2.6 实数(2)
八年级数学上册2.6实数教案 新版北师大版
八年级数学上册2.6实数教案新版北师大版一. 教材分析《八年级数学上册2.6实数》这一节主要让学生了解实数的概念,掌握实数的性质,以及实数与数轴的关系。
教材通过引入实数的概念,让学生认识到实数是整数和分数的统称,包括有理数和无理数。
同时,教材介绍了实数的性质,如实数的大小比较、实数的加减乘除运算等。
最后,教材引导学生理解实数与数轴的关系,掌握数轴上的点与实数的一一对应关系。
二. 学情分析学生在学习这一节之前,已经掌握了有理数的概念和性质,对数轴也有了一定的了解。
但是,学生可能对无理数的概念和性质比较陌生,理解起来可能存在一定的困难。
因此,在教学过程中,需要加强对无理数的解释和引导,帮助学生建立起实数的整体概念。
三. 教学目标1.让学生理解实数的概念,掌握实数的性质。
2.让学生掌握实数与数轴的关系,能够利用数轴表示实数。
3.培养学生运用实数解决问题的能力。
四. 教学重难点1.实数的概念和性质。
2.实数与数轴的关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考和探索实数的性质;通过案例分析,让学生了解实数在实际中的应用;通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备与实数相关的案例材料。
2.准备数轴的教具。
3.准备实数的性质和运算的练习题。
七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生思考实数的定义和性质。
例如:“实数是什么?实数有哪些性质?”让学生回顾已有知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍实数的概念,包括有理数和无理数。
通过案例教学法,呈现一些与实数相关的实际问题,让学生了解实数的应用。
如:“小明买了一本书,价格是3.14元,这本书的价格可以用实数表示吗?为什么?”3.操练(10分钟)让学生进行实数的性质和运算的练习。
例如:“判断以下两个实数的大小:2和3/4。
”通过练习,让学生掌握实数的性质和运算方法。
2022-2023学年八年级数学上《2
2022-2023学年八年级数学上《2.6实数》一.选择题(共7小题)1.(2022•尤溪县模拟)实数﹣6,,﹣,0中,整数的个数是()A.1个B.2个C.3个D.4个2.(2022•东莞市校级一模)实数3的倒数是()A.3B.﹣3C.﹣D.3.(2022春•渑池县期中)下列说法中,错误的是()A.是整数B.的平方根是C.是分数D.是有理数4.(2022•西宁一模)下列四个数中,负整数是()A.﹣πB.﹣3C.0D.﹣5.(2021秋•成都期末)﹣的绝对值是()A.﹣B.11C.D.﹣11 6.(2022•海淀区校级一模)下列关于数轴的叙述,正确的有()个.(1)实数m,n在数轴上的对应点的位置如图所示,则mn<0,2m+n<0;(2)数轴上表示数m和m+2的点到原点的距离相等,则m为1;(3)数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数轴上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则D点的位置介于C、O之间;A.0B.1C.2D.3 7.(2022•观山湖区模拟)下列运算中,正确的是()A.﹣|﹣2|=2B.(3.14﹣π)0=0C.()﹣1=﹣2D.﹣=二.填空题(共7小题)8.(2021春•饶平县校级期中)的相反数是,|π|=,||=.9.(2022春•江源区期中)已知a是﹣,b的立方根为﹣2,则a+b的倒数为.10.(2021春•西丰县期中)若a,b为实数,且满足若(2a+3)2+=0,则=.11.(2021秋•玄武区校级月考)在9.3,﹣24,0,﹣0.33,0.333…,141421356,2π,3.3030030003…(每相邻两个3之间依次多一个0),﹣3.1415中属于整数集合的有,属于负分数集合的有,属于无理数集合的有.12.(2022春•港闸区校级月考)﹣||的值为.13.(2022春•中山市期中)如图,把半径等于的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是.14.(2022•洛阳模拟)计算:﹣()﹣1=.三.解答题(共6小题)15.(2022春•陇县期中)把下列各数分别填在相应的横线上:,﹣0.23,,,,,2.101101110……(每两个0之间依次多一个1),﹣有理数集合:.无理数集合:.16.(2022春•如皋市校级月考)已知|x|=,y是11的平方根,且x>y,求x+y的值.17.(2022春•长葛市期中)把下列各数分别填入相应的集合里.