性质和判定,平移的性质,熟练掌握菱形的判定方法是解决问题的关键.先证得四边形ECDF 为平行四边形,当4CD CE ==时,ECDF 为菱形,此时642a BE BC CE ==-=-=,即可解答.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD ∥,即CE DF ∥,4CD AB ==,∵将线段AB 水平向右平移a 个单位长度得到线段EF ,∴AB EF CD ∥∥,∴四边形ECDF 为平行四边形,∴当4CD CE ==时,ECDF 为菱形,此时642a BE BC CE ==-=-=.故选:A7.下列命题中是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为60︒C .对角线相等的四边形是矩形D .有一个角是60︒的等腰三角形是等边三角形【答案】D【分析】本题考查了命题与定理,根据多边形外角和、正多边形内角和,矩形的判定,等边三角形的判定,对各个选项逐个分析,即可得到答案.【详解】A 、正六边形的外角和,和正五边形的外角和相等,均为360︒,原选项不符合题意;B 、正六边形的内角和为720︒, 则每一个内角为120︒,原选项不符合题意;C 、对角线相等的平行四边形是矩形,原选项不符合题意;D 、有一个角是60︒的等腰三角形是等边三角形,原选项符合题意;故选:D .8.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3 月份的生产成本为12.8 万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x ,则根据题意所列方程正确的是( )A .()213112.8x -=B .()213112.8x -=C .()212.8113x -=D .()213112.8x +=【答案】A【分析】此题考查了一元二次方程的应用,设每个月生产成本的下降率为x ,由题意可列方程()213112.8x -=,根据题意列出方程是解题的关键.【详解】解:设每个月生产成本的下降率为x ,由题意得:()213112.8x -=,故选:A .9.如图,抛物线²y ax c =+经过正方形OABC 的三个顶点A ,B ,C , 点B 在y 轴上, 则ac 的值为( )A .1-B .2C .3-D .2-∵正方形OABC ,10.若关于x 的一个一元一次不等式组的解集为a x b <<(a b 、为常数且a b <),则称2a b +为这个不等式组的“解集中点”.若关于x 的不等式组 24x x mx m >+⎧⎨-<⎩的解集中点大于方程13233x x ⎛⎫+=+ ⎪⎝⎭的解且小于方程264x x +=的解, 则 m 的取值范围是( )A .01m <<B .0m <C .1m >D .21m -<<二、填空题11.若分式32x-有意义,则实数x 的取值范围是 .【答案】2x ≠【分析】根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:2-x≠0,∴x≠2,故答案为:2x ≠.【点睛】本题考查了分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.12.分解因式:23x y y -= .【答案】()()y x y x y +-【详解】试题分析:原式提公因式得:y (x 2-y 2)=()()y x y x y +-考点:分解因式点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式.13.方程31512x x=+的解为 .【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.14.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3= .【答案】25°【分析】如图,由平行线的性质可求得∠4,结合三角形外角的性质可求得∠3.【详解】解:如图,∵a ∥b ,∴∠4=∠2=55°,又∵∠4=∠1+∠3,∴∠3=∠4-∠1=55°-30°=25°.故答案为:25°.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键.15.如图, 在ABC 中,AB AC =, 点 O 在边AC 上, 以O 为圆心, 3 为半径的圆恰好过点C ,且与边AB 相切于点D ,交边BC 于点E ,则劣弧DE 的长是 (结果保留π ) .∵AB 是切线,∴90ODB ∠=︒,∵AB AC =,OE OC =,∴B ACB OEC ∠=∠=∠,∴OE ∥A B ,16.如图,已知在直角三角形ABO 中,点 B 的坐标为(-,将ABO 绕点O 旋转至A B O ''△的位置,使点A '落在边OB 上,点B '落在反比例函数ky x=的图象上,则k 的值为.三、解答题17.解不等式组: 23535x x x x +⎧≥⎪⎨⎪-<+18.如图, 点E F 、在线段BC 上, AB CD ∥,A D ∠=∠, BE CF =.求证:AB CD =.【答案】证明见解析.【分析】本题考查了平行线的性质和全等三角形的判定与性质知识,根据平行线的性质可得B C ∠=∠,进而根据AAS 证明ABE DCE △≌△,再由全等三角形的性质即可求证,解题的关键是掌握全等三角形的判定与性质.【详解】∵AB CD ∥,∴B C ∠=∠,在ABE 和DCE △中A DB CBE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABE DCE ≌,∴AB CD =.19.如图, 在ABCD Y 中, 30DCB ∠=︒.(1)操作:用尺规作图法过点D 作AB 边上的高DE ;(保留作图痕迹,不要求写作法)(2)计算∶在(1)的条件下, 若4=AD , 6AB =, 求梯形EBCD 的面积.∴DE 即为所求;(2)∵四边形ABCD 是平行四边形,∴6CD AB ==,由(1)得:DE AB ⊥,20.已知 221121x x A x x x x -⎛⎫=-÷ ⎪+++⎝⎭.(1)化简A ;(2)若已知 210x x --=,求A 的值.21.已知一次函数2y x m =+的图象与反比例函数 ()0k y k x=>的图象交于A ,B 两点.(1)当点A 的坐标为()2,1时.①求m , k 的值;②分别作出上述一次函数与反比例函数的大致图象(不用列表),并依据图象,直接写出不等式 2k x m x>+的解集;(2)若将函数2y x m =+的图象沿y 轴向下平移4个单位长度后,点A ,B 恰好关于原点对称,求m 的值.联立232y x y x =-⎧⎪⎨=⎪⎩,解得:21x y =⎧⎨=⎩或124x y ⎧=-⎪⎨⎪=-⎩,根据图象可知:当12x <-或02x <<时2k x m x>+;(2)一次函数2y x m =+的图象沿y 轴向下平移4个单位长度后,可得联立24y x m k y x =+-⎧⎪⎨=⎪⎩,∴()2240x m x k +--=,∵点A ,B 恰好关于原点对称,∴点A ,B 的横坐标之和为0,22.《广州市生活垃圾分类管理条例》实施以来,我区多次组织共产党员到社区进行垃圾分类宣传志愿服务,带头破解小区垃圾分类难点、堵点问题,社区垃圾分类文明实践蔚然成风.生活垃圾分为四类:可回收物、餐厨垃圾、有害垃圾、其他垃圾,某校“玩转数学”小组在对当地垃圾分类调查中,绘制了如图所示的垃圾分类扇形统计图.(1)求图中可回收物所在的扇形的圆心角的度数;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.15万元.若某镇某月生活垃圾清运总量为2000吨,请估计该月可回收物可创造的经济总价值是多少万元?(3)为了进一步宣传垃圾分类知识,提升青少年环保参与意识,提高居民分类质量,学校开展了“桶边督导进小区,少年助力齐参与”垃圾分类宣传志愿者活动,每班每次从志愿报名参加的同学中派2名同学参加.甲班经选拔后,决定从小组3名男生和2名女生中随机抽取2名同学在党员教师的带领下参加小区的宣传服务活动,求所抽取的学生中恰好是一男一女的概率.23.如图,以Rt ABC △的一边AB 为直径作ABC 的外接圆O ,B ∠的平分线BE 交AC 于D ,交O 于E ,过E 作EF AC ∥交BA 的延长线于F .(1)判断EF 是否是O 切线,并证明你的结论;(2)连接AE ,若AE =10AB =,求点C 到直线AB 的距离.∵BE是ABC∠的平分线,∴12ABE CBE ABC∠=∠=∠,∴AE CE=,∴OE AC⊥,24.过点(B , (C-的抛物线2y bx c=++与y轴交于点A.(1)求b,c的值;(2)直线BC交y轴于点D,点E是抛物线2y bx c=++上位于直线AB下方的一动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②当12ABC FAE∠=∠时,求点E的坐标.∴90EFG BHG ∠=∠= ,∴FEG HBG ∠=∠,由2232222y x x =--得(D 又()0,2A - ,()4,2B ,C ∴4BD =,22AC =,25.如图,正方形ABCD 中,点E 在边AD 上(不与端点A ,D 重合),点A 关于直线BE 的对称点为点F , 连接CF , 设ABE α∠=.(1)求BCF ∠的大小 (用含α的式子表示);(2)过点C 作CG AF ⊥,垂足为G , 连接DG . 试判断DG 与CF 的位置关系, 并证明所得的结论;(3)将ABE 绕点B 顺时针旋转90︒得到CBH , 点E 的对应点为点H , 连接BF HF ,. 当sin α=BFH △的形状,并说明理由.∵正方形ABCD ,点∴BC AB BF ==,∴CBF ABC ∠=∠-∴BCF BFC ∠=∠=∵90AGC ADC ∠=︒=∠∴A D G C 、、、四点共圆,∴45AGD ACD ∠=∠=∵FBE ABE α∠=∠=,α由旋转的性质可知,∴HBF EBH ∠=∠-∵90BEA α∠=︒-,∴HBN BEA ∠=∠,∵HBN BEA ∠=∠,。
广东省广州市番禺区中考数学一模试卷
20XX年广东省广州市番禺区中考数学一模试卷一、选择题(本大题共10小题,每小题3 分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3 分)下列运算正确的是()A.a2+3a2=4a4 B.3a2?a=3a3 C.(3a3)2=9a5 D.(2a+1)2=4a2+12. (3分)如图,将三角尺的直角顶点放在直尺的一边上,/仁30°,/ 2=50°,则/ 3的度数等于()A. 50°B. 30°C. 20°D. 15°3. (3 分)下列图形中,是中心对称图形的是()A. B. C. D.4. (3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A. 1.239X 10- 3B. 1.2X 10- 3C. 1.239X 10-2D. 1.239X 10-45. (3 分)如图,△ ABC内接于O O,若/ AOB=110,则/ ACB 的度数是()A. 70°B. 60°C. 55°D. 50°6. (3 分)一个多边形的内角和是720°,这个多边形的边数是()A. 4B. 5C. 6D. 77. (3 分)已知点(xl, y1)、(x2, y2)、(x3, y3)在双曲线v x3时,y1、y2、y3的大小关系是()A. y1 v y2v y3B. y1 v y3v y2C. y3v y1 v y2D. y2v y3v y1 上, 当x1 v 0v x28. (3 分)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.9. (3 分)若A.- 8B. 8 B.C.D. + (y-3)2=0.则xy 的值为()C. 9 D.10. (3 分)如图,四边形ABCD中, / BAD=Z ACB=90 , AB二AD AC=4BC设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A. y=B.y= C. y= D. y=二、填空题(本大题共6小题,每小题3分,满分18分.)11. (3分)不等式x- 1< 10的解集是.12. (3 分)方程组13. (3分)若分式的解是. 的值为0,则x的值为14. (3 分)分解因式:x2y- 6xy+9y=.15. (3 分)把抛物线y=- x2 向左平移1 个单位,然后向上平移3 个单位,则平移后抛物线的解析式为.16. (3分)如图,在平面直角坐标系中,矩形OABC的顶点B 坐标为(8,4),)将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B'处, 得到矩形OA B' C , OA与BC相交于点D,则经过点D的反比例函数解析式是.三、解答题(本大题共9 小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17. (9 分)解方程:x2+2x- 5=0.18. (9分)已知一次函数y=kx-6的图象与反比例函数y二-两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点 B 所在象限,并说明理由.19. (10分)已知=,求的值. 的图象交于A、B20. (10分)如图,E, F是平行四边形ABCD的对角线AC上的点,CE=AF请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.(12 分)某校初三(1)班50 名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.22. (12分)如图,小山岗的斜坡AC的坡度是tan a二,在与山脚C距离200米的D处,测得山顶A的仰角为266,求小山岗的高AB (结果取整数:参考数据:sin266 =0.45,cos266 =0.89,tan26.6°=0.50).23. (12 分)已知:如图,在Rt A ABC中,/ C=90°,Z BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作。
2020广东省中考数学模拟试卷(一)(含答案和解析)
2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。
广东广州番禺区2020年中考模拟练习卷(含答案解析)
广东广州番禺区2020年中考模拟练习卷一、单选题(共10题;共20分)1.-6的绝对值等于( )A. -6B. 6C.D.2.在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A. 方差B. 平均数C. 中位数D. 众数3.Rt△ABC中,∠C=90°,tanA=,BC=5,则AB=()A. 3B. 4C.D.4.二次根式有意义,则x的取值范围是()A. x≥4B. x>4C. x<4D. x≤45.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A. 圆形铁片的半径是4cmB. 四边形AOBC为正方形C. 弧AB的长度为4πcmD. 扇形OAB的面积是4πcm26.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. ﹣=1B. ﹣=1C. ﹣=1D. ﹣=17.两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是()A. 36cm2B. 85cm2C. 96cm2D. 100cm28.反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值().A. 减小B. 增大C. 不变D. 先减小后不变9.平行四边形ABCD两邻边长分别为2和3,它们的夹角(锐角)为60°,则平行四边形ABCD中较短的对角线的长为()A. B. C. 3 D. 110.若、(<),是关于x的方程(x-a)(x-b)=1(a<b)的两个根,则实数、,a、b的大小关系为().A. <<a<bB. <a<<bC. <a<b<D. a<<b<二、填空题(共6题;共6分)11.如图,已知△ABC为等边三角形,高AH=10 cm,P为AH上的一个动点,D为AB的中点,则PD+PB 的最小值为________cm.12.式子有意义的x的取值范围是________ .13.分解因式:ab4﹣4ab3+4ab2=________.14.(2012•遵义)如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是________cm.(结果保留π)15.如图所示的图形,绕轴旋转后能形成某个几何体,这个几何体的名称叫做________.16.如图,D、E、F分别为△ABC三边上的中点.(1)线段AD叫做△ABC的________,线段DE叫做△ABC的________,DE与AB的位置和数量关系是________;(2)图中全等三角形有________;(3)图中平行四边形有________.三、解答题(共9题;共100分)17.解方程组:18.如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.19.如图,直线l经过点A(1,6)和点B(﹣3,﹣2).(1)求直线l的解析式,直线与坐标轴的交点坐标;(2)求△AOB的面积.20.中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)m=________,n=________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21.如图,经过点A(0,﹣4)的抛物线y= x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y= x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.22.如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.23.如图,若∠AOB=∠ACB=90°,OC平分∠AOB.(1)你能将四边形AOBC通过剪裁拼成一个正方形吗?画出裁剪方法并有必要的说明。
广东省广州市番禺区2020年九年级数学中考一模卷
(C) 5 3 − 3 = 5 (D) a0 = 0
2.下列图形中,既是轴对称图形又是中心对称图形的是(※).
