相似三角形的判定(三边)

合集下载

4.4第3课时利用三边判定三角形相似(教案)

4.4第3课时利用三边判定三角形相似(教案)
a.根据已知三边长度判断两个三角形是否相似。
b.在已知一个三角形的三边长度和另一个三角形两边长度及它们之间的比例关系时,求解第三个边的长度。
c.运用相似三角形的性质,解决实际应用问题,如求物体的高度、距离等。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的几何直观能力,通过观察和比较三角形,让学生理解并掌握三边判定三角形相似的条件,提高空间想象力和几何图形感知能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《利用三边判定三角形相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否相似的情况?”比如,在建筑设计中,我们可能需要通过三角形的相似性来计算建筑物的比例。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形相似的奥秘。
其次,在新课讲授环节,我尽力通过案例分析和图示来解释三边判定法,但似乎有一部分学生仍然感到困惑。我考虑在下一节课中增加一些互动环节,比如让学生自己尝试在纸上画出相似三角形,并实际测量边长比例,这样他们可以更直观地感受到相似三角形的性质。
在实践活动和小组讨论中,我看到学生们积极参与,这让我感到很高兴。他们通过讨论和实验操作,不仅加深了对三角形相似的理解,还学会了如何将理论知识应用到实际问题中。不过,我也观察到有些小组在讨论时可能过于依赖组内的一两个学生,而其他成员参与度不高。我计划在接下来的课程中,鼓励每个学生都积极参与讨论,确保每个人都有机会表达自己的观点。
-通过典型题目,如已知两个三角形用。
-以实际问题为例,如求建筑物的高度,引导学生运用相似三角形的性质进行求解。
2.教学难点

27.2相似三角形的判定(三边法、两边及其夹角法)

27.2相似三角形的判定(三边法、两边及其夹角法)
根据下列条件,判断△ABC与△A'B'C'是否 相似,并说明理由:
(1)AB=4,BC=6,AC=8.
A'B'=12,B'C'=18,A'C'=24
(2)∠A=120°,AB=7cm,AC=14cm, ∠A'=120°,A'B'=3cm,A'C'=6cm
2. 图中的两个三角形是否相似?为什么?
(2)
古勒巴格镇中学 再吐南木.买买提
导入新课
相似三角形已经学过哪些判定方法?
1. 学习目标:
掌握判定两个三角形相似的方法: (1)如果两个三角形的三边成比例,那么这两个三角形相似。 (2)如果两个三角形的两边成比例并且夹角相等,那么这 两个三角形相似。
2.自主学习指导(11分钟)
请同学们在一张方格纸上任意画一个三角形,再画一个三角形,使它 的各边长都是原来三角形各边长的2倍,度量这两个三角形的对应角, 它们相等吗?这两个三角形相似吗?与邻座交流一下,看看是否有同 样的结论.
5.达标检测 (5分钟)
练习
1.根据下列条件,判断△ABC与△A'B'C'是否相似,并说明理由: (1)∠A=40°,AB=8,AC=15 ∠A' =40°,A'B' =16,A'C' =30 (2)AB=10cm,BC=8cm,AC=16cm A'B' =16cm,B'C' =12.8cm,A'C' =25.6cm
这节课我们学
到了什么?
全等判定:
(对应)边角都相等 (6组量)
课堂小结
判定方法

