2024年浙江省台州市中考数学一模试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年浙江省台州市中考数学一模试卷
一、选择题(本题共有10小题,每小题3分,共30分:在每小题给出的四个选项中,只有一项符合题目要求)
1.根据计划,我国将在2030年前实现中国人首次登陆月球,开展月球科学考察及相关技术试验等,地月距离的平均值大约为384400公里,数据384400用科学记数法表示为()A.0.3844×106B.38.44×104
C.3.844×105D.3.844×106
2.下列运算,结果正确的是()
A.a3+a3=a6B.(a3)2=a5C.a3÷2=a D.
3.下面四个古典园林中的花窗图案,既是轴对称图形仅是中心对称图形的是()A.B.
C.D.
4.若一件礼物的外包装,其主视图是正方形,则该礼物的外包装不可能是()A.三棱锥B.圆柱C.正方体D.长方体
5.学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如图,则在这组数据中,这些被调查学生睡眠时间的众数和中位数分别是()
A.8,9B.8,8.5C.16,13D.16,14.5
6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑩个图案用的木棍根数是()
A.49B.54C.55D.64
7.如图,AB切圆O于点B,连接OA交圆O于点C,BD∥OA交圆O于点D,连接CD,若∠A=34°,则∠OCD的大小为()
A.68°B.56°C.34°D.28°
8.《算学启蒙》中记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马天可追上慢马,由题意得()A.240x=150(x+12)B.240(x﹣12)﹣150x
C.D.
9.小函研究二次函数(a0,a为整数)时,发现下列说法中只有一个是错误的,你认为错误的是()
A.函数与x轴的一个交点为(﹣1,0)
B.对称轴为直线x=1
C.a>0时,函数的最小值为3
D.点(2,8)在函数图象上
10.如图,四个全等的直角三角形拼成“赵爽弦图”得到正方形ABCD与正方形EFGH,连接BD交CH,EG,AF于点M,O,N,若M,O,N是BD的四等分点,则的值为()
A.B.C.D.
二、填空题(本题共有6小题,每小题3分,共18分)
11.分解因式:a2+4a=.
12.直角坐标系中,点(3,﹣4)关于坐标原点O成中心对称的点的坐标是.13.一个不透明的袋子里装有1个黑球,2个白球,3个红球,4个绿球,它们除颜色外其余都相同袋中任意摸出一个球是绿球的概率为.
14.如图是凸透镜成像示意图,CD是蜡烛AB通过凸选镜N所成的虚像已知蜡烛的高AB 为4.8cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为cm.
15.如图,一次函数y=x+b的图象分别与x轴,y轴交于点A,B,以线段AB为边向第一象限内作等边三角形ABC,反比例函数y=(k≠0)图象恰好经过BC边的中点D,与AC边交于点E.若△ODE的面积为,则k的值为.
16.已知四边形ABCD是平行四边形,∠ABC=60°,AB=4,BC=6,点E是AD边上一个动点,连接BE,沿BE将△ABE翻折至△BEF(如图1),EF所在的直线与BC交于点H.
(1)当点E与点D重合时(如图2),则CH的长为;
(2)当CH取最大值时,EF的长为.
三、解答题(本题共有8小题,第17~18小题每小题6分,第19~20小题每小题6分,第21~22小题每小题6分,第23~24小题每小题6分,共72分.请务必写出解答过程)17.计算:6÷(﹣+).玲玲同学的计算过程为:原式=6÷()+6÷=﹣12+18=6.请你判断玲玲的计算过程是否正确,若不正确,请你写出正确的计算过程.
18.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(1,3),B(3,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个等腰三角形ABC,使得点C的横、纵坐标之和为偶数;
(2)在图2中画一个Rt△ABP,使得点P在坐标轴上.
19.在数学综合实践课上,某学习小组计划制作一个款式如图1所示的风筝:图2是其示意图,已知两条侧翼AB,AC的长为60cm,夹角为100°,AD平分,求B,C两点间的距离.(参考数据:sin50°≈0.64,cos50°≈0.77,tan50°≈0.87)
20.青少年体重指数(BMI)是评价青少年营养状况、肥胖的一种衡量方式.其中体重指数BMI计算公式:BMI=(kg/m2),其中G表示体重(kg),h表示身高(m).《国家学生体质健康标准》将学生体重指数(BMI)分成四个等级(如表),为了解学校学生体重指数分布情况,八年级某数学综合实践小组开展了一次调查.
等级偏瘦(A)标准(B)超重(C)肥胖(D)
男BMI≤15.715.7<BMI≤22.522.5<BMI≤25.4BMI>25.4女BMI≤15.415.4<BMI≤22.222.2<BMI≤24.8BMI>24.8【数据收集】小组成员从本校学生中随机抽取部分学生进行问卷调查,并收集数据:【数据整理】调查小组根据收集的数据,绘制了两组不完整的统计图.
【问题解决】根据以上信息,解决下列问题:
(1)若一位男生的身高为1.6m,体重为51.2kg,则他的体重指数(BMI)属于等级;(填“A”,“B”,“C”,“D”)
(2)求本次调查的总人数,并补全条形统计图;
(3)求扇形统计图中表示体重指数(BMI)“A”等级的扇形的圆心角的度数;
(4)若该校共有2000名学生,估计全校体重指数为“肥胖”的学生约为多少人?21.金师傅购买了一辆某型号的新能源车,其电池电量为60千瓦时.目前有两种充电方案供选择(如表),经测算金师傅发现电池剩余电量y(千瓦时)与已行驶里程x(千米)有如图关系.
方案安装费用每千瓦时所需费用
方案一:私家安装充电桩2700元0.6元
方案二:公共充电桩充电0 1.8元(含服务费)(1)已知新能源车充电时一般损耗率为1.2,电池剩余电量为零时,使用家用充电桩一次性充满电需要费用为60×1.2×0.6=43.2(元),则电池剩余电量为零时到公共充电桩一次性充满电需要多少费用?
(2)当已行驶里程大于300千米时,求出电池剩余电量y(千瓦时)与已行驶里程(千米)的函数表达式,当电池剩余电量为10%时,会提示充电,此时理论上还能继续行驶多少千米?
(3)金师傅都是在电池剩余电量不低于30千瓦时就开始充电,请问累计行驶里程为多少千米时,选择私家安装充电桩充电(含安装费用)更合算.
22.已知点A(m,p),B(3,q),C(m+2,p)都在二次函数y=2x2+bx+4的图象上.(1)若m=1,求该二次函数的表达式;
(2)求p+q的最大值;
(3)若p<q<4,求m的取值范围.
23.定义:在四边形内,如果有一点和一组对边组成的两个三角形都是以对边为斜边的等腰直角三角形,那么这个四边形叫做蝴蝶四边形.例如图1,在四边形ABCD中,∠AMB =∠CMD=90°,MA=