(A)
(B)
(C)
(D)
3. 2013 年 12 月 2 日凌晨,承载了国人登月梦想的“嫦娥三号”在西昌卫星发射中心成功发射.在
此次发射任务中,火箭把“嫦娥三号”送入近地点高度约 210 千米、远地点高度约 368000 千米的
A
D
O
P
5.如图,四边形ABCD是⊙O的内接正方形,点P是⌒ CD上不同于点C的 任意一点,则∠BPC 的大小是(※).
(A) 22.5°
(B) 45°
(C) 30°
(D) 50°
B
C
第5题
6.在平面直角坐标系中,将点 A(-1,2)向右平移 3 个单位长度得到点 B,则点 B 关于 x 轴的对
称点 C 的坐标是(※).
(1)计算:
2x 5x −
3
÷
25
3 x2
−
9
⋅
x 5x +
3
;
(2)解方程: x +1 + 1 = 1. x x−2
20.(本小题满分 10 分)
某班为了解学生一学期做义工的时间情况,对全班 50 名学生进行调查,按做义工的时间 t(单位:
小时),将学生分成五类:A 类(0≤t≤2),B 类(2<t≤4),C 类(4<t≤6),D 类(6<t≤8),
10.如图,E,F 分别是□ABCD 的边 AD,BC 上的点,∠DEF=60°,
EF=2,将四边形 EFCD 沿 EF 翻折,得到四边形 EFC′D′,ED′交
BC 于点 G,则△GEF 的周长为(※).
【2020精品中考数学提分卷】广州番禺区初三年级一模数学试卷+答案
2020年广东省广州市番禺区中考数学一模试卷一、单选题. 1. ( 2分 ) 下列运算正确的是( )A. 3a +2a =5a 2B. √9=±3C. x 2+x 2=2x 2D. x 6÷x 2=x 32. ( 2分 ) 若 α 、 β 是一元二次方程 x 2−5x −2=0 的两个实数根,则 α+β 的值为( )A. −5B. 5C. −2D. 253. ( 2分 ) 如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A. ①②B. ①③C. ②④D. ③④4. ( 2分 ) 已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. a >bB. ab <0C. b −a >0D. a +b >05. ( 2分 ) 一袋中有同样大小的 4 个小球,其中 3 个红色, 1 个白色.随机从袋中同时摸出两个球,这两个球颜色相同的概率是( ). A. 12B. 13C. 23D. 346. ( 5分 ) 如图,在菱形ABCD 中,AB=3,∠ABC=60°,则对角线AC=( )A .12B .9C .6D .37. ( 2分) 如图,AB是⊙O直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=42°,则∠ABD的度数是().A. 48°B. 28°C. 34°D. 24°8. ( 2分) 桌子上摆放了若干碟子,分别从三个方向上看其三视图如图所示,则桌子上共有碟子().A. 17个B. 12个C. 9个D. 8个9. ( 2分) 如图所示,小明同学用纸板制作了一个圆锥形漏斗模型,它的底面半径OB= 6cm,高OC=8cm.则这个圆锥漏斗的侧面积是().A. 30cm2B. 36πcm2C. 60πcm2D. 120cm2二、填空题11. ( 1分) 函数y=√x−5自变量x的取值范围是________.12. ( 1分) 分解因式:a2b−4ab+4b=________.13.( 1分) 某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是________环.14. ( 1分) 不等式组{x+3>02(x−1)+3≥3x的解集为________.15. ( 1分) 直线y=x−2与y轴交于点C,与x轴交于点B,与反比例函数y= kx(k>0)的图象在第一象限交于点A,连接OA,若S△AOB:S△BOC=1:2,则k的值为________.16. ( 1分) 如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 m).三、解答题17. ( 5分) 解方程组:{x+y=3,①2x−3y=1.②18. ( 5分) 已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.19. ( 5分) 已知a2−4ab+4b2=0,ab≠0,求a+2ba2−b2⋅(a−b)+(a−2b)22的值.20. ( 10分) 如图,四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△ A′BD .(1)利用尺规作出△ A′BD .(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△ BA′E≌△ DCE .21. ( 8分) 九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=________,n=________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.22. ( 5分) 为了提升阅读速度,某中学开设了“高效阅读”课.小周同学经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小周现在每分钟阅读的字数.23. ( 15分) 如图,在Rt△ABC中,∠ABC=90°,∠BAC角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;(2)连接AO交⊙O于点E,其延长线交⊙O于点D,tan∠D=12,求AEAB的值;(3)在(2)的条件下,设⊙O的半径为3,求AC的长.24. ( 15分) 如图本题图①,在等腰Rt△OAB中,OA=OB=3 , OA⊥OB,P为线段AO上一点,以OP为半径作⊙O交OB于点Q,连接BP、PQ,线段BP、AB、PQ的中点分别为D、M、N .(1)试探究△DMN是什么特殊三角形?说明理由;(2)将△OPQ绕点O逆时针方向旋转到图②的位置,上述结论是否成立?并证明结论;(3)若OP=x(0<x<3),把△OPQ绕点O在平面内自由旋转,求△DMN的面积y的最大值与最小值的差.25. ( 15分) 已知:二次函数y=ax2−2ax−3(a>0),当2≤x≤4时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数y=ax2−2ax−3(a>0)图象x轴下方部分沿x轴向上翻折,得到的新图象与直线y=n恒有四个交点,从左到右,四个交点依次记为A,B,C,D,当以BC为直径的圆与x轴相切时,求n的值.(3)若点P(x0,y0)是(2)中翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程m2−y0m+k−4+y0=0恒有实数根时,求实数k的最大值.答案解析部分一、单选题1.【答案】C【考点】算术平方根,同底数幂的除法,合并同类项法则及应用【解析】【解答】解:A. ∵ 3a+2a=5a,故不符合题意;B. ∵ √9=3,故不符合题意;C. ∵ x2+x2=2x2,故符合题意;D. ∵ x6÷x2=x4,故不符合题意;故答案为:C.【分析】合并同类项法则:系数相加相同字母连同指数不变,同底数幂的除法:底数不变,指数不变,非负数只有一个算术平方根2.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】解:由题意得,α+β=−ba =−−51=5 .【分析】一元二次方程的根与系数的关系:两根之和等于一次项系数比二次项系数的相反数3.【答案】B【考点】三角形内角和定理,多边形内角与外角【解析】【解答】根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,故答案为:B.【分析】结合图形计算三角形的内角和为180度,四边形的内角和为360度进行判断4.【答案】A【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:由数轴可知,a<0,b<0,且a>b则A、负数离原点近的大,故符合题意;B、ab<0,同号相乘得正,故不符合题意;C、b-a=-(|b|-|a|)<0,故不符合题意;D、两负数相加得负,即a+b<0,故不符合题意.故答案为:A【分析】根据数轴表示判断出a,b为负数,且a的绝对值小于b的决对值,再根据同号相乘为正数,进行判断5.【答案】A【考点】列表法与树状图法【解析】【解答】解:如图,一共有12种情况,两个球颜色相同的有6种情况,∴这两个球颜色相同的概率是612=12,故答案为:A.【分析】利用树状图求出概率即可6.【答案】D。
2020年广东省广州市中考数学一模试卷及解析
2020年广省广州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分) 1. -2020的相反数是( )A. -2020B. 2020C.20201- D.20201- 2. 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C. D.3. 如图几何体的俯视图是( )A. B. C. D.4. 下列运算正确的是( )A. a 6÷a 3=a 2B. a 4−a =a 3C. 2a ⋅3a =6aD. (−2x 2y)3=−8x 6y 35. 使分式x2x−4有意义的x 的取值范围是( )A. x =2B. x ≠2C. x =−2D. x ≠06. 下列说法正确的是( )A. 一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数和中位数都是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小7. 在二次函数y =−x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <−1 D. x >−18. 已知x 1、x 2是关于x 的方程x 2−ax −2=0的两根,下列结论一定正确的是( )A. x 1≠x 2B. x 1+x 2>0C. x 1⋅x 2>0D. x 1<0,x 2<09. 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是( )A. 24√2πB. 24πC. 16πD. 12π10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y(cm 2),已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =−25t +27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18分)11.因式分解:a2−2ab+b2=______.12.分式方程1x−2=3x的解是______.13.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.15.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为______.16.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=12AB,连接OE.下列结论:①S▱ABCD= AD⋅BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的结论是______.三、计算题(本大题共2小题,共22分)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ax)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+1x(x>0)的图象和性质.x (1)413121234…y……③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+1x(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.四、解答题(本大题共7小题,共80分)19.解不等式组{−2x≤03x−1<520.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=3,求线段AB的长.4(k>0)21.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=kx与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.22.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.AB,应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.24.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG 交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.25.抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(−1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=−x−4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;(3)Q为直线y=−x−4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】C【解析】解:从上面看得到图形为,故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.4.【答案】D【解析】解:(A)原式=a3,故A错误;(B)原式=a4−a,故B错误;(C)原式=6a2,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】B有意义,【解析】解:∵分式x2x−4∴2x−4≠0,即x≠2.故选:B.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.6.【答案】C【解析】解:A、一个游戏中奖的概率是1,做10次这样的游戏也不一定会中奖,故此10选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故此选项错误;故选:C.根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.7.【答案】A【解析】解:∵a=−1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=−x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=−b,在对称轴左边,y随x的增大而增大.2a8.【答案】A【解析】解:A.∵△=(−a)2−4×1×(−2)=a2+8>0,∴x1≠x2,结论A正确;B.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1⋅x2=−2,结论C错误;D.∵x1⋅x2=−2,∴x1、x2异号,结论D错误.故选:A.A.根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B.