相似三角形的定义和判定方法

相似三角形的定义和判定方法

相似三角形的定义和判定方法相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

下面将依次介绍相似三角形的定义和判定方法。

1. 相似三角形的定义相似三角形的定义是指两个三角形的对应角度相等,且对应的边长成比例。

具体而言,对于三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,则称三角形ABC与三角形DEF相似。

2. 角-角-角(AAA)相似定理角-角-角(AAA)相似定理是指如果两个三角形的对应角度相等,则这两个三角形是相似的。

根据该定理,如果∠A=∠D,∠B=∠E,∠C=∠F,则可以判定三角形ABC与三角形DEF是相似的。

3. 边-边-边(SSS)相似定理边-边-边(SSS)相似定理是指如果两个三角形的对应边长成比例,则这两个三角形是相似的。

根据该定理,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC与三角形DEF是相似的。

4. 边-角-边(SAS)相似定理边-角-边(SAS)相似定理是指如果两个三角形的两条边分别成比例,且夹角相等,则这两个三角形是相似的。

根据该定理,如果AB/DE=AC/DF,且∠A=∠D,则可以判定三角形ABC与三角形DEF是相似的。

总结:相似三角形是指两个三角形的对应角度相等,且对应边的比值相等的情况下成为相似三角形。

相似三角形的判定方法包括角-角-角(AAA)相似定理、边-边-边(SSS)相似定理和边-角-边(SAS)相似定理。

通过这些判定方法,我们可以确定两个三角形是否相似,并且进一步分析它们的性质和关系。

相似三角形在几何学中具有重要的应用,可以用于解决各种问题,如比例求解、测距等。

以上是关于相似三角形的定义和判定方法的介绍。

相似三角形的几何性质和应用领域涉及广泛,深入理解和掌握相似三角形的定义和判定方法可以为几何学的研究和实际问题的解决提供有力的工具和方法。

全等相似三角形的判定方法

全等相似三角形的判定方法

全等相似三角形的判定方法
全等和相似三角形的判定方法如下:
全等三角形的判定方法:
1.SSS(边、边、边):三边长度相等。

2.SAS(边、角、边):两边夹角相等。

3.ASA(角、边、角):两角夹边相等。

4.AAS(角、角、边):两角非夹边相等。

5.RHS(直角、斜边、边):在一对直角三角形中,斜边及另一条
直角边相等。

相似三角形的判定方法:
1.两角分别对应相等的两个三角形相似。

2.两边成比例且夹角相等的两个三角形相似。

3.三边成比例的两个三角形相似。

4.一条直角边与斜边成比例的两个直角三角形相似。

相似三角形的判定口诀

相似三角形的判定口诀

相似三角形的判定口诀
两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)
4.两三角形三边对应平行,则两三角形相似。

(简叙为:三边对应平行,两个三角形相似。

)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

(简叙为:斜边与直角边对应成比例,两个直角三角形相似。

)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。

(简叙为:全等三角形相似)。

18.5相似三角形的判定(三)(SAS、SSS)

18.5相似三角形的判定(三)(SAS、SSS)
和HFCD,矩形对角线AC的长是 ;
挑战自我
三个边长为a的正方形ABEG、GEFH
和HFCD,矩形对角线AC的长是 ;
已知:如图,四边形ABEG 、GEFH 、
HFCD都是边长为a的正方形. 求证:△AEF∽△CEA.
证法1:∵正方形ABEG的边长为a,
证法1:∵正方形ABEG的边长为a, ∴AE= a.
AE∶EF= a∶a= ,
EC∶EA=2a∶
a=
,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
AE∶EF= a∶a= ,
EC∶EA=2a∶
CA∶AF = a∶
a=
a=
,
,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,

∴DE=B´C´,EA= C´A´. ∴ △ADE≌△A´B´C´.
证明:在△ABC的边AB 上截取AD= A´B´,过点 D作DE∥BC交AC于点E. 这样, △ADE∽△ABC. ∵ AD= A´B´, ∴ 又

∴DE=B´C´,EA= C´A´. ∴ △ADE≌△A´B´C´. ∴ △A´B´C´∽△ABC.
∴ △AEF∽△CEA.
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
AE∶EF= a∶a= ,
证法2:根据题意,可得 AE= a ,AF= a , AC= a.
在△AEF和△CEA中,
解:∵
2)AB=5厘米, BC=6厘米, AC=8厘米, A´B´=10 厘米 , B´C´=12 厘米 , A´C´ =16厘米.