+5,,0,﹣3.14,,﹣12,﹣,﹣(﹣6),0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{…}(2)正数集合:{…}(3)无理数集合:{…}18.(2021秋•射阳县校级期末)已知实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式(a+b+cd)x+﹣的值.19.(2022春•襄城县期中)阅读下列材料,完成相应的任务.框中是小云同学的作业.请把实数0,﹣π,﹣3,,2表示在数轴上,并比较它们的大小(用<号连接).解:老师看了后,找来小云.问道:“小云同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小云点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”任务:请你帮小云同学将上面的作业做完.20.(2022春•闵行区校级期中)计算:﹣.2022-2023学年八年级数学上《2.6实数》参考答案与试题解析一.选择题(共7小题)1.(2022•尤溪县模拟)实数﹣6,,﹣,0中,整数的个数是()A.1个B.2个C.3个D.4个【考点】实数.【专题】实数;数感.【分析】根据整数包括正整数,0和负整数,即可解答.【解答】解:实数﹣6,,﹣,0中,是整数的有:﹣6,0,所以,整数的个数是2个,故选:B.【点评】本题考查了实数,熟练掌握整数包括正整数,0和负整数是解题的关键.2.(2022•东莞市校级一模)实数3的倒数是()A.3B.﹣3C.﹣D.【考点】实数的性质;倒数.【专题】二次根式;符号意识.【分析】直接利用倒数的定义进而得出答案.【解答】解:实数3的倒数是:.故选:D.【点评】此题主要考查了实数的性质,正确掌握倒数的定义是解题关键.3.(2022春•渑池县期中)下列说法中,错误的是()A.是整数B.的平方根是C.是分数D.是有理数【考点】实数.【专题】实数;数感.【分析】A、根据整数的定义即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据分数的定义即可判定;D、根据有理数的定义即可判定.【解答】解:A、=﹣3是整数,故A选项不符合题意;B、=2的平方根是,故B选项不符合题意;C、不是分数,故C选项符合题意;D、﹣是分数,它是有理数,故D选项不符合题意.故选:C.【点评】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.4.(2022•西宁一模)下列四个数中,负整数是()A.﹣πB.﹣3C.0D.﹣【考点】实数.【专题】实数;符号意识.【分析】根据实数的分类可以解答本题.【解答】解:A.﹣π是负无理数;B.﹣3是负整数;C、0既不是正数,也不是负数;D、﹣是负无理数数.故选:B.【点评】本题考查了实数的分类,小于0的整数是负整数,本题熟记负整数的概念是解题的关键.5.(2021秋•成都期末)﹣的绝对值是()A.﹣B.11C.D.﹣11【考点】实数的性质;算术平方根.【专题】实数;数感.【分析】根据绝对值的性质即可求解.【解答】解:﹣的绝对值是.故选:C.【点评】本题考查了实数的性质,关键是熟悉负数的绝对值是它的相反数的知识点.6.(2022•海淀区校级一模)下列关于数轴的叙述,正确的有()个.(1)实数m,n在数轴上的对应点的位置如图所示,则mn<0,2m+n<0;(2)数轴上表示数m和m+2的点到原点的距离相等,则m为1;(3)数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数轴上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则D点的位置介于C、O之间;A.0B.1C.2D.3【考点】实数与数轴;绝对值.【专题】线段、角、相交线与平行线;数感;运算能力.【分析】(1)根据实数m,n在数轴上的对应点的位置和有理数的加法和乘法的计算法则计算即可得到结论;(2)根据数轴上表示数m和m+2的点到原点的距离相等,可得m+m+2=0,依此即可求解;(3)根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.【解答】解:(1)由数轴可知,m<0<n,∴mn<0,∵m>﹣1,n>2,∴2m>﹣2,∴2m+n>0,故(1)叙述错误;(2)∵数轴上表示数m和m+2的点到原点的距离相等,∴m+m+2=0,∴m=﹣1,故(2)叙述错误;(3)∵|d﹣5|=|d﹣c|,∴d﹣5+d﹣c=0,∴d=,∴D点是线段BC的中点,∴D点的位置介于B、O之间,故(3)叙述错误;故选:A.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.7.(2022•观山湖区模拟)下列运算中,正确的是()A.﹣|﹣2|=2B.(3.14﹣π)0=0C.()﹣1=﹣2D.