根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C.根据根与系数的关系可得出x1⋅x2=−2,结论C错误;D.由x1⋅x2=−2,可得出x1、x2异号,结论D错误.综上即可得出结论.本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.【答案】D【解析】解:∵sinθ=1,母线长为6,3×6=2,∴圆锥的底面半径=13∴该圆锥的侧面积=12×6×2π⋅2=12π.故选:D .先根据正弦的定义计算出圆锥的半径=2,然后根据扇形的面积公式求圆锥的侧面积. 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 10.【答案】B【解析】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4, ∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =ABBE =45, ∴PF =PBsin∠PBF =45t ,∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11, 故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34, ∴PQBQ =34,即11−t 5=34,解得:t =294.(故④正确);综上可得①②④正确,共3个.故选:B .据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.【答案】(a−b)2【解析】解:原式=(a−b)2故答案为:(a−b)2根据完全平方公式即可求出答案.本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.12.【答案】3【解析】解:去分母得:x=3(x−2),去括号得:x=3x−6,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【答案】频数分布【解析】解:频数分布是反映一组数据中,某一范围内的数据的出现的次数,通过次数计算出所占的比,而平均数则反映一组数据集中变化趋势,故答案为:频数分布.平均数是反映一组数据集中变化趋势,而频数分布则反映某一范围内的数出现的次数,即频数,因此选择频数分布.考查频数分布的意义、平均数的意义及求法,理解各个统计量的意义和反映数据的特征,才是解决问题的关键.14.【答案】3√6【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BEAB,∴BE=AB⋅sin∠BAC=6×√32=3√3,由题意得,∠C=45°,∴BC=BEsinC =3√3÷√22=3√6(千米),故答案为:3√6.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】30°或110°【解析】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC−∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.分两种情形,利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】①②【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=1AB,2∴E是AB的中点,∴DE=BE,∴∠BDE=1∠AED=30°,2∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,AD,∴OE//AD,OE=12∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故答案为:①②.求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE= 30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即AD,进而得可得到AO>DE;依据OE是△ABD的中位线,即可得到OE//AD,OE=12到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.17.【答案】(1)200;(2)补全图形,如图所示:甲 乙 丙 丁 甲 --- (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) --- (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) --- (丁,丙) 丁(甲,丁)(乙,丁)(丙,丁)---所有等可能的结果为种,其中符合要求的只有种, 则P =212=16.【解析】解:(1)根据题意得:20÷36360=200(人),则这次被调查的学生共有200人;故答案为:200; (2)见答案; (3)见答案. 【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A ,B 及D 的人数求出喜欢C 的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.【答案】解:(1)①故答案为:174,103,52,2,52,103,174.函数y =x +1x 的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x =1时,函数y =x +1x(x >0)的最小值是2.③y =x +1x =x 2+1x=x 2−2x+1x+2=(x−1)2x+2,∵x >0,所以(x−1)2x≥0,所以当x =1时,(x−1)2x的最小值为0,∴函数y=x+1x(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为√a时,它的周长最小,最小值是4√a.【解析】(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[(√x−√ax)2+2√a],即可求出答案.本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.19.【答案】解:{−2x≤0 ①3x−1<5 ②解不等式①得:x≥0解不等式②得:x<2∴不等式组的解集为0≤x<2.【解析】别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.20.【答案】解:∵四边形ABCD为菱形∴BO=OD,∠AOB=90°∵BD=8∴BO=4∵tan∠ABD=AOBO,∴34=AO4∴AO=3在Rt△ABC中,AO=3,OB=4则AB=√AD2+OB2=√32+42=5【解析】由菱形的性质可得BO=OD=4,∠AOB=90°,由锐角三角函数可求AO=3,由勾股定理可求AB的长.本题考查了菱形的性质,锐角三角函数,勾股定理,熟练运用菱形的性质是本题的关键.21.【答案】解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=kx,可得k=4,即反比例函数解析式为:y=4x,∵点F的横坐标为4,∴点F的纵坐标=44=1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE =DE ,BF =DF ,∠B =∠EDF =90°, ∵∠CDF +∠EDG =90°,∠GED +∠EDG =90°, ∴∠CDF =∠GED ,又∵∠EGD =∠DCF =90°, ∴△EGD∽△DCF ,结合图形可设点E 坐标为(k2,2),点F 坐标为(4,k4),则CF =k4,BF =DF =2−k4,ED =BE =AB −AE =4−k2,在Rt △CDF 中,CD =√DF 2−CF 2=√(2−k 4)2−(k4)2=√4−k ,∵CD GE=DFED ,即√4−k2=2−k44−k 2,∴√4−k =1, 解得:k =3.【解析】(1)根据点E 是AB 中点,可求出点E 的坐标,将点E 的坐标代入反比例函数解析式可求出k 的值,再由点F 的横坐标为4,可求出点F 的纵坐标,继而得出答案; (2)证明∠GED =∠CDF ,然后利用两角法可判断△EGD∽△DCF ,设点E 坐标为(k2,2),点F 坐标为(4,k4),即可得CF =k4,BF =DF =2−k4,在Rt △CDF 中表示出CD ,利用对应边成比例可求出k 的值.本题考查了反比例函数的综合,解答本题的关键是利用点E 的纵坐标,点F 的横坐标,用含k 的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.22.【答案】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元; 根据题意得:{2x +3y =90x +2y =55,解得:{x =15y =20;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克, 根据题意得:12−t ≥2t , ∴t ≤4,∵W =15t +20(12−t)=−5t +240, k =−5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220(元),此时12−4=8; 答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克,根据题意得出12−t ≥2t ,得出t ≤4,由题意得出W =−5t +240,由一次函数的性质得出W 随t 的增大而减小,得出当t =4时,W 的最小值=220(元),求出12−4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23.【答案】应用:解:①若PB =PC ,连接PB ,则∠PCB =∠PBC , ∵CD 为等边三角形的高, ∴AD =BD ,∠PCB =30°, ∴∠PBD =∠PBC =30°, ∴PD =√33DB =√36AB , 与已知PD =12AB 矛盾,∴PB ≠PC ,②若PA =PC ,连接PA ,同理可得PA ≠PC , ③若PA =PB ,由PD =12AB ,得PD =BD , ∴∠APD =45°, 故∠APB =90°;探究:解:∵BC =5,AB =3, ∴AC =√BC 2−AB 2=√52−32=4, ①若PB =PC ,设PA =x ,则x 2+32=(4−x)2,∴x =78,即PA =78,②若PA =PC ,则PA =2,③若PA =PB ,由图知,在Rt △PAB 中,不可能. 故PA =2或78.【解析】应用:连接PA 、PB ,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB =45°,然后即可求出∠APB 的度数; 探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论. 24.【答案】(1)证明:如图1,∵PE =BE , ∴∠EBP =∠EPB .又∵∠EPH =∠EBC =90°,∴∠EPH −∠EPB =∠EBC −∠EBP . 即∠PBC =∠BPH . 又∵AD//BC , ∴∠APB =∠PBC . ∴∠APB =∠BPH .(2)△PHD 的周长不变为定值8.证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB =∠BPH ,在△ABP和△QBP中{∠APB=∠BPH ∠A=∠BQPBP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4−BE)2+x2=BE2.解得,BE=2+x28.∴CF=BE−EM=2+x28−x.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴S=12(BE+CF)BC=12(4+x24−x)×4.即:S=12x2−2x+8.配方得,S=12(x−2)2+6,∴当x=2时,S有最小值6.【解析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH= AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4−BE)2+x2=BE2,利用二次函数的最值求出即可.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.25.【答案】解:(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=−2,∵点A坐标为(−1,0),∴点B坐标为(−3,0),∵OB=OC,∴C点坐标为(0,−3).将A(−1,0)、C(0,−3)分别代入解析式得,{a +c =04a +c =−3,解得,{a =−1c =1,则函数解析式为y =−x 2−4x −3.(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m , 由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0, ∵平移后的抛物线总有不动点, ∴△≥0,∴4m 2+4m +1−4(m 2−2m −4)≥0, 解得m ≥−1712.(3)如图,设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,切点为D ,直线y =−x −4交抛物线的对称轴于E ,则E(−2,−2)∴PE =m +2,PD =√22PE ,∵PA =PD , ∴(m+2)22=1+m 2,解得m =2±√6,故P(−2,2+√6)或(−2,2−√6).【解析】(1)根据函数的解析式可以得到函数的对称轴是x =−2,则B 点的坐标可以求得,求得OB 的长,则C 的坐标可以求得,把A 、C 的坐标代入函数解析式即可求得;(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m ,由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0,平移后的抛物线总有不动点,推出△≥0,由此构建不等式即可解决问题;(3)设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,根据切线的性质即可求解. 本题考查二次函数综合题、待定系数法求函数的解析式、一次函数的应用,以及直线与圆相切的判定等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
2020年广东省广州市番禺区中考一模数学试题