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

相似三角形的判定(三)

相似三角形的判定(三)
0
已知: 如图, 已知 : 如图 , 在 △ ABC中 , ∠ ACB=90° , 中 ° CD⊥AB于D. ⊥ 于 求证: 求证:△ABC∽△CBD∽△ACD. C
A
D
B
结论: 结论:
直角三角形被斜边上的高分成的两个直 角三角形和原三角形相似. 角三角形和原三角形相似.
C
A
D
B
C
A
D
B
∵在△ABC中,∠ACB=90°, 中 ° CD⊥AB于D, ⊥ 于 ∴△ABC∽△CBD∽△ACD. ∽ ∽
0
B
C
3.如图, △ABC中,∠ACB=90°, CD⊥AB于 如图, 如图 中 ° ⊥ 于
于点E, 点D, DE⊥AC于点 ⊥ 于点
C
AD CE 求证: 求证: = AC BD
A
E
D
B
4.在Rt△ABC中,CD是斜边 上的高,点F是 △ 是斜边AB上的高 中 是斜边 上的高, 是 CD上一点,BE⊥AF交AF的延长线于点 , 上一点, ⊥ 交 的延长线于点 的延长线于点E, 上一点 C 2 E 求证: 求证: AD = CDi AC
相似三角形的判定( 相似三角形的判定(三)
猜想:两个角对应相等的两个三角形相似. 猜想:两个角对应相等的两个三角形相似.
已知:如图, 已知:如图,在△ABC和△A´B´C ´ 和 中,∠A=∠A´ ,∠B=∠B´ . ∠ ∠ 求证:△ABC∽△A´B´C´. 求证: ∽
A A'
B
C B'
C'
相似三角形判定定理3 相似三角形判定定理3: 如果一个三角形的两个角与另一个三角形的两个 如果一个三角形的两个角与另一个三角形的两个 两个角与另一个三角形的 对应相等,那么这两个三角形相似 相似. 角对应相等,那么这两个三角形相似. 简单说成:两角对应相等 两三角形相似 相似. 简单说成:两角对应相等,两三角形相似. 对应相等,

相似三角形的判定(三边)

相似三角形的判定(三边)

AB BC AC 1
演示
相似三角形判定: 三边对应成比例的两个三角形相似.
判定方法:如果一个三角形的三条边
与另一个三角形的三条边对应成比例,那 么这两个三角形相似。
A
D 数学表达式:
在△ABC和△DEF中,
B
C
E
F
∵ AB BC CA DE EF FD
∴△ABC∽△DEF
例题欣赏
(2)判断△ABC与△DEF是否相似,并证明你的结论.
A
E D
B
C
已知零件的外径为25cm,要求它的厚度x, 需先求出它的内孔直径AB,现用一个交叉卡钳 (AC和BD的长相等)去量(如图), 若OA:OC=OB:OD=3,CD=7cm。求此零件的厚度x。
注意审题,题中没有平行条件
如图,在正方形网格上有6个斜三角形:①△ABC ②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EKF。 其中②~⑥中与三角形①相似的三角形是_____________
求证:∠ABD=∠CBE
D
B
证明:∵AB:BD=BC:BE=CA:ED
∴ △ABC∽△DBE
E
∴∠ABC=∠DBE
∵∠ABD- ∠DBC =∠DBE- ∠DBC
∴ ∠ABD=∠CBE
A C
2、已知△ABC的三边长分为 2 , 6 ,2, △A′B′C′的两边长分别是1和 3 ,如果 △ABC与△A′B′C′相似,那么△A′B′C′的
注意:6可以是最长边,也可以是最短边,还 可以是最短与最长之间的边。由此:有三种情况
试一试:
(1)在Δ ABC与Δ A′B′C′中,若 AB=3,
BC=4, AC=5, A′B′=6, B′C′=8, A′C′=10, Δ ABC与Δ A′B′C′相似吗?

相似三角形的判定(含答案)

相似三角形的判定(含答案)

一、基础知识相似三角形的判定(三):如果两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

如图在△ABC与△DEF中,∠B=∠E,AB BCDE EF,可判定△ABC∽△DEF。

二、重难点分析本节课的重难点是三角形相似的判定判定方法:如果两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