﹣=【考点】实数的运算;零指数幂;负整数指数幂.【专题】实数;运算能力.【分析】直接利用负整数指数幂的性质以及绝对值的性质和零指数幂的性质分别化简,进而得出答案.【解答】解:A.﹣|﹣2|=﹣2,故此选项不合题意;B.(3.14﹣π)0=1,故此选项不合题意;C.()﹣1=2,故此选项不合题意;D.﹣=,故此选项符合题意;故选:D.【点评】此题主要考查了负整数指数幂的性质以及绝对值的性质和零指数幂的性质,正确化简各数是解题关键.二.填空题(共7小题)8.(2021春•饶平县校级期中)的相反数是﹣,|π|=π,||=4.【考点】实数.【分析】根据a的相反数是﹣a、正数的绝对值是它本身等概念即可解答.【解答】解:①根据相反数的定义,的相反数是﹣;②根据绝对值的定义,|π|=π;③因为(﹣4)3=﹣64,所以=﹣4,则||=4.故答案为:﹣;π;4.【点评】此题主要考查了实数的定义及有关性质,注意理解区分相反数、绝对值的概念,能够正确计算一个数的立方根.9.(2022春•江源区期中)已知a是﹣,b的立方根为﹣2,则a+b的倒数为﹣.【考点】实数的性质;算术平方根;立方根.【专题】实数;运算能力.【分析】直接利用二次根式的性质、立方根的性质化简,进而代入,结合倒数的定义得出答案.【解答】解:∵a是﹣=﹣5的相反数,∴a=5,∵b的立方根为﹣2,∴b=﹣8,∴a+b=5﹣8=﹣3,则a+b的倒数为:﹣.故答案为:﹣.【点评】此题主要考查了二次根式的性质、立方根的性质、倒数,正确得出a,b的值是解题关键.10.(2021春•西丰县期中)若a,b为实数,且满足若(2a+3)2+=0,则=.【考点】实数;非负数的性质:偶次方;非负数的性质:算术平方根.【专题】实数;运算能力.【分析】利用非负数性质先求a,b,再计算.【解答】解:∵(2a+3)2+=0,∴2a+3=0,b﹣2=0.∴a=﹣,b=2,∴==.故答案为:.【点评】本题考查非负数的性质及算术平方根,掌握相关知识是求解本题的关键.11.(2021秋•玄武区校级月考)在9.3,﹣24,0,﹣0.33,0.333…,141421356,2π,3.3030030003…(每相邻两个3之间依次多一个0),﹣3.1415中属于整数集合的有﹣24、0,属于负分数集合的有﹣0.33,属于无理数集合的有2π,3.303003003….【考点】实数.【专题】实数;数感.【分析】根据实数的分类标准解决此题.【解答】解:根据整数的定义,整数有﹣24、0;根据负分数的定义,负分数有﹣0.33;根据无理数的定义,无理数有2π、3.3030030003….故答案为:﹣24、0;﹣0.33;2π、3.3030030003….【点评】本题主要考查实数分类,熟练掌握实数分类标准是解决本题的关键.12.(2022春•港闸区校级月考)﹣||的值为﹣.【考点】实数的性质.【专题】计算题;运算能力.【分析】根据绝对值的意义进行解答便可.【解答】解:﹣||=﹣,故答案为:﹣.【点评】此题考查了绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13.(2022春•中山市期中)如图,把半径等于的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是1﹣π或1+π..【考点】实数与数轴.【专题】常规题型.【分析】根据半径为的圆从数轴上表示1的点沿着数轴滚动一周到达A点,再由圆的周长公式得出周长为π,根据两点间的距离是大数减小数,可得答案.【解答】解:由半径为的圆从数轴上表示1的点沿着数轴滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π.故答案为:1﹣π或1+π.【点评】本题主要考查了实数与数轴,解题时利用了数轴上两点间的距离是大数减小数.14.(2022•洛阳模拟)计算:﹣()﹣1=﹣4.【考点】实数的运算;负整数指数幂.【专题】实数.【分析】直接利用立方根的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=﹣2﹣2=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.三.解答题(共6小题)15.(2022春•陇县期中)把下列各数分别填在相应的横线上:,﹣0.23,,,,,2.101101110……(每两个0之间依次多一个1),﹣有理数集合:,﹣0.23,,,.无理数集合:,,2.101101110……(每两个0之间依次多一个1),﹣,.【考点】实数.【专题】实数;数感.【分析】根据实数的概念进行分类,确定此题结果.【解答】解:由实数的概念可知,整数和分数统称为整数;无限不循环小数为无理数,∴属于有理数集合的是:,﹣0.23,,;属于无理数集合的是:,,2.101101110……(每两个0之间依次多一个1),﹣,故答案为:,﹣0.23,,;,,2.101101110……(每两个0之间依次多一个1),﹣.