2020年广东省广州市番禺区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________1.下列计算正确的是( )A .222236a a a ⋅=B .()224236a b a b -=C .()222a b a b -=-D .2222a a a -+=2.如图,由4个相同正方体组合而成的几何体,它的左视图是( )A .B .C .D . 3.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( )A .众数B .方差C .平均数D .中位数 4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >0 5.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为E ,连接CO ,AD ,25BAD ∠=︒,则下列说法中正确的是( )A .50OCE ∠=︒B .CE OE =C .50BOC ∠=︒D .BD OC = 6.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 7.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)=D .21961225x (﹣)=8.如图,在平面直角坐标系中,Rt ABC ∆的顶点A 、C 在坐标轴上,90ACB ∠=︒,3OA OC ==,2AC BC =,函数k y x=(0k >,0x >)的图象经过点B ,则k 的值为( )A .3B .6C .274D .3+9.如图,长为定值的弦CD 在以AB 为直径的O 上滑动(点C 、D 与点A 、B 不重合),点E 是CD 的中点,过点C 作CF AB ⊥于F ,若3CD =,8AB =,则EF 的最大值是( )A .92B .4C .83D .610.如图,在菱形ABCD 中,AB AC =,点E 、F 分别为边AB 、BC 上的点,且AE BF =,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①ABF CAE ∆∆≌;②FHC B ∠=∠;③AEH DAH ∆∆∽;④AE AD AH AF ⋅=⋅;其中正确的结论个数是( )A .1个B .2个C .3个D .4个11x 的取值范围是_______.12.分解因式:4a 2b ﹣b =_____.13.计算:22tan 602cos 452sin 60cos 60︒+︒=︒-︒_________. 14.已知关于x 的方程x 2-3x+m=0的一个根是1,则m=__________.15.已知扇形的面积为3πcm 2,半径为3cm ,则此扇形的圆心角为_____度.16.如图,在平面直角坐标系xOy 中,反比例函数k y x=(0)k ≠的图象经过点85,5A ⎛⎫- ⎪⎝⎭与点(2,)B m -,抛物线2(0)y ax bx c a =++≠经过原点O ,顶点是(2,)B m -,且与x 轴交于另一点(,0)C n ,则m n +=_________.17.解方程组:4,23 3.x y x y +=⎧⎨-=⎩①②18.如图,点A ,E ,F 在直线l 上,AE=BF ,AC//BD ,且AC=BD ,求证:CF=DE19.已知221112111x x A x x x x ⎛⎫-+=-÷ ⎪-+--⎝⎭. (1)化简A ;(2)若2340x x --=,求A 的值.20.如图,一次函数2y kx =+的图象与反比例函数4y x=的图象交于点(1,)A m ,与x 轴交于点B .(1)求一次函数的解析式和点B 的坐标;(2)在反比例函数4y x=的图象上取一点P ,直线AP 交x 轴于点C ,若点P 恰为线段AC 的中点,求点P 的坐标.21.现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球。
2020年广东省中考数学一模试卷 解析版
中考数学一模试卷一.选择题(共10小题)1.计算|﹣2|的结果是()A.2B.C.﹣D.﹣22.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.我市2019年参加中考的考生人数约为52400人,将52400用科学记数法表示为()A.524×102B.52.4×103C.5.24×104D.0.524×1054.下列运算正确的是()A.a﹣2a=a B.(﹣a2)3=﹣a6C.a6÷a2=a3D.(x+y)2=x2+y25.函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<16.如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5B.5,4C.4,4D.5,58.一个多边形每个外角都等于30°,这个多边形是()A.六边形B.正八边形C.正十边形D.正十二边形9.如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()A.B.C.D.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y 与x之间函数关系的图象是()A.B.C.D.二.填空题(共7小题)11.实数81的平方根是.12.分解因式:3x3﹣12x=.13.抛物线y=2x2+8x+12的顶点坐标为.14.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.15.如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC等于度.16.已知一副直角三角板如图放置,其中BC=6,EF=8,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.17.二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有.三.解答题(共8小题)18.计算:()﹣1﹣4sin60°﹣(1﹣)0+.19.先化简:(1+)÷,请在﹣1,0,1,2,3当中选一个合适的数a代入求值.20.如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.21.央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.22.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,线段AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.23.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克18元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(kg)与销售单价x(元/kg)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.25.如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.参考答案与试题解析一.选择题(共10小题)1.计算|﹣2|的结果是()A.2B.C.﹣D.﹣2【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣2|的结果是2.故选:A.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、既是轴对称图形,也是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:C.3.我市2019年参加中考的考生人数约为52400人,将52400用科学记数法表示为()A.524×102B.52.4×103C.5.24×104D.0.524×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:52400=5.24×104,故选:C.4.下列运算正确的是()A.a﹣2a=a B.(﹣a2)3=﹣a6C.a6÷a2=a3D.(x+y)2=x2+y2【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a﹣2a=﹣a,故错误;B、正确;C、a6÷a2=a4,故错误;D、(x+y)2=x2+2xy+y2,故错误;故选:B.5.函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.6.如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5B.5,4C.4,4D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选:A.8.一个多边形每个外角都等于30°,这个多边形是()A.六边形B.正八边形C.正十边形D.正十二边形【分析】根据多边形的外角和为360°,而多边形每个外角都等于30°,可求多边形外角的个数,确定多边形的边数.【解答】解:∵多边形的外角和为360°,360°÷30°=12,∴这个多边形是正十二边形,故选:D.9.如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()A.B.C.D.【分析】分两种情况进行讨论:k>0与k<0进行讨论即可.【解答】解:当k>0时,函数y=kx﹣2的图象经过一、三、四象限;函数y=kx2的开口向上,对称轴在y轴上;当k<0时,函数y=kx﹣2的图象经过二、三、四象限;函数y=kx2的开口向下,对称轴在y轴上,故C正确.故选:C.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y 与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.二.填空题(共7小题)11.实数81的平方根是±9.【分析】首先根据平方根的定义可以求得结果.【解答】解:实数81的平方根是:±=±9.故答案为:±9.12.分解因式:3x3﹣12x=3x(x﹣2)(x+2).【分析】注意将提取公因式与乘法公式综合应用,将整式提取公因式后再次利用公式分解.【解答】解:3x3﹣12x=3x(x2﹣4)﹣﹣(提取公因式)=3x(x﹣2)(x+2).13.抛物线y=2x2+8x+12的顶点坐标为(﹣2,4).【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【解答】解:x=﹣=﹣2,把x=﹣2代入得:y=8﹣16+12=4.则顶点的坐标是(﹣2,4).故答案是:(﹣2,4).14.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.【分析】先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD =x,则BD=4﹣x,在Rt△BCD中根据勾股定理求出x的值即可.【解答】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.15.如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC等于23度.【分析】根据圆周角定理得到∠A=∠D=67°、∠ACB=90°,根据直角三角形的性质计算,得到答案.【解答】解:由圆周角定理得,∠A=∠D=67°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣67°=23°,故答案为:23.16.已知一副直角三角板如图放置,其中BC=6,EF=8,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为12﹣.【分析】根据特殊角的锐角三角函数值,求出EC、EG、AE的长,得到阴影部分的面积.【解答】解:在直角△BCF中,∵∠F=45°,BC=6,∴CF=BC=6.又∵EF=8,则EC=2.在直角△ABC中,∵BC=6,∠A=30°,∴AC=6,则AE=6﹣2,∠A=30°,∴EG=AE=6﹣,阴影部分的面积为:(EG+BC)•EC=×(6﹣+6)×2=12﹣.故答案是:12﹣.17.二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有①②③④.【分析】由图象可知:a<0,c>0,根据对称轴及a与b的符号关系可得b<0,则可判断①的正误;根据抛物线与x轴有两个交点,可得△>0,则可判断②的正误;由对称轴是直线x=﹣1,可判断③的正误;由当x=﹣1时,y>0,可判断④的正误;由当x =﹣3时,y<0,可判断⑤的正误.【解答】解:由图象可知:a<0,c>0,又∵对称轴是直线x=﹣1,∴根据对称轴在y轴左侧,a,b同号,可得b<0,∴abc>0,故①正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac<b2,故②正确;∵对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a,∴2a﹣b=0,故③正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;∵对称轴是直线x=﹣1,且由图象可得:当x=1时,y<0,∴当x=﹣3时,y<0,∴9a﹣3b+c<0,故⑤错误.综上,正确的有①②③④.故答案为:①②③④.三.解答题(共8小题)18.计算:()﹣1﹣4sin60°﹣(1﹣)0+.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:原式=2﹣4×﹣1+2=1.19.先化简:(1+)÷,请在﹣1,0,1,2,3当中选一个合适的数a代入求值.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:原式=•=•=,当a=﹣1,0,1时,分式无意义,故当a=2时,原式=.20.如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.【分析】(1)直接利用线段垂直平分线的作法得出即可;(2)利用线段垂直平分线的性质得出AD=BD,再利用角平分线的性质求出即可.【解答】解:(1)如图所示,DE为所求作的垂直平分线;(2)∵DE是AB边上的垂直平分线,∴AD=BD,∴∠ABD=∠A,∵BD平分∠CBA,∴∠CBD=∠ABD=∠A,∵∠C=90°,∴∠CBD+∠ABD+∠A=90°,∴∠A=30°.21.央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:女1女2女3男1男2女1﹣﹣﹣女2女1女3女1男1女1男2女1女2女1女2﹣﹣﹣女3女2男1女2男2女2女3女1女3女2女3﹣﹣﹣男1女3男2女3男1女1男1女2男1女3男1﹣﹣﹣男2男1男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为=.22.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,线段AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.【分析】(1)由∠AED=∠B、∠DAE=∠CAB利用相似三角形的判定即可证出△ADE ∽△ACB;根据相似三角形的性质再得出∠ADF=∠C,即可证出△ADF∽△ACG;(2)由(1)的结论以及相似三角形的性质即可求出答案.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠CAB,∴△AED∽△ABC,∴∠ADF=∠C,又∵,∴△ADF∽△ACG;(2)解:∵△ADF∽△ACG,∴,∵=,∴,∴.23.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克18元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(kg)与销售单价x(元/kg)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【分析】(1)利用待定系数法求解可得;(2)根据总利润=每千克的利润×销售量列出函数解析式,并配方成顶点式,再利用二次函数的性质求解可得.