注意:在利用该方法时,相等的角必须是已知两对应边的夹角,才能使这两个三角形相似,不要错误地认为是任意一角对应相等,两个三角形就相似。

例:如图所示,已知在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点。

求证:△ADQ∽△QCP.∴DQ=QC=1 2 a三、中考感悟1、(2014•宿迁)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A. 1个B. 2个C. 3个D. 4个∴满足条件的点P的个数是3个,【答案】C【点评】本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.2、(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.∴t=,∴PQ的中点在△ABC的一条中位线上.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.四、专项训练(一)基础练习1、如图四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形,若OA∶OC=OB∶OD,则下列结论中一定正确的是().A.①与②相似B.①与③相似C.①与④相似D.②与④相似2、能判定△ABC相似与△A|B|C|的条件是()A.AB ACA B A C=''''B.AB A BAC A C''='', 且A C'∠=∠C.AB BCA B B C='''',且B B'∠=∠D.AB ACA B A C='''',且B B'∠=∠3、如图,若AC2= ,则△ADC∽△ACB。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

相似三角形判定1三边对应成比例

相似三角形判定1三边对应成比例
相似三角形的判定定理
—三边对应成比例
2020/3/20
一、如何判断两三角形是否相似?
1.定义法:两三角形对应角相等,对应边的比相等的 两个三角形相似
2.平行法:平行于三角形一边的直线和其他两边(或两 边的延长线)相交,所构成的三角形与原 三角形相似。
A
D
E
D
E A
∵ DE∥BC
∴ △ ADE ∽ △ ABC
例: 根据下列条件,判断ABC和A' B'C'是 否相似,并说明理由。 AB 3, BC 5, AC 6, A' B' 6, B'C' 10, A'C' 12.
若:AB 3, BC 5, AC 6, A' B' 6, B'C' 10, A'C' 14. 这两个三角形还是相似的吗?
∴ A' E AC 同理 DE BC
∴ A' DE ABC
∴ ABC∽ A' B'C'
判定定理:如果两个三角形的三组对 应边的比相等,那么这两个三角形相似.
简单地说: 三组对应边比相等的两三角形相似.
A
A'
B
C B'
ห้องสมุดไป่ตู้C'
A' B' B'C' A'C' k AB BC AC
ABC ∽ A' B'C'
• 探究
任意画一个三角形,再画一个三角形,使它的 各边长都是原来三角形各边长的K倍,度量这两个 三角形的对应角,它们相等吗?这两个三角形相 似吗?与同桌交流一下,看看是否有同样的结论。

三角形的相似判定

三角形的相似判定

三角形的相似判定相似三角形是高中数学中非常重要的概念之一。

在几何图形中,如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就是相似三角形。

本文将从相似三角形的定义、判定方法和一些相关性质进行探讨。

1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,对应边成比例。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=AC/DF=BC/EF,那么三角形ABC和三角形DEF就是相似三角形。

2. 判定相似三角形的方法(1)AA判定法当两个三角形的两个对应角相等时,如果它们的第三个对应角也相等,那么这两个三角形是相似的。

具体而言,若∠A=∠D,∠B=∠E,则可推出∠C=∠F,从而得出两个三角形相似。

(2)SAS判定法当两个三角形的一个对应边成比例,两个对应角相等时,这两个三角形是相似的。

具体而言,若AB/DE=AC/DF,且∠A=∠D,则可推出∠B=∠E,从而得出两个三角形相似。

(3)SSS判定法当两个三角形的对应边成比例时,这两个三角形是相似的。

具体而言,若AB/DE=AC/DF=BC/EF,则得出两个三角形相似。

3. 相似三角形的性质(1)相似三角形内角相等如果两个三角形相似,那么它们的对应角都相等。

这一性质可以通过AA判定法和SAS判定法得到证明。

(2)相似三角形边长比例如果两个三角形相似,那么它们的对应边之比相等。

这一性质可以通过SAS判定法和SSS判定法得到证明。

(3)相似三角形面积比如果两个相似三角形的边长比为k,则它们的面积之比为k²。

也就是说,如果三角形ABC和三角形DEF相似且AB/DE=AC/DF=BC/EF=k,那么三角形ABC的面积与三角形DEF的面积之比为k²。

4. 常见应用相似三角形的概念在几何问题中有广泛的应用。

例如,可以利用相似三角形的性质解决高塔定影问题、测量无法直接获得的长度等。

5. 实例分析现举一个例子来说明相似三角形的判定及应用。

相似三角形的判定(三边及两边夹角)