【点评】此题考查了根据实数的概念进行分类的能力,关键是能准确理解相关概念.16.(2022春•如皋市校级月考)已知|x|=,y是11的平方根,且x>y,求x+y的值.【考点】实数的性质;平方根;算术平方根.【专题】实数;运算能力.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=,∴x=±,∵y是11的平方根,∴y=±,∵x>y,∴当x=,则y=﹣,故x+y=﹣,当x=﹣,则y=﹣,故x+y=﹣﹣,综上所述:x+y的值为﹣或﹣﹣.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.17.(2022春•长葛市期中)把下列各数分别填入相应的集合里.+5,,0,﹣3.14,,﹣12,﹣,﹣(﹣6),0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{+5,0,﹣12,﹣(﹣6)…}(2)正数集合:{+5,,,﹣(﹣6),0.1010010001…(每两个1之间依次多一个0)…}(3)无理数集合:{,﹣,0.1010010001…(每两个1之间依次多一个0)…}【考点】实数.【专题】实数;数感.【分析】(1)根据整数包括正整数、负整数和0,即可解答;(2)根据正数大于0,即可解答;(3)根据无限不循环小数是无理数,即可解答.【解答】解:(1)整数集合:{+5,0,﹣12,﹣(﹣6)…},故答案为:+5,0,﹣12,﹣(﹣6);(2)正数集合:{+5,,,﹣(﹣6),0.1010010001…(每两个1之间依次多一个0)…},故答案为:+5,,,﹣(﹣6),0.1010010001…(每两个1之间依次多一个0);(3)无理数集合:{,﹣,0.1010010001…(每两个1之间依次多一个0)…},故答案为:,﹣,0.1010010001…(每两个1之间依次多一个0).【点评】本题考查了实数,熟练掌握实数的相关概念及分类是解题的关键.18.(2021秋•射阳县校级期末)已知实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式(a+b+cd)x+﹣的值.【考点】实数的性质;代数式求值;立方根.【专题】实数;运算能力.【分析】根据题意可得a+b=0,cd=1,x=±7,然后代入代数式求值即可.【解答】解:=7,∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵x的绝对值为.∴x=±7,当x=7时,原式=(0+1)×7+﹣=7﹣1=6,当x=﹣7时,原式=(0+1)×(﹣7)+﹣=﹣7﹣1=﹣8,∴所求代数式的值为6或﹣8.【点评】此题主要考查了实数运算和求代数式的值,关键是掌握相反数和为0,倒数积为1.19.(2022春•襄城县期中)阅读下列材料,完成相应的任务.框中是小云同学的作业.请把实数0,﹣π,﹣3,,2表示在数轴上,并比较它们的大小(用<号连接).解:老师看了后,找来小云.问道:“小云同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小云点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”任务:请你帮小云同学将上面的作业做完.【考点】实数与数轴;无理数.【专题】数形结合;数感.【分析】根据π和确定原点,把实数0,一π,﹣3,,2表示在数轴上,根据数轴上的点的位置判断数的大小,左边的点表示的数小于右边的点表示的数.【解答】解:∵一π与是无理数,且一π<,∴数轴上两个点中,左边的点表示数﹣π,右边点表示数,据此可以找出原点位置,根据题意,在数轴上分别表示各数如下:∴从小到大是:﹣π<﹣3<0<2<.【点评】本题考查实数的大小比较,数轴上右边的点表示的数大于左边的点表示的数,解题关键是正确估算已知两点表示的数,和由这两点确定原点位置.20.(2022春•闵行区校级期中)计算:﹣.【考点】实数的运算.【专题】实数;运算能力.【分析】首先计算开平方和开立方,然后计算减法,求出算式的值即可.【解答】解:﹣=﹣3﹣6=﹣9.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.。
北师大版八年级数学上册:2.6《实数》教学设计1
北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
2.6《实数》北师大版数学八年级上册教学课件
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
想一想
2 与____2__互为相反数
2
1
3 5 与__3_5___互为倒数
| 3 | 3
| 0 | 0
| π | π
a是一个实数,它的相反数为__a__.