【解答】解:(1)设y=kx+b,将x=20、y=300和x=30、y=280代入,得:,解得:,∴y=﹣2x+340(18≤x≤40);(2)根据题意,得:W=(x﹣18)(﹣2x+340)=﹣2x2+376x﹣6120=﹣2(x﹣94)2+2716,∵a=﹣2<0,∴当x<94时,W随x的增大而增大,∴在18≤x≤40中,当x=40时,W取得最大值,最大值为8548.24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM ∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH =BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.25.如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.【分析】(1)过A作AD⊥OC于D,在直角三角形OAD中,可根据OA的长和∠AOC 的度数求出OD和AD的长,即可得出A点坐标,将A的坐标向右平移8个单位即可得出B点坐标.(2)当l过A点时,ON=OD=4,因此t=4;当l过C点时,ON=OC=8,此时t=8.因此本题可分三种情况:①当0≤t≤4时,直线l与OA、OC两边相交,此时ON=t,MN=t,根据三角形的面积公式即可得出S,t的函数关系式.②当4<t≤8时,直线l与AB、OC两边相交,此时三角形OMN中,NM的长与AD的长相同,而ON=t,可得出S,t的函数关系式.③当8<t≤12时,直线l与AB、BC两边相交,可设直线l与x轴交点为H,那么三角形OMN可以MN为底,OH为高来计算其面积.OH的长为t,而MN的长可通过MH﹣NH来求得,可得出关于S,t的函数关系式.(3)根据(2)中各函数的性质和各自的自变量的取值范围可得出S的最大值及对应的t 的值.【解答】解:(1)过点A作AD⊥OC于D,∵四边形OABC为菱形,点C的坐标为(8,0),∴OA=AB=BC=CO=8.∵∠AOC=60°,∴OD=4,AD=4.∴A(4,4),B(12,4);(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:①0≤t≤4时,直线l与OA、OC两边相交,(如图①).∵MN⊥OC,∴ON=t.∴MN=ON tan60°=t.∴S=ON•MN=t2;②当4<t≤8时,直线l与AB、OC两边相交,(如图②).S=ON•MN=×t×4=2t;③当8<t≤12时,直线l与AB、BC两边相交,(如图③).设直线l与x轴交于点H.∵MN=4﹣(t﹣8)=12﹣t,∴S=OH•MN=×t×(12﹣t)=﹣t2+6t;(3)由(2)知,当0≤t≤4时,S最大=×42=8,当4<t≤8时,S最大=16,当8<t≤12时,S=﹣t2+6t=﹣(t﹣6)2+18∴当8<t≤12时,S<16综上所述,当t=8时,S最大=16.。
2020年广东省广州市中考数学第一次模拟训练测试试卷 含解析
2020年中考数学第一次模拟训练测试试卷一、选择题1.﹣2020的相反数是()A.﹣2020B.2020C.﹣D.2.规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上()A.向北走了15米B.向南走了15米C.向北走了5米D.向南走了5米3.下列各数中,是有理数的是()A.﹣B.C.2.1234…D.4.用科学记数法表示的数3.61×105,它的原数是()A.36100000B.3610000C.361000D.36100 5.下列方程中,是一元一次方程的是()A.x2=4x B.=2C.x+2y=1D.=1 6.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2B.3,﹣2C.2,﹣2D.4,﹣2 7.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.=a B.a+b>0C.|a|<|b|D.<0 8.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)9.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=10.计算(2x+1)2﹣4x(x+1)的结果是()A.8x+1B.1C.4x﹣3D.1﹣4x 11.下列分解因式正确的是()A.x2﹣3x+1=x(x﹣3)+1B.a2b﹣2ab+b=b(a﹣l)2C.4a2﹣1=(4a+1)(4a﹣1)D.(x﹣y)2=x2﹣2xy+y212.使代数式+有意义的正整数x有()A.3个B.4个C.5个D.无数个13.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.514.某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=360015.若将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为()A.(﹣3,1)B.(3,1)C.(2,2)D.(﹣3,﹣3)16.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min17.已知一次函数y=(m﹣1)x+m2﹣1(m为常数),若它的图象过原点,则m()A.m=1B.m=±1C.m=﹣1D.m=018.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大19.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>220.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个二、综合题(共3题,满分50分):21.(1)计算(π﹣1)0+|﹣2|﹣()﹣1+;(2)化简:(﹣)÷.22.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?23.(20分)已知关于x的方程ax2+(3a+1)x+3=0.(1)求证:无论a取任何实数时,该方程总有实数根;(2)若抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求a值以及此时抛物线的顶点H的坐标;(3)在(2)的条件下,直线y=﹣x+5与y轴交于点C,与直线OH交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,请直接写出它的顶点横坐标h的值或取值范围.参考答案一、单项选择题:(共20小题,每小题5分,共100分)1.﹣2020的相反数是()A.﹣2020B.2020C.﹣D.【分析】直接利用相反数的定义得出答案.解:﹣2020的相反数是:2020.故选:B.2.规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上()A.向北走了15米B.向南走了15米C.向北走了5米D.向南走了5米【分析】根据正负数的意义,列出加法算式,再进行计算,看结果的符号,确定实际意义.解:∵5+(﹣10)=﹣5km,∴实际上向南走了5米.故选:D.3.下列各数中,是有理数的是()A.﹣B.C.2.1234…D.【分析】直接利用有理数的定义分析得出答案.解:A、﹣是无理数,故本选项错误;B、是无理数,故本选项错误;C、2.1234…是无理数,故本选项错误;D、是有理数,故本选项正确;故选:D.4.用科学记数法表示的数3.61×105,它的原数是()A.36100000B.3610000C.361000D.36100【分析】3.61×105,还原成原数就是把3.61的小数点向右移动5位所得到的数.解:3.61×105=361000,故选:C.5.下列方程中,是一元一次方程的是()A.x2=4x B.=2C.x+2y=1D.=1【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:A、未知项的最高次数为2,不是一元一次方程;B、符合一元一次方程的定义;C、含有两个未知数,不是一元一次方程;D、分母中含有未知数,不是一元一次方程.故选:B.6.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2B.3,﹣2C.2,﹣2D.4,﹣2【分析】直接利用多项式的次数确定方法以及一次项的定义分析得出答案.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.7.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.=a B.a+b>0C.|a|<|b|D.<0【分析】直接利用数轴上a,b的位置,进而分别判断得出答案.解:如图所示:a<0,则=﹣a,故选项A错误;a+b<0,故选项B错误;|a|>|b|,故选项C错误;<0,正确.故选:D.8.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)【分析】根据单项式乘法、积的乘方和幂的乘方、同底数幂的除法、合并同类项的计算法则进行分析即可.解:A、2a3•3a=6a4,故原题计算正确;B、(﹣2y3)2=4y6,故原题计算正确;C、3a2和a不是同类项,不能合并,故原题计算错误;D、a5÷a3=a2(a≠0),故原题计算正确;故选:C.9.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=【分析】根据等式的性质求解即可.解:A.若a=b,则a﹣3=b﹣3,成立;B.若a=3,则a2=3a,成立;C.若3a=2b,则,成立;D.当a=b=0时,不成立.故选:D.10.计算(2x+1)2﹣4x(x+1)的结果是()A.8x+1B.1C.4x﹣3D.1﹣4x【分析】根据完全平方公式以及单项式乘多项式的运算法则展开,再合并同类项即可.解:(2x+1)2﹣4x(x+1)=4x2+4x+1﹣4x2﹣4x=1.故选:B.11.下列分解因式正确的是()A.x2﹣3x+1=x(x﹣3)+1B.a2b﹣2ab+b=b(a﹣l)2C.4a2﹣1=(4a+1)(4a﹣1)D.(x﹣y)2=x2﹣2xy+y2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.解:A、x2﹣3x+1=x(x﹣3)+1,不符合因式分解的定义,故此选项错误;B、a2b﹣2ab+b=b(a﹣l)2,故此选项正确;C、4a2﹣1=(2a+1)(2a﹣1),故此选项错误;D、(x﹣y)2=x2﹣2xy+y,不符合因式分解的定义.故选:B.12.使代数式+有意义的正整数x有()A.3个B.4个C.5个D.无数个【分析】根据二次根式有意义的条件可得5﹣x≥0,根据分式有意义的条件可得x﹣3≠0,再解即可.解:由题意得:x﹣3≠0,且5﹣x≥0,解得:x≤5,且x≠3,∵x是正整数,∴x=1,2,4,5,共4个,故选:B.13.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.5【分析】把x与y的值代入方程组求出a+b的值即可.解:把代入方程组得,①+②得:3(a+b)=﹣3,则a+b=﹣1.故选:A.14.某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入2500万元,预计2012年投入3600万元即可得出方程.解:设教育经费的年平均增长率为x,则2011的教育经费为:2500×(1+x)2012的教育经费为:2500×(1+x)2.那么可得方程:2500×(1+x)2=3600.故选:A.15.若将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为()A.(﹣3,1)B.(3,1)C.(2,2)D.(﹣3,﹣3)【分析】按照“左加右减,上加下减”的规律即可得到函数解析式,求得其顶点坐标即可.解:∵将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,∴平移后的二次函数的解析式为:y=(x﹣3)2+1,∴平移后的二次函数的顶点坐标为(3,1),故选:B.16.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min【分析】因为小明从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小明家的距离;小明从体育场到文具店是减函数,此段函数图象最高点与最低点纵坐标的差为小明家到文具店的距离;根据“速度=路程÷时间”即可得出小明从体育场出发到文具店的平均速度;先求出小明家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.17.已知一次函数y=(m﹣1)x+m2﹣1(m为常数),若它的图象过原点,则m()A.m=1B.m=±1C.m=﹣1D.m=0【分析】将(0,0)代入y=(m﹣1)x+m2﹣1即可求出m的值.解:将(0,0)代入y=(m﹣1)x+m2﹣1得,m2﹣1=0,解得m=±1,当m=1时,m﹣1=0,故m=﹣1.故选:C.18.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【分析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.解:由点(1,﹣3)的坐标满足反比例函数y=﹣,故A是正确的;由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数图象的对称性,可知反比例函数y=﹣的图象关于y=x对称是正确的,故C也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.19.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>2【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.解:∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵ax<,∴在第一和第三象限,正比例函数y=ax的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.20.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x轴的另一个交点,则可判断①②是否正确;由抛物线与x轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴当x=﹣1时,y=0,即a﹣b+c=0.∴①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的有①②④.故选:C.二、综合题(共3题,满分50分):21.(1)计算(π﹣1)0+|﹣2|﹣()﹣1+;(2)化简:(﹣)÷.【分析】(1)直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质分别化简得出答案;(2)直接去括号利用分式的混合运算法则计算得出答案.解:(1)(π﹣1)0+|﹣2|﹣()﹣1+=1+2﹣﹣3+2=;(2)(﹣)÷=×a(a+1)﹣×a(a+1)=a﹣==.22.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.23.(20分)已知关于x的方程ax2+(3a+1)x+3=0.(1)求证:无论a取任何实数时,该方程总有实数根;(2)若抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求a值以及此时抛物线的顶点H的坐标;(3)在(2)的条件下,直线y=﹣x+5与y轴交于点C,与直线OH交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,请直接写出它的顶点横坐标h的值或取值范围.【分析】(1)分别讨论当a=0和a≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则ax2+(3a+1)x+3=0,求出两根,再根据抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求出a的值,即可求顶点坐标;(3)分两种情况讨论,通过特殊位置可求h的范围,由平移的抛物线与直线CD(含端点C)只有一个公共点,联立方程组可求h的值,即可求解.解:(1)当a=0时,原方程化为x+3=0,此时方程有实数根x=﹣3.当m≠0时,原方程为一元二次方程.∵△=(3a+1)2﹣12a=9a2﹣6a+1=(3a﹣1)2≥0.∴此时方程有两个实数根.综上,不论m为任何实数时,方程ax2+(3a+1)x+3=0总有实数根.(2)∵令y=0,则ax2+(3a+1)x+3=0.解得x1=﹣3,x2=﹣.∵抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且m为正整数,∴a=1.∴抛物线的解析式为y=x2+4x+3=(x+2)2﹣1.∴顶点H坐标为(﹣2,﹣1);(3)∵点O(0,0),点H(﹣2,﹣1)∴直线OH的解析式为:y=x,∵现将抛物线平移,保持顶点在直线OD上.∴设平移后的抛物线顶点坐标为(h,h),∴解析式为:y=(x﹣h)2+h,∵直线y=﹣x+5与y轴交于点C,∴点C坐标为(0,5)当抛物线经过点C时,∴5=(0﹣h)2+h,∴h1=﹣,h2=2,∴当﹣≤h≤2时,平移的抛物线与射线CD(含端点C)只有一个公共点;当平移的抛物线与直线CD(含端点C)只有一个公共点,联立方程组可得∴x2+(1﹣2h)x+h2+h﹣5=0,∴△=(1﹣2h)2﹣4(h2+h﹣5)=0∴h=,∴抛物线y=(x﹣)2+与射线CD的唯一交点为(3,2),符合题意;综上所述:平移的抛物线与射线CD(含端点C)只有一个公共点,顶点横坐标h=或﹣≤h≤2.。