相似三角形的判定(三边及两边夹角)

D
C
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
2如图,AB•AE=AD•AC,且∠1=∠2, 求证:△ABC∽△AED.A1D2B
EC
3.已知:如图,P为△ABC中线AD上
的一点,且 BD2 = PD ? AD
求证:△ADC∽△CDP.
A
P
BD
C
如如图图在在正正方方形形网网格格上上有有A△1B1AC1和1B1AC2 B12C和2,△A 2B它们2C相2似,它吗们?相如果似相吗似?,如求果出相相似比,;求如出果相 似不比相;似如,请果说不明相理似由,。请说明理由。
已知:如图△ABC和△A`B`C`中 A`B`:AB=A`C`:AC=B`C`:BC.
求证:△ABC∽△A`B`C`
B` A
A` C`
D
E
B
C
A
A’
B
C B’
C’
A'B' = B'C' = A'C' △ABC∽△A’B’C’
AB BC AC
如果一个三角形的三组对应边的
比相等,那么这两个三角形相似.
1.6
E
F
1. 对应角___相__等__, 对应边—成——比—例——的两个三角形, 叫做相似三角形 .
2. 相似三角形的—对—应——角—相——等, 各对应边——成—比——例—。
3.如何识别两三角形是否相似? 平行于三角形一边的直线和其他两边(或两边的延
长线)相交,所构成的三角形与原三角形相似。
D B
A
D
E
相似三角形的判定方法
方法1:通过定义(不常用)
方法2:

相似三角形的判定-三边法、两边及其夹角法课件

相似三角形的判定-三边法、两边及其夹角法课件
(1)度量这两个三角形的对应角,它们相等吗?
(2)这两个三角形相似吗?
(3)由此你能得出什么结论?
演示:
归纳: A
A’
B
C B’C’Fra bibliotek判定定理1:
三边成比例的两个三角形相似.
几何语言:
∵ A AB 'B ' B BC 'C' A AC'C'∴ △ABC∽△A’B’C’
例1:
• 在△ABC和△A′B′C′中,试判定△ABC与A′B′C′ 是否相似,并说明理由.
• 1、任意三角形全等判定有哪些方法? • 2、相似三角形定义? • 3 、如何识别两三角形是否相似?
A
D
E
D
E
O ∵ DE∥BC
∴ △ ADE ∽ △ ABC
B
CB
C
是否存在判定两个三角形相似的简便方法呢?
任意画一个三角形,再画一个三角形,使它的 各边长都是原来三角形各边长的K倍,同学们相互交 流一下,回答下列问题:
• (1)AB=4 cm, BC=6 cm,AC=8 cm, • A’B’ =2 cm, B’C’ =3cm, A’C’ =4 cm.
• (2) AB=12cm, BC=15cm, AC=24cm • A’B’=16cm,B’C’=20cm,A’C’=32cm
探究二
类似于探究一,我们尝试着说明能否通过 “两边成比例和夹角相等” 来判断两个三角形 相似呢?
思考
对于△ABC和△A’B’C’,如果, ∠C=∠C’,这两个三角形一定相似吗?
(试着画画看)
归纳:
判定定理2: 两边成比例且夹角相等的两个三角形相似.
几何语言:
∵ ∴