1 当a≠0时,那么它的倒数为__a__.
a是一个实数,它的绝对值为:
a
a
0
a
(a 0) (a 0) (a<0)
议一议
(1) 如下图,OA=OB,数轴上点A对应的数是什么?
它介于哪两个整数之间?
B
1
-2
-1
O
1A 2
解:根据勾股定理,可得OB2=12+12=2,∴OB= 2 . 又∵OA=OB, OA= 2 ,
∴数轴上点A对应的数是 2 .
∵ 2 ≈1.414,∴点A介于整数1和2之间.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
复习回顾
(1)什么是有理数?有理数怎么分类? 整数和分数统称为有理数. 有理数分为正有理数、0、负有理数.
(2)什么是无理数?无理数的常见形式有哪些? 无限不循环小数称为无理数. 无理数的常见形式: ①一般的无限不循环小数,看似循环而实质不 循环的小数; ②圆周率π以及含π的数; ③开方开不尽的数.
3 2,1 ,
4
7,π,
2,
20, 3
94, 0.3737737773实数还可以
5, 2
5, 3
8,
怎样分类?
正数集合
负数集合
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
实数的分类
实数又可以分为正实数、0和负实数.
北师大版八年级数学上册:2.6《实数》教学设计2
北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。
教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。
但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。
此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够进行实数的大小比较、加减乘除运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。
2.运用实例解析法,让学生通过实际问题理解实数的运算规则。
3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作PPT,展示实数的定义、性质和运算规则。
3.分组安排,便于学生进行小组合作学习。
七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。
2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。
3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。
4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。
5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
北师大版八年级上册第二章实数第二章:2.6实数课时一教学设计
北师大版八年级上册第二章实数第二章:2.6实数课时一教学设计一、教学目标•知道实数的概念;•理解实数的分类以及它们之间的关系;•能够简单地利用数轴表示实数;•能够将一些常见数用数轴表示,并在此基础上对实数进行初步探讨。
二、教学重点•实数的概念;•实数的分类以及它们之间的关系;•利用数轴表示实数的方法。
三、教学难点•实数的分类和探讨。
四、教学过程1. 更新与导入(5分钟)利用一些易懂的例子,了解学生生活中的实数,比如温度、时间等,引导学生进入本节课的主题。
2. 学习实数(10分钟)1.定义实数;2.实数的分类:有理数、无理数。
3. 探讨实数(25分钟)较多数学知识点需要运用实数,学生需要掌握实数在数轴上的表示方法。
首先进行简单概念介绍,然后让学生探究如下问题:1.怎样表示有理数 -3,-1,0,1,2,3,4;2.有理数与无理数有什么不同;3.无理数用数轴表示。
4. 实践操练(25分钟)需要学生设计一些应用实数的问题,并进行回答和解答。
5. 总结与归纳(5分钟)利用这一时间段,对刚才学生的问题出答案,并让学生了解实数的概念以及实数在数学中的应用。
五、板书设计1. 实数实数的概念、分类、大小关系2. 有理数整数、分数3. 无理数无理数的性质和表示方法4. 数轴表示法有理数与无理数的区别六、课后作业1.完成课堂上的问题;2.完成一些练习题;3.思考生活中还有哪些实数,以及它们应用在哪些方面。
七、教学反思本次课程利用一些生活中常见的例子,将实数的概念介绍给学生,学习了实数分类和探究实数的一些问题,帮助学生更好地理解实数,并在实践中掌握实数的应用。
2.6 实数(2)课件 (北师大版八上)
(2)如果将所有有理数都标到数轴上,那么数轴 填满吗?
在数轴上表示的两 C 个实数,右边的数 总比左边的数大。
A 0 1
2-1
2
2
每一个实数都可以用数轴上的一个点来表示;反 过来,数轴上的每一点都表示一个实数。即实数 和数轴上的点是一一对应的。
归纳
1、每一个有理数都可以用数轴上的点 表示; 2、每一个无理数都可以用数轴上的点 表示; 实数与数轴上的点是一一对应的
练习:
比较下列各组是里两个数的大小:
(1)
2
, 1.4
(2) 5, 6
(3) -2,
3
试试看:你会比较
7 2与 3
1 的大小吗? 3
5 2 6 的相反数
绝对值
课堂小结
课堂作业
必做:课本第17页习题第2、3题 选做:求下列各数的相反数:
3
2,
3 , 4
3ቤተ መጻሕፍቲ ባይዱ 2,
5 2.
