和差倍问题及其解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和差倍问题及其解法
和差倍问题及解法
2、和差倍问题的学法
在初学和差倍问题时,很多同学习惯记公式解题,也有些老师只要求学生记公式、背公式,但真正要学习好和差倍问题,只会记公式、背公式,用公式解题是远远不够的。
解这一类问题,要公式与图解对应理解,会用图解推理公式,会用公式画出图解;会在图解的基础上分析量与量这间关系,只有这样,和差倍问题才算是基本掌握好,才可以熟练地用这些方法去探索更为复杂的问题。
(1)会根据题设条件区分三种基本类型,并运用相应的公式解决相关的问题;
(2)会根据题设条件画出相对应的线段图;
(3)会用图示法列出题设条件中的数量关系;
(4)会根据线段图或图示法中的数量找量与量之间的变化关系;
3、方法示范和差倍问题及其解法
和差倍问题及解法
2、和差倍问题的学法
在初学和差倍问题时,很多同学习惯记公式解题,也有些老师只要求学生记公式、背公式,但真正要学习好和差倍问题,只会记公式、背公式,用公式解题是远远不够的。
解这一类问题,要公式与图解对应理解,会用图解推理公式,会用公式画出图解;会在图解的基础上分析量与量这间关系,只有这样,和差倍问题才算是基本掌握好,才可以熟练地用这些方法去探索更为复杂的问题。
(1)会根据题设条件区分三种基本类型,并运用相应的公式解决相关的问题;
(2)会根据题设条件画出相对应的线段图;
(3)会用图示法列出题设条件中的数量关系;
(4)会根据线段图或图示法中的数量找量与量之间的变化关系;
3、方法示范
这里我们只选3道题作代表,分别从题型及思维方法、解题方法上面作简单的介绍,给学生及家长一个简单的参照。
范例1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图
书多少本?
分析:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:
解:乙班:160÷(3+1)=40(本)
甲班:40×3=120(本)或 160-40=120(本)
答:甲班有图书120本,乙班有图书40本。
范例2、549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?
分析:从线段图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。
解:①丙数是:(549+2-2)÷(2+2+1+4)
=549÷9
=61
②甲数是:61×2-2=120
③乙数是:61×2+2=124
④丁数是:61×4=244
答:甲、乙、丙、丁分别是120、124、61、244.
范例3、小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?
用文字图示的方法找数量间的关系
有小红+小玲+小明=小红+(小红+3)+ (2小红-6)=4小红-3=73.
解:小红有糖(73+3)÷4=19块.
答:小红有19块糖。
分析:小玲比小红多3块糖,小明糖数再增加2就等于小红糖数减少2后2倍,所以小明的糖数是小红的2倍少6颗,
用文字图示的方法找数量间的关系
有小红+小玲+小明=小红+(小红+3)+ (2小红-6)=4小红-3=73.
解:小红有糖(73+3)÷4=19块.
答:小红有19块糖。
用文字图示的方法找数量间的关系
有小红+小-3=73.玲+小明=小红+(小红+3)+ (2小红-6)=4小红
解:小红有糖(73+3)÷4=19块.
答:小红有19块糖。
这里我们只选3道题作代表,分别从题型及思维方法、解题方法上面作简单的介绍,给学生及家长一个简单的参照。
范例1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图
书多少本?
分析:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:
解:乙班:160÷(3+1)=40(本)
甲班:40×3=120(本)或 160-40=120(本)
答:甲班有图书120本,乙班有图书40本。
范例2、549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?
分析:从线段图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。
解:①丙数是:(549+2-2)÷(2+2+1+4)
=549÷9
=61
②甲数是:61×2-2=120
③乙数是:61×2+2=124
④丁数是:61×4=244
答:甲、乙、丙、丁分别是120、124、61、244.
范例3、小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?
分析:小玲比小红多3块糖,小明糖数再增加2就等于小红糖数减少2后2倍,所以小明的糖数是小红的2倍少6颗,和差倍问题及其解法
和差倍问题及解法
2、和差倍问题的学法
在初学和差倍问题时,很多同学习惯记公式解题,也有些老师只要求学生记公式、背公式,但真正要学习好和差倍问题,只会记公式、背公式,用公式解题是远远不够的。
解这一类问题,要公式与图解对应理解,会用图解推理公式,会用公式画出图解;会在图解的基础上分析量与量这间关系,只有这样,和差倍问题才算是基本掌握好,才可以熟练地用这些方法去探索更为复杂的问题。
(1)会根据题设条件区分三种基本类型,并运用相应的公式解决相关的问题;
(2)会根据题设条件画出相对应的线段图;
(3)会用图示法列出题设条件中的数量关系;
(4)会根据线段图或图示法中的数量找量与量之间的变化关系;
3、方法示范
这里我们只选3道题作代表,分别从题型及思维方法、解题方法上面作简单的介绍,给学生及家长一个简单的参照。
范例1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图
书多少本?
分析:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:
解:乙班:160÷(3+1)=40(本)
甲班:40×3=120(本)或 160-40=120(本)
答:甲班有图书120本,乙班有图书40本。
范例2、549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?
分析:从线段图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。
解:①丙数是:(549+2-2)÷(2+2+1+4)
=549÷9
=61
②甲数是:61×2-2=120
③乙数是:61×2+2=124
④丁数是:61×4=244
答:甲、乙、丙、丁分别是120、124、61、244.
范例3、小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?
分析:小玲比小红多3块糖,小明糖数再增加2就等于小红糖数减少2后2倍,所以小明的糖数是小红的2倍少6颗,
用文字图示的方法找数量间的关系
有小红+小玲+小明=小红+(小红+3)+ (2小红-6)=4小红-3=73.
解:小红有糖(73+3)÷4=19块.
答:小红有19块糖。
给孩子一次挑战自
∙胡锦涛欢迎俄罗斯
∙2010年秋季学思行课程推荐
∙给孩子一次挑战自己的机会
∙胡锦涛欢迎俄罗斯总统访华3
推荐新闻
∙数学某某老师
∙数学某某老师
∙数学某某老师
∙数学某某老师
∙数学某某老师
∙数学某某老师
∙数学某某老师
∙数学某某老师
关于我们。