相似三角形的判定三边对应成比例

相似三角形的判定三边对应成比例
思想方法小结
类比思想、分类讨论思想
16:06:52
1.整理三角形相似的判定方法。 2.课堂作业:82页练习第2题,85页
习题22.2第3 题
16:06:52
▪不经历风雨,怎么见彩虹 ▪没有人能随随便便成功!
16:06:52
是不是有相似的结论呢?
16:06:51
三边对应成
A
比例
A’
B
C B’
C’
如果
A'B' AB
B'C' BC
A'C'
AC
是否有△ABC∽△A’B’C’呢?
16:06:51
在两个三角形中,如果三边对应成比 例,那么这两个三角形相似。
问题:对于一个命题,你准备怎么去 说明它的正确性?
16:06:52
已知:如图在△ABC和△A′B′C′中 A′B′:AB= A′C′ :AC=B′C′:BC.
B
C B'
C' ∴ △ABC∽△A′B′C′
(3)两边成比例且夹角相等的两个三角 形相似
A
B
16:06:51
A' C B'
∵ AB BC ,∠B= ∠ B’
A’B’ B’C’
C' ∴ △ABC∽△A’B’C’
数学上有一种思想叫类比思想: 在三角形全等判定方法中,除了 ASA、 AAS、SAS外,还有什 么判定方法? 还有SSS,那么三角形相似呢?
求证:△ABC∽△A′B′C′
A′
B′
C′
A
D
E
16:06:52
B
C
如果一个三角形的三条边和另一个 三角形的三条边对应成比例,那么这 两个三角形相似.(可简单地说成:

相似三角形的判定3

相似三角形的判定3

证明:在AB,AC上分别截取AM= DE,AN = DF
∵ AM=DE,∠A=∠D,AN=DF ∴ ΔAMN≌ΔDEF,
∴ ∠AMN=∠E, 又∵ ∠B=∠E, ∴ ∠AMN=∠B,
∴ MN//BC, ∴ ΔAMN∽ΔABC。
∴ ΔDEF∽ΔABC
M B
A D
N
CE
F
例题分析
A
例2. 如图,△ABC中,
求证:ΔACD ∽ ΔABC ∽ ΔCBD 。
证明: ∵ ∠A=∠A,∠ADC=∠ACB=900, ∴ ΔACD∽ΔABC(两角对应相等,两 三角形相似)。 C 同理 ΔCBD ∽ ΔABC 。
∴ ΔABC∽ΔCBD∽ΔACD。
此结接使用.
AD
B
射影定理:
(1) AC2=AD·AB (2) BC2=BD·AB (3) CD2=BD·AD
D A
C
B
E
F
如图:在直角ΔABC与直角DEF中,若AB:DF=AC:DE ,
求证:ΔABC∽ ΔDEF'
∵∠A、∠C都是BD⌒所对的圆周角 A
∴ ∠A=∠C
D
同理: ∠D=∠B(或∠APD=∠CPB)
OP
B
∴△PAD∽△PCB
C
\ PA PD PC PB
即PA·PB=PC·PD
• 对于两个直角三角形,我们还可以用“HL” 判定它们全等。那么,满足斜边的比等于 一组直角边的比的两个直角三角形相似吗?
例2:如图,弦AB和CD相交于圆O内一点P,求证:
PA·PB=PC·PD
证明:连接AC、BD。
∵∠A和∠D都是弧CB所对的圆周角,
∴∠ A=∠D。
同理∠C=∠B (或∠APC=∠DPB) 。 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C’
A' B' B' C' A' C' AB BC AC
是否有△ABC∽△A’B’C’?

已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`, 过点D作DE∥BC交AC于点E.
如图在正方形网格上有A1 B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
答案是2:1


练习1: 已知△ABC和 △DEF,根据下列 条件判断它们是否相似.
(1) AB=3, BC=4, AC=6 否 DE=6, EF=8, DF=9 (2) AB=4, BC=8, AC=10 是 DE=20, EF=16, DF=8 (3) AB=12, BC=15, AC=24 否 DE=16, EF=20, DF=30
(注意:大对大,小对小,中对中)

例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm

AB BC AC 如图已知 , 试说明∠BAD=∠CAE. AD DE AE
AB BC AC 解 AD DE AE
∴Δ ABC∽Δ ADE B ∴∠BAC=∠DAE ∴∠BAC━∠DAC=∠DAE━∠DAC 即∠BAD=∠CAE
A E D
C

• 不经历风雨,怎么见彩虹 • 没有人能随随便便成功! •
内容回顾
判断两三角形相似方法有那些?
方法1:通过定义 方法2:预备定理 思考:还有没有其他的办法判 断两个三角形相似?类比全等 三角形的判断方法。


三个角对应相等 三边对应成比例
A
三边对应成 比例
A’
B’
B
C

B` A
C`
D
E
B

C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC

△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.

相关文档
最新文档