课外
求下列各数的绝对值:
3
8,
17 ,
2 , 3
3 1.7,
1.4 2.
OO´的长是这个圆的周长 ,所以点O´的坐标是 无理数 可以用数轴上的点来表示出来
(1)如下图,以单位长度为边长画一个正方形,以原点 为圆心,正方形对角线为半径画弧,与正、负半轴的交点 分别为点A和点B,数轴上A点和B点对应的数是什么?
数轴上的点有些 表示有理数,有 些表示无理数.
B -2
(1)a是一个实数,它的相反数为 绝对值为
a
1 a
,
a
;
(2)如果a 0,那么它的倒数为
。
它本身 ,0的绝对值是 0 ( 3 ) 正实数的绝对值是 它的相反数 . 负实数的绝对值是
北师大版八年级上册数学《2.6 实数》教学课件
,绝对值1是4. 4
∴
225的相反数是-15,倒数是
,绝对值是1 15.
15
11
.
11
归纳总结
(1)a是一个实数,它的相反数为
绝对值为
;a
(2)如果a ≠0,那么它的倒数为
, a
1
.
a
二 实数与数轴上点的对应关系 问题1:你能在数轴上找到表示 和
及 π 这样2 的无理 数2的点吗?
直径为1的圆
-2
-1 0
1
2
3π 4
问题2:边长为1的正方形,对角线长为多少?
2
2
-2
-1
0
1
2
3
4
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的 每一点都表示一个实数.即实数和数轴上的点是一一对应的.
例2:如图所示,数轴上A,B两点表示的数分别为-1和 关于点A的对3 称点为C,求点C所表示的实数.
5
5
4 3 2 7 3 2 4 7 3 2 1 3 2 1
有理数的运算及运算律对实数仍然适用
典例精析
例1:分别求下列各数的相反数、倒数和绝对值. (1 )36;4(22 ) 2 ; 5(31 ).1
解:(1)∵
3 = 6-44,
∴ 3 6的4 相反数是4,倒数是
(2)∵
2=25 15,
解:由数轴可知,a+b<0,a-b<0,从而 原式=-(a+b)-[-(a-b)] = -a-b+(a-b) = -a-b+(a-b) = -a-b+a-b = -2b
0b
课堂小结
实数
有理数和无理数统称实数
在实数范围内,相反数、倒数、绝对值的意义 和有理数范围内的相反数、倒数、绝对值的意 义完全一样.
2020最新八年级北师大版数学上册:2.6.2实数
通过将以上各数填入有理数集合和无理数集合,建立实数概念。
在实数概念形成的基础上对实数进行不同的分类。上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类。提醒学生分类可以有不同的方法,但要按同一标准不重不漏。
2.求下列各数的相反数、倒数和绝对值:
(1) ;(2) ; (3) .
3.在数轴上作出 对应的点。
六.课堂归纳
内容:议一议,本节课我们学习了哪些知识?
意图:鼓励学生结合本节课的学习谈自己的收获。
效果:学生交流,互相补充,完成本节知识的梳理。
学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
教学重点
1.两个法则的逆运用.
2.能运用实数的运算解决简单的实际问题.
教学难点
灵活地运用法则和逆用法则进行实数的运算.
教具使用
多媒体
教法选择
采用“情境──探究”教学方法,让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.
.
教 学 过 程
教师活动
学生活动
个性思考
一.创设情境,引入新知
问题:(1)什么是有理数?有理数怎样分类?
知识整理:无理数和有理数一样,也有正负之分。
1.从符号考虑,实数可以分为正实数、0、负实数,即:
2.另外从实数的概念也可以进行如下分类:
二.实数的相关概
内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?
北师版八上数学2.6 实 数(课件)
返回目录
数学 八年级上册 BS版
(2) 3 -2的相反数是 2- 3
.
【思路导航】根据相反数的意义求解.
【解析】 3 -2的相反数是-( 3 -2)=2- 3 .故答案为2
- 3.
【点拨】在实数范围内,相反数、倒数、绝对值的意义和有理
数范围内的相反数、倒数、绝对值的意义完全一样.