2020年广东省中考数学一模试卷 (含答案解析)
2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.一个多边形的内角和是1440°,求这个多边形的边数是()A. 7B. 8C. 9D. 105.若式子√4−3x在实数范围内有意义,则x的取值范围是()A. x>43B. x<43C. x≥43D. x≤436.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A. 12B. 3C. 4D. 不能确定7.将二次函数y=x2−4x−5向右平移1个单位,得到的二次函数为解析式为()A. y=x2−4x−6B. y=x2−4x−4C. y=x2−6xD. y=x2−6x−58.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.已知抛物线y=ax2+bx+c(a>0)的对称轴为x=−1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论正确的有几个()①b>0,c<0;②a−b+c>0;③b<a;④3a+c>0;⑤9a−3b+c>0A. 1个B. 3个C. 2个D. 4个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy―x=_____________.12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.若(a−√2)2+|b−1|=0,则1的值为______ .a+b14.若x−2y=−3,则5−x+2y=______.BC的长为半径作15.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB 的度数为______.16.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是______cm.17.如图,在平面直角坐标系中,已知点A(1,0)、B(1−t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是____.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)2−(x+4y)(3x+y)]÷(2x),其中x=−2,y=1.2四、解答题(本大题共7小题,共56.0分)19.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?20. 如图,∠A =∠D =90°,AB =CD ,AC ,BD 相交于点E .求证:(1)△ABC ≌△DCB ;(2)△EBC 是等腰三角形.21. 若方程组{3x +y =93ax −4by =18与{4x −y =5ax +by =−1的解相同,求a ,b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE=3,AB=3时,求AD的长.423.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?(m>0,x>0)图象上的两点,一次函数y=kx+ 24.如图,点A(2,n)和点D是反比例函数y=mx3(k≠0)的图象经过点A,与y轴交于点B,与x轴交于点C,过点D作DE⊥x轴,垂足为E,连接OA,OD.已知△OAB与△ODE的面积满足S△OAB:S△ODE=3:4.(1)S△OAB=______,m=______;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.25.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4,故选B.3.答案:A解析:本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(3,−1)关于x轴对称的点的坐标是(3,1),故选A.4.答案:D解析:解:设这个多边形的边数是n,根据题意得,(n−2)⋅180°=1440°,解得n=10.故选:D.根据多边形的内角和公式(n−2)⋅180°列出方程,然后求解即可.本题考查了多边形的内角和公式,熟记公式并列出方程是解题的关键.5.答案:D解析:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得:4−3x≥0,再解即可.解:由题意得:4−3x≥0,解得:x≤43,故选D.6.答案:B解析:解:∵点E、F分别为AB、AC的中点.∴EF=12BC,EA=12BA,AF=12AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=12(AB+AC+BC)=3,故选B.根据题意可得出EF=12BC,再根据三角形的周长公式可得出答案.本题考查了三角形的中位线定理,三角形的中位线等于第三边的一半.7.答案:C解析:此题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,解答此题可先将二次函数配成顶点式,写出顶点坐标,然后得到平移后的顶点坐标,从而可得到平移后的二次函数的解析式.解:y=x2−4x−5=(x−2)2−9,∴顶点坐标为(2,−9),向右平移一个单位后的顶点坐标为(3,−9),∴平移后的函数解析式为:y=(x−3)2−9=x2−6x+9−9=x2−6x.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=13√3.故选:B.10.答案:B解析:本题考查了二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0,否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=−b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0,否则c<0;(4)b2−4ac由抛物线与x轴交点的个数确定:2个交点,b2−4ac>0;1个交点,b2−4ac=0;没有交点,b2−4ac<0.先充分挖掘图象所给出的信息,包括对称轴、开口方向、与坐标轴的交点、顶点位置等,然后根据二次函数图象的性质解题.解:如图所示:①∵开口向上,∴a>0,又∵对称轴在y轴左侧,∴−b2a<0,∴b>0,又∵图象与y轴交于负半轴,∴c<0,正确.②由图,当x=−1时,y<0,把x=−1代入解析式得:a−b+c<0,错误.③∵对称轴在x=−12左侧,∴−b2a <−12,∴ba>1,∴b>a,错误.④由图,x1x2>−3×1=−3;根据根与系数的关系,x1x2=c,a >−3,故3a+c>0,正确.于是ca⑤由图,当x=−3时,y>0,把x=−3代入解析式得:9a−3b+c>0,正确.所以其中正确的有①④⑤,故选B.11.答案:x(y−1)解析:[分析]直接提取公因式x,进而分解因式得出答案.[详解]解:xy―x=x(y−1)故答案为:x(y−1).[点睛]此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8故答案为:1.8依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:√2−1解析:解:由题意得,a−√2=0,b−1=0,解得a=√2,b=1,所以,1a+b =√2+1=√2−1.故答案为:√2−1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°−50°−25°=105°.故答案为:105°.利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.16.答案:√3解析:连接OA,作OD⊥AB于点D,利用勾股定理即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.解:连接OA,BC,OB,作OD⊥AB于点D.∵圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),∴AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,又∵OA=OB,∴∠OAD=30°,在直角△OAD中,OA=6,∠OAD=30°,则AD=3√3.则AB=2AD=6√3,=2√3π,则扇形的弧长是:60π×6√3180设底面圆的半径是r,则2πr=2√3π,解得:r=√3.故答案为:√3.17.答案:√13−1解析:本题考查点与圆的位置关系、坐标与图形性质等知识,由题意PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小.解:∵AB=AC=t,∠BPC=90°,∴PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小,PA最小值=√32+22−1=√13−1,∴t的最小值为√13−1.故答案为√13−1.18.答案:解:[(x+2y)2−(x+4y)(3x+y)]÷(2x)=[x2+4xy+4y2−(3x2+xy+12xy+4y2)]÷(2x)=(x2+4xy+4y2−3x2−xy−12xy−4y2)÷(2x)=(−2x2−9xy)÷(2x)=−x−92y,当x=−2,y=12时,原式=2−94=−14.解析:本题主要考查整式的混合运算及求代数式的值,解题的关键是掌握整式的混合运算顺序和运算法则.先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.19.答案:解:(1)调查人数为20÷10%=200(人),喜欢动画的比例为(1−46%−24%−10%)=20%,喜欢动画的人数为200×20%=40(人);(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).解析:此题考查了条形统计图与扇形统计图.注意掌握条形统计图与扇形统计图的有关知识是解此题的关键.(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.20.答案: 解:(1)∵∠A =∠D =90°,∴在Rt △ABC 和Rt △DCB 中,{BC =CB AB =DC, ∴Rt △ABC≌Rt △DCB(HL).(2)∵Rt △ABC≌Rt △DCB ,∴∠ACB =∠DBC ,∴BE =CE ,∴△EBC 是等腰三角形.解析: 本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL ”可证Rt △ABC≌Rt △DCB ;(2)由全等三角形的性质可得∠ACB =∠DBC ,可得BE =CE ,可得结论.21.答案:解:把3x +y =9和4x −y =5联立,得:{3x +y =9①4x −y =5②①+②得:7x =14,则x =2,把x =2代入①得:y =3,则{x =2y =3, 把{x =2y =3代入{3ax −4by =18ax +by =−1中, 得到{a −2b =32a +3b =−1解得:{a =1b =−1.解析:此题主要考查了二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.将第一个方程组第一个方程与第二个方程组第一个方程联立求出x 与y 的值,代入剩下的方程得到关于a 与b 的方程组,即可求出a 与b 的值.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB =BD BO =BO OA =OD,∴△ABO≌△DBO(SSS),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB//ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线;(2)∵AC 是直径,∴∠ABC =90°,∵∠OBA +∠OBC =∠EBC +∠OBC =90°,∴∠OBA =∠EBC ,∴∠BAC =∠EBC ,∵BE ⊥DE ,∴∠E =90°,∴∠BCE +∠EBC =∠BAC +∠ACB =90°,∵∠BAC =∠EBC ,∴∠ACB =∠BCE ,∵sin∠BCE =34,∴sin∠ACB =34,∵AB =3,∴AC =4,∵∠BDE =∠BAC ,∴sin∠DBE =34,∵BD =AB =3,∴DE =94, ∴BE =√BD 2−DE 2=3√74,∵∠CBE =∠BAC =∠BDC ,∠E =∠E ,∴△BDE∽△CBE ,∴BE CE =DE BE ,∴CE =74,∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:7200x −54001.5x =10,解得:x =360,经检验x =360是原方程的根,1.5×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50−m)套,根据题意,可得:360m+540(50−m)≤21000,,解得:m≥3313因此,A种型号健身器材至少购买34套.解析:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.答案:解:(1)3;8;(2)如图:由(1)知,反比例函数解析式是y=8.x∴2n=8,即n=4.故A(2,4),将其代入y=kx+3得到:2k+3=4..解得k=12x+3.∴直线AC的解析式是:y=12x+3=0,令y=0,则12∴x=−6,∴C(−6,0).∴OC =6.由(1)知,OB =3.设D(a,b),则DE =b ,PE =a −6.∵∠PDE =∠CBO ,∠COB =∠PED =90°,∴△CBO∽△PDE ,∴OB DE =OC PE ,即3b =6a−6 ①, 又ab =8 ②.联立①②,得{a =−2b =−4(舍去)或{a =8b =1. 故D (8,1).解析:本题考查了反比例函数综合题,需要掌握待定系数法确定函数关系式,函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形的面积公式,相似三角形的判定与性质等知识点,综合性较强.(1)由一次函数解析式求得点B 的坐标,易得OB 的长度,结合点A 的坐标和三角形面积公式求得S △OAB =3,所以S △ODE =4,由反比例函数系数k 的几何意义求得m 的值;(2)利用待定系数法确定直线AC 函数关系式,易得点C 的坐标;利用∠PDE =∠CBO ,∠COB =∠PED =90°判定△CBO∽△PDE ,根据该相似三角形的对应边成比例求得PE 、DE 的长度,易得点D 的坐标.解:(1)由一次函数y =kx +3知,B(0,3).又点A 的坐标是(2,n),∴S △OAB =12×3×2=3. ∵S △OAB :S △ODE =3:4.∴S △ODE =4.∵点D 是反比例函数y =m x (m >0,x >0)图象上的点, ∴12m =S △ODE =4,则m =8.故答案是:3;8;(2)见答案.25.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