返回目录
5
3
之间0的个数逐次加1), − −27,0.99,…
负实数集合 −π, −12, −
3
,…
2
ൠ;
.
返回目录
数学 八年级上册 BS版
【点拨】(1)按照实数的概念或性质把实数进行分类,做到不
重不漏.(2)根据实数的不同特征,对实数进行分类,归入相
应的集合内,不要发生混淆.(3)常见的无理数可分为三类:
<0.所以 2 -| a + c |+ ( − )2 -|- b |=| a |
-| a + c |+| c - b |- b =- a +( a + c )-( c - b )-
b =0.故答案为0.
返回目录
数学 八年级上册 BS版
2. 计算:
(1)
1
48+
4
12 ÷ 27 ;
(2)| 3 -2|-|2- 6 |+|- 6 |.
= 10 .所以点 A 到原点的距离为 10 .又因为点 A 在原点的左
侧,所以点 A 所表示的数是- 10 .故答案为- 10 .
【点拨】实数与数轴上的点是一一对应关系,它包含两层含
义:(1)任意一个实数都可以用数轴上的一个点来表示 ;
(2)数轴上的每一个点都表示一个实数.解决在数轴上找到确
定的无理数的点这类问题,一般需要构造直角三角形,借助勾
北师大版八年级数学上册第2章2.6实数(教案)2
1.理解实数概念,培养学生的数学抽象素养,使其能够从具体实例中抽象出数学概念,形成数学认知结构;
2.通过实数运算的学习,提高学生的数学逻辑推理能力,使其能够遵循数学规则,准确进行推理和论证;
3.结合数轴,培养学生的几何直观素养,使其能够利用图形描述和分析数学问题,形成直观的数学理解;
五、教学反思
在今天的教学中,我发现实数这一章节的内容对学生来说既有挑战性也有趣味性。在导入新课环节,通过日常生活中的例子引起学生的兴趣,他们对此表现出了很大的好奇心。但在理论介绍部分,我发现部分学生对无理数的概念理解起来有些吃力,这让我意识到需要在讲解时更加注重直观性和举例说明。
在新课讲授中,我尽量用浅显易懂的语言解释实数的定义和性质,并通过数轴这一工具来帮助学生直观地理解实数的概念。在案例分析环节,选取了一些与学生生活密切相关的例子,这样他们能更真切地感受到数学知识在实际中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板5分钟)
今天的学习,我们了解了实数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-实数在实际问题中的应用:如何从实际问题中抽象出实数模型,以及如何运用实数知识解决具体问题。
举例:在讲解无理数的运算时,可以通过具体的例题,如计算√2 + √3或(√2)^2,来帮助学生理解无理数运算的规则和结果的处理。同时,使用数轴作为辅助工具,帮助学生直观地理解无理数在数轴上的位置和大小。
四、教学流程
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,理解上可能存在难度。如何让学生直观地理解无理数是无限不循环的小数,是教学的难点。
2.6(2)实数A
(4) 2 3 + 3 3 = ( 2 + 3) 3 = 5 3 )
有理数的运算法则及运算律在实数 范围内仍然适用. 范围内仍然适用.
计算: 例1 计算:
1 1 (2 5 )2 . ) ; 3) ( ) (1)2 3 − 3 3 ;(2) 3 ⋅ ) +2 2⋅ 3 2
解: 1) 2 3 − 3 3 = (2 − 3) 3 = − 3 ; ( ) (2) 3 ⋅ )
2 (2)(1 + 5 )( 5 − 2) = 5 − 2 + ( 5 ) − 2 5 = 3 − 5 ; )
1 2 ( 3− ) = ( 3 ) 2 − 2 ⋅ 3 ⋅ 1 + ( 1 ) 2= 3 − 2 + 1 = 4 (3) ) 3 3 3 ; 3 3
4 10 + 5 40 4 10 5 40 10 40 (4) ) = + + 5× =4 × 10 10 10 10 10
知识拓展
1.化简: (1) 80 × 5 − 50 × 2 .化简:
;
你能行吗? 你能行吗?
( (2) 1 + 5 )( 5 − 2); 3)( 3 − 1 ) 2 ; ) ( ) 3
(4) 4 10 + 5 40 ; 5) 2 ( 2 + 8 ) . ) ( ) 10 解: 1) 80 × 5 − 50 × 2 = 80 × 5 − 50 × 2 = 400 − 100 =10; ; ( )
4 , = 9
2 3 ;
.