2020年广东省广州市中考数学一模试卷
2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)在实数13、0、1-、2-中,最小的实数是( )A .2-B .1-C .0D .132.(3分)如图所示的几何体的俯视图是( )A .B .C .D .3.(3分)下列运算正确的是( ) A .111x y x y+=+ B .2353()p q p q -=- C .ab ab =D .222()a b a b +=+4.(3分)如图所示,将面积为5的ABC ∆沿BC 方向平移至DEF ∆的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为( )A .10B .15C .20D .255.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )A .2B .2.8C .3D .3.36.(3分)菱形具有而平行四边形不具有的性质是( ) A .对角线互相垂直 B .两组对角分别相等C .对角线互相平分D .两组对边分别平行7.(3分)不等式组3020x x +>⎧⎨-⎩的解集是( )A .2x <B .3x -C .32x -<D .2x8.(3分)如图,ABC ∆的顶点都是正方形网格中的格点,则tan (ABC ∠= )A .12B .2C .55D .2559.(3分)已知α,β是一元二次方程2520x x --=的两个实数根,则22ααββ++的值为( ) A .1-B .9C .23D .2710.(3分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为 . 12.(3分)若1a <,化简2(1)1a --= . 13.(3分)分式方程211x =+的解是 . 14.(3分)如图,是用一把直尺、含60︒角的直角三角板和光盘摆放而成,点A 为60︒角与直尺交点,点B 为光盘与直尺唯一交点,若3AB =,则光盘的直径是 .15.(3分)如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 2cm .16.(3分)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上, 下列结论:①BE DF EF +=;②CE CF =;③75AEB ∠=︒;④23ABCD S =+正方形, 其中正确的序号是 .三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.) 17.(9分)计算034cos 458(3)(1)π︒++-.18.(9分)如图,在ABCD 中,对角线AC 、BD 交于点O ,M 为AD 中点,连接OM 、CM ,且CM 交BD 于点N ,1ND =. (1)证明:~MNO CND ∆∆;(2)求BD 的长.19.(10分)先化简,再求值:22x y x y x y-++,其中23,23x y =+=-. 20.(10分)当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为1A ,2A ,3A ,4A ,现对1A ,2A ,3A ,4A 统计后, 制成如图所示的统计图 .(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;(2) 将条形统计图补充完整, 并求出1A 所在扇形的圆心角的度数;(3) 现从1A ,2A 中各选出一人进行座谈, 若1A 中有一名女生,2A 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .21.(12分)如图,一次函数y ax b =+与反比例函数ky x =的图象交于A 、B 两点,点A 坐标为(6,2),点B 坐标为(4,)n -,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)分别求出一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积.22.(12分)某超市预测某饮料有发展前途, 用 1600 元购进一批饮料, 面市后果然供不应求, 又用 6000 元购进这批饮料, 第二批饮料的数量是第一批的 3 倍, 但单价比第一批贵 2 元 . (1) 第一批饮料进货单价多少元?(2) 若二次购进饮料按同一价格销售, 两批全部售完后, 获利不少于 1200 元, 那么销售单价至少为多少元?23.(12分)如图,在ABC ∆中,90ACB ∠=︒,点O 是BC 上一点.(1)尺规作图:作O ,使O 与AC 、AB 都相切.(不写作法与证明,保留作图痕迹) (2)若O 与AB 相切于点D ,与BC 的另一个交点为点E ,连接CD 、DE ,求证:2DB BC BE =.24.(14分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.25.(14分)如图①,在四边形ABCD中,AC BD==,点M为BC⊥于点E,AB AC BD中点,N为线段AM上的点,且MB MN=(1)求证:BN平分ABE∠;(2)若1BD=,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:MFN BDC∠=∠.2020年广东省广州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)在实数13、0、1-、2-中,最小的实数是( )A .2-B .1-C .0D .13【解答】解:12103-<-<<,∴在实数13、0、1-、2-中,最小的实数是2-.故选:A .2.(3分)如图所示的几何体的俯视图是( )A .B .C .D .【解答】解:如图所示的几何体的俯视图是.故选:C .3.(3分)下列运算正确的是( ) A .111x y x y+=+ B .2353()p q p q -=- C ab ab =D .222()a b a b +=+【解答】解:A 、11y xx y xy++=,故此选项错误;B 、2363()p q p q -=-,故此选项错误;C 、ab ab =,正确;D 、222()2a b a ab b +=++,故此选项错误;故选:C .4.(3分)如图所示,将面积为5的ABC ∆沿BC 方向平移至DEF ∆的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为( )A .10B .15C .20D .25【解答】解:设点A 到BC 的距离为h ,则152ABC S BC h ∆==, 平移的距离是BC 的长的2倍,2AD BC ∴=,CE BC =,∴四边形ACED 的面积111()(2)33515222AD CE h BC BC h BC h =+=+=⨯=⨯=.故选:B .5.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )A .2B .2.8C .3D .3.3【解答】解:(3152113114)30⨯+⨯+⨯+⨯÷(3103344)30=+++÷ 9030=÷3=.故30名学生参加活动的平均次数是3. 故选:C .6.(3分)菱形具有而平行四边形不具有的性质是( ) A .对角线互相垂直 B .两组对角分别相等C .对角线互相平分D .两组对边分别平行【解答】解:A 、正确.对角线互相垂直是菱形具有而平行四边形不具有的性质;B 、错误.两组对角分别相等,是菱形和平行四边形都具有的性质;C 、错误.对角线互相平分,是菱形和平行四边形都具有的性质;D 、错误.两组对边分别平行,是菱形和平行四边形都具有的性质;故选:A .7.(3分)不等式组3020x x +>⎧⎨-⎩的解集是( )A .2x <B .3x -C .32x -<D .2x【解答】解:3020x x +>⎧⎨-⎩①解不等式①得:3x >-, 解不等式②得:2x , ∴不等式组的解集是32x -<,故选:C .8.(3分)如图,ABC ∆的顶点都是正方形网格中的格点,则tan (ABC ∠= )A .12B .2C .55D .255【解答】解:在Rt ABD ∆中,2AD =,4BD =, 则21tan 42AD ABC BD ∠===, 故选:A .9.(3分)已知α,β是一元二次方程2520x x --=的两个实数根,则22ααββ++的值为( ) A .1-B .9C .23D .27【解答】解:α,β是方程2520x x --=的两个实数根,5αβ∴+=,2αβ=-,又222()ααββαββα++=+-,2225227ααββ∴++=+=;故选:D .10.(3分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)【解答】解:(方法一)作点D 关于x 轴的对称点D ',连接CD '交x 轴于点P ,此时PC PD +值最小,如图所示.令243y x =+中0x =,则4y =, ∴点B 的坐标为(0,4);令243y x =+中0y =,则2403x +=,解得:6x =-, ∴点A 的坐标为(6,0)-.点C 、D 分别为线段AB 、OB 的中点,∴点(3,2)C -,点(0,2)D .点D '和点D 关于x 轴对称,∴点D '的坐标为(0,2)-.设直线CD '的解析式为y kx b =+,直线CD '过点(3,2)C -,(0,2)D '-,∴有232k b b =-+⎧⎨-=⎩,解得:432k b ⎧=-⎪⎨⎪=-⎩, ∴直线CD '的解析式为423y x =--. 令423y x =--中0y =,则4023x =--,解得:32x =-, ∴点P 的坐标为3(2-,0). 故选C .(方法二)连接CD ,作点D 关于x 轴的对称点D ',连接CD '交x 轴于点P ,此时PC PD+值最小,如图所示. 令243y x =+中0x =,则4y =, ∴点B 的坐标为(0,4); 令243y x =+中0y =,则2403x +=,解得:6x =-, ∴点A 的坐标为(6,0)-.点C 、D 分别为线段AB 、OB 的中点,∴点(3,2)C -,点(0,2)D ,//CD x 轴,点D '和点D 关于x 轴对称,∴点D '的坐标为(0,2)-,点O 为线段DD '的中点.又//OP CD ,∴点P 为线段CD '的中点,∴点P 的坐标为3(2-,0).故选:C .二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为 56.9610⨯ .【解答】解:696 5000 6.9610=⨯.12.(3分)若1a <2(1)1a -= a - .【解答】解:1a <,10a ∴-<, ∴2(1)1|1|1a a -=--(1)1a =---11a =-+-a =-.故答案为:a -.13.(3分)分式方程211x =+的解是 1x = . 【解答】解:方程的两边同乘(1)x +,得21x =+,解得1x =.检验:把1x =代入(1)20x +=≠.∴原方程的解为:1x =.14.(3分)如图,是用一把直尺、含60︒角的直角三角板和光盘摆放而成,点A 为60︒角与直尺交点,点B 为光盘与直尺唯一交点,若3AB =,则光盘的直径是 3 .【解答】解:如图,点C 为光盘与直角三角板唯一的交点,连接OB ,OB AB ∴⊥,OA 平分BAC ∠,18060120BAC ∠=︒-︒=︒,60OAB ∴∠=︒,在Rt OAB ∆中,333OB AB ==,∴光盘的直径为63.故答案为63.15.(3分)如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 60π 2cm .【解答】解:底面半径为6cm ,高为8cm ,则底面周长12π=,由勾股定理得,母线长10=,那么侧面面积211210602cm ππ=⨯⨯=. 16.(3分)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC和CD 上,下列结论:①BE DF EF +=;②CE CF =;③75AEB ∠=︒;④23ABCD S =+正方形其中正确的序号是 ②③④ .【解答】解:四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒,AEF ∆为等边三角形,AE AF ∴=,在Rt ABE ∆和ADF ∆中,AE AF AB AD =⎧⎨=⎩, Rt ABE ADF ∴∆≅∆,BE DF ∴=,BAE DAF ∠=∠,而60EAF ∠=︒,15BAE DAF ∴∠=∠=︒,75AEB ∴∠=︒,所以③正确,CB CD =,CB BE CD DF ∴-=-,即CE CF =,所以②正确;CEF ∴∆为等腰直角三角形,22CE CF ∴=== 设正方形的边长为x ,则AB x =,2BE x =,在Rt ABE ∆中,222AB BE AE +=,222(2)2x x ∴+-=, 整理得2210x x -=,解得126x +=226x -=, 262(2)2(2)622BE DF x +∴+==-=≠,所以①错误; 2226()23ABCD S x +∴===+正方形,所以④正确. 故答案为②③④.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)17.(9分)计算034cos 458(3)(1)π︒-+-+-.【解答】解:原式24221122221102=⨯-+-=-+-=. 18.(9分)如图,在ABCD 中,对角线AC 、BD 交于点O ,M 为AD 中点,连接OM 、CM ,且CM 交BD 于点N ,1ND =.(1)证明:~MNO CND ∆∆;(2)求BD 的长.【解答】(1)证明:四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,∴点O 是AC 的中点.M 为AD 中点,OM ∴是ACD ∆的中位线,//OM CD ∴,OMN NCD ∴∠=∠.又MNO CND ∠=∠,~MNO CND ∴∆∆;(2)OM 是ACD ∆的中位线,12OM CD ∴=. 由(1)知,~MNO CND ∆∆,1ND =,∴12OM ON CD DN ==, 12ON ∴=, 32OD ON ND ∴=+=, 23BD OD ∴==.19.(10分)先化简,再求值:22x y x y x y -++,其中23,23x y =+=-. 【解答】解:原式22()()x y x y x y x y x y x y-+-===-++, 当23x =+,23y =-时,原式232323=+-+=.20.(10分)当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为1A ,2A ,3A ,4A ,现对1A ,2A ,3A ,4A 统计后, 制成如图所示的统计图 .(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;(2) 将条形统计图补充完整, 并求出1A 所在扇形的圆心角的度数;(3) 现从1A ,2A 中各选出一人进行座谈, 若1A 中有一名女生,2A 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .【解答】解: (1) 总数人数为:640%15÷=人(2)2A 的人数为152643---=(人)补全图形, 如图所示1A 所在圆心角度数为:23604815⨯︒=︒ (3) 画出树状图如下:故所求概率为:3162P == 21.(12分)如图,一次函数y ax b =+与反比例函数k y x=的图象交于A 、B 两点,点A 坐标为(6,2),点B 坐标为(4,)n -,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积.【解答】解:(1)反比例函数k y x=的图象过(6,2)A , 26k ∴=, 解得12k =,故反比例函数的解析式为12y x=, (4,)B n -在12y x=的图象上, 124n ∴=-, 解得3n =-,(4,3)B ∴--,一次函数y ax b =+过A 、B 点,则6243a b a b +=⎧⎨-+=-⎩, 解得121a b ⎧=⎪⎨⎪=-⎩, 故一次函数解析式为112y x =-; (2)当0x =时,1y =-,(0,1)C ∴-,当1y =-时,121x-=,12x =-, (12,1)D ∴--,OCBD ODC BDC s S S ∆∆=+11|12||1||12||2|22=⨯-⨯-+⨯-⨯- 612=+18=.22.(12分)某超市预测某饮料有发展前途, 用 1600 元购进一批饮料, 面市后果然供不应求, 又用 6000 元购进这批饮料, 第二批饮料的数量是第一批的 3 倍, 但单价比第一批贵 2 元 .(1) 第一批饮料进货单价多少元?(2) 若二次购进饮料按同一价格销售, 两批全部售完后, 获利不少于 1200 元,那么销售单价至少为多少元?【解答】解: (1) 设第一批饮料进货单价为x 元, 则第二批饮料进货单价为(2)x +元, 根据题意得:1600600032x x =+, 解得:8x =, 经检验,8x =是分式方程的解 .答: 第一批饮料进货单价为 8 元 .(2)设销售单价为m元,根据题意得:200(8)600(10)1200m m-+-,解得:11m.答:销售单价至少为11 元.23.(12分)如图,在ABC∆中,90ACB∠=︒,点O是BC上一点.(1)尺规作图:作O,使O与AC、AB都相切.(不写作法与证明,保留作图痕迹)(2)若O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:2DB BC BE=.【解答】解:(1)如图,O即为所求.(2)连结OD.AB是O的切线,OD AB∴⊥,90ODB∴∠=︒,即1290∠+∠=︒,CE是直径,3290∴∠+∠=︒,13∴∠=∠,OC OD=,43∴∠=∠,14∴∠=∠,又B B∠=∠,CDB DEB∴∆∆∽,∴DB BC BE DB=,2DB BC BE∴=.24.(14分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】解:(1)将(0,3)-代入y x m =+, 可得:3m =-;(2)将0y =代入3y x =-得:3x =, 所以点B 的坐标为(3,0),将(0,3)-、(3,0)代入2y ax b =+中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩, 所以二次函数的解析式为:2133y x =-; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则451560ODC ∠=︒+︒=︒, tan303OD OC ∴=︒=设DC 为3y kx =-,代入(30),可得:3k = 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:1212033,36x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以1(33M 6);②若M 在B 下方,设MC 交x 轴于点E ,则451530OEC ∠=︒-︒=︒, 60OCE ∴∠=︒,tan 6033OE OC ∴=︒=设EC 为3y kx =-,代入(330)可得:3k , 联立两个方程可得:233133y y x ⎧-⎪⎪⎨⎪=-⎪⎩, 解得:121203,32x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩ 所以2(3M 2)-,综上所述M 的坐标为(33,6)或(32)-.25.(14分)如图①,在四边形ABCD 中,AC BD ⊥于点E ,AB AC BD ==,点M 为BC 中点,N 为线段AM 上的点,且MB MN =(1)求证:BN平分ABE∠;(2)若1BD=,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:MFN BDC∠=∠.【解答】(1)证明:如图①,AB AC=,ABC ACB∴∠=∠,M是BC的中点,AM BC∴⊥,在Rt ABM∆中,90MAB ABC∠+∠=︒,在Rt CBE∆中,90EBC ACB∠+∠=︒,MAB EBC∴∠=∠,MB MN=,MBN∴∆是等腰直角三角形,45MNB MBN∴∠=∠=︒,45EBC NBE MAB ABN MNB∠+∠=∠+∠=∠=︒,NBE ABN∴∠=∠,即BN平分ABE∠;(2)解:设BM CM MN a===,四边形DNBC是平行四边形,2DN BC a∴==,在ABN∆和DBN∆中,AB DBNBE ABNBN BN=⎧⎪∠=∠⎨⎪=⎩,()ABN DBN SAS∴∆≅∆,2AN DN a∴==,在Rt ABM ∆中,由222AM MB AB +=,可得:22(2)1a a a ++=,解得:a =(负值舍去),2BC a ∴==; (3)解:F 是AB 的中点, ∴在Rt MAB ∆中,MF AF BF ==, MAB FMN ∴∠=∠, MAB CBD ∠=∠,FMN CBD ∴∠=∠,12MF MN AB BC ==,即MFMNBD BC =,MFN BDC ∴∆∆∽, MFN BDC ∴∠=∠.。
2020年广州市番禺区一模数学试题145739
2020年广州市番禺区一模数学试题145739本试卷分选择题和非选择题两部分,共三大题25小题,总分值150分.考试时刻为120分钟.本卷须知:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原先的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试终止后,将本试卷和答题卡一并交回.第一部分 选择题〔共30分〕一、选择题〔本大题共10小题,每题3分,总分值30分.在每题给出的四个选项中 只有一项为哪一项符合题目要求的.〕 1.以下运算正确的选项是〔※〕.〔A 〕2a +a =3+a 〔B 〕2a -a =a 〔C 〕2a ·a =32a 〔D 〕a ÷2a =a 2.如图1,ab ∥,140∠=,那么2∠的大小为〔※〕. (A) 50(B) 45(C) 40(D) 303.假设x =53-,y =53+,那么xy 的值为〔※〕. 〔A 〕25 〔B 〕23 〔C 〕8 〔D 〕2 4.三角形的两边长分不为3cm 和8cm ,那么此三角形的第三边 的长不.可能..是〔※〕. 〔A 〕7cm 〔B 〕6cm 〔C 〕3cm 〔D 〕8cm5. 甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为〔※〕. 〔A 〕8.1×190-米 〔B 〕8.1×180-米 〔C 〕81×190-米 〔D 〕0.81×170-米 6.在平面直角坐标系中,点A 〔0,2〕,B 〔32-,0〕,C 〔0,2-〕,D 〔32,0〕,那么以这四个点为顶点的四边形ABCD 是〔※〕.〔A 〕矩形 〔B 〕菱形 〔C 〕正方形 〔D 〕梯形 7.关于x 的方程260x kx --=的一个根为3x =, 那么实数k 的值为〔※〕.〔A 〕1 〔B 〕1- 〔C 〕2 〔D 〕2-8.如图2是一根钢管的直观图,那么它的三视图为〔※〕.9.如图,一次函数与反比例函数的图象相交于A、B 两点,那么图中使反比例函数的值小于一次函数的值的x 的取值范畴是〔※〕.(A) 10x -<< 或02x <<(B) 1x <-或02x << (C) 12x -<< (D) 1x <- 10.某校对460名初三学生进行跳绳技能培训,以提高同学们的跳绳成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市番禺区2020年中考数学一模试卷
一、选择题(本大题共10小题,共30.0分)
1.下列运算正确的是()
A. a12÷a3=a4
B. (3a2)3=9a6
C. 2a⋅3a=6a2
D. (a−b)2=a2−ab+b2
2.如图是由5个相同的正方体搭成的几何体,其左视图是()
A.
B.
C.
D.
3.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计
量是()
A. 中位数
B. 众数
C. 平均数
D. 方差
4.实数a、b在数轴上的位置如图,则|−a|+|a−b|等于()
A. a
B. −b
C. b−2a
D. 2a−b
5.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=20°,则∠AOD等于
()
A. 120°
B. 140°
C. 150°
D. 160°
6.把直线y=3x向上平移4个单位后所得到直线的函数表达式是()
A. y=3x−4
B. y=3x+4;
C. y=3(x−4)
D. y=3(x+4)
7.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每
盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()
A. 28(1−2x)=16
B. 16(1+2x)=28
C. 28(1−x)2=16
D. 16(1+x)2=28
8.如图,点A,B分别在反比例函数y=1
x (x>0),y=a
x
(x<0)的图
象上.若OA⊥OB,OB
OA
=2,则a的值为()
A. −4
B. 4
C. −2
D. 2
9.如图,AB,AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为
点M,N,如果MN的长为√3,那么BC的长为()
A. 3
B. √6
C. 2√3
D. 3√3
10.如图,在菱形ABCD中,∠A=60°,AB=2,点M为边AD的中点,连
接BD交CM于点N,则BN的长是()
A. 1
B. 4
3C. √3 D. 2
3
√3
二、填空题(本大题共6小题,共18.0分)
11.当x=______时,代数式√4x−5有最小值.
12.分解因式:ab2−a=____________.
13.2sin45°+2cos60°−√3tan60°=______.
14.−1是方程x2+bx−5=0的一个根,则b=_______.
15.一个扇形的半径为3cm,面积为πcm2,则此扇形的圆心角为______度.
16. 如图,已知抛物线y =ax 2−4x +c(a ≠0)与反比例函数y =9
x 的图象相
交于点B ,且B 点的横坐标为3,抛物线与y 轴交于点C(0,6),A 是抛物
线y =ax 2−4x +c 的顶点,P 点是x 轴上一动点,当PA +PB 最小时,P
点的坐标为___________.
三、解答题(本大题共9小题,共102.0分)
17. 解方程组:
(1){3x −5z =6 ①x +4z =−15 ②
(2){4(−y −1)=3(1−y)−2x 2+y 3=2.
18. 已知:如图,B ,A ,E 在同一直线上,AC//BD 且AC =BE ,∠ABC =∠D.求证:AB =BD .
19. 先化简,再求值:a−33a 2−6a ÷(a +2−5
a−2),其中a 2+3a −1=0.
(k≠0)的图象与一次函数y=−x+b的图象在第一象限交于A(1,3),20.如图,已知反比例函数y=k
x
B(3,1)两点
(1)求反比例函数和一次函数的表达式;
(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=−x+b的
上的图象于点N.若PM>PN,结合函数图象直接写出a的取值图象于点M,交反比例函数y=k
x
范围.
21.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的2支红
笔和1支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.
(1)请用树形图或列表法列出摸笔游戏所有可能的结果;
(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.
22.如图,为了测量旗杆的高度BC,在距旗杆底部B点10米的A处,用高1.5
米的测角仪DA测得旗杆顶端C的仰角∠CDE为52°,求旗杆BC的高度.(
结果精确到0.1米)【参考数据sin52°=0.79,cos52°=0.62,tan52°=1.28】
23.如图,△ABC内接于⊙O,AB是⊙O的直径,∠ACB的平分线交⊙O于D,连接BD,过点D作
DP//AB交CA的延长线于P.
(1)求证:PD是⊙O的切线;
(2)当AC=6,BC=8时,求CD的长.
24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O不重合),作AF⊥BE,
垂足为G,交BC于F,交BO于H,连接OG,CC.
(1)求证:AH =BE ;
(2)试探究:∠AGO 的度数是否为定值?请说明理由;
(3)若OG ⊥CG ,BG =√5,求△OGC 的面积.
25. 已知抛物线y =a(x −12)2−2,顶点为A ,且经过点B(−32,2),点C(5
2,2).
(1)求抛物线的解析式;
(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM =∠MAF ,求△POE 的面积;
(3)如图2,点Q 是折线A −B −C 上一点,过点Q 作QN//y 轴,过点E 作EN//x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.。