4 4 16 , = 5 5 25
有何发现: 有何发现:
4 × 9 = 4 × 9 , 16 × 25 = 16 × 25 , 4 9 =
八年级数学北师大版上册 第2章《2.6 实数》教学设计 教案
第六节 实数教学目标:1、了解无理数和实数的概念,知道实数和数轴上的点是一一对应关系,能估算无理数的大小。
2、正确理解有理数和无理数的区别。
3、会求有理数的相反数、倒数、绝对值,并会对其进行大小比较。
知识要点:一、无理数(1)无理数:无限不循环小数叫做无理数。
(2)对无理数的判断注意以下三点:1、无理数是无限不循环小数,所以只能以四种形式出现 ①开方开不尽的数,如2,37等②化简后含圆周率π的数。
“π”虽然是一个常数,但它是无限不循环小数,属无理数 ③特定结构的数,如0.100 100 010 000 1……等 ④有些三角函数值2、判断无理数要先化简,不能只看表面形式3、一些除不尽的分数,如722,131等,会误认为是无理数,但事实上分数都是有理数。
二、实数(重点)(1)概念:有理数和无理数统称实数。
也就是说,实数可分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
(2)分类:三、实数的有关概念及运算(重点)实数的相反数:只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
实数的绝对值:一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
实数的倒数:1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
实数的运算:(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则和运算性质等同样适用。
(2)实数的混合运算顺序与有理数的混合运算顺序基本相同,先乘方、开方,再乘除,最后算加减,同级运算按从左到右的顺序进行,有括号先算括号里面的。
(3)在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算。
原创北师大版八年级数学上册第二章2.6 实数教学设计
义务教育教科书数学八年级上册(北京师范大学出版社)2.6 实数一、教学内容与内容解析本节内容是北师大版《义务教育课程标准实验教科书·数学》八年级上册第二章“实数”第六节“实数”.本节内容主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
二、教学目标与目标解析(一)教学目标(1)了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小;(2)了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样;(3)在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想;(4)在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法;(5)了解数系扩展对人类认识发展的必要性。
(二)教学目标解析学生是数学学习的主人。
动手实践、自主探索、合作交流是学生学习数学的重要途径。
教师应将情境与学生的自主知识相结合,尽最大努力引导学生发现并解决问题。
通过独立思考、小组讨论和合作交流,学生在“自主探索、合作交流”中充分发挥主观能动性。
在学习方法上,主要采用观察法、独立探究法、讨论法、实践法等形式。
三、教学问题诊断分析(一)学情分析八年级学生初步认识了无理数,对平方根和立方根也有了一定的了解,实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科 目:八年级数学 课 题:2.6 实数(2) 导学案 备课组:数学组 主备人:张守红
学习目标:
1.了解有理数的运算法则在实数范围内仍然适用.
2.用类比的方法引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.
3.正确运用公式:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a b
a . 学习重点:
1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.
2.发现规律:
);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a b
a .并能用规律进行计算. 学习难点:
1.类比的学习方法.
2.发现规律的过程.
学习过程
(一) 课前预习准备
1.复习:(1)什么是实数? (2) 说一说实数的分类.
2.在有理数范围内学过哪些法则和运算律?
3.这些法则和运算律是否在实数范围内适用?举例说明.
4.计算: (1)1313+⋅; (2)77-; (3)(25)2; (4)2)2
12(+.
(二)导学
1.做一做
(1)94⨯= ; 94⨯= ; (2)916⨯= ;916⨯= ; (3)
9
4= ;94= ; (4)=25
16 ;2516= 2.通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?
3.化简: (1)326⨯; (2)327⨯-4; (3)(3-1)2; (4)3
26⨯;
(三) 展交
1.[例题1]化简: (1)5312-⨯;(2)2
36⨯;(3)(5+1)2;(4))12)(12(-+.
2.化简: (1)2095⨯; (2)8
612⨯; (3)(1+3)(2-3);
(4)(3
23-
)2.
(四).训练
1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+
(4)3721⨯; (5)2)313(-; (6)10
405104+
2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.
(五)归纳小结
本节课主要学习了以下两个内容: 1. 2.
(六).课后作业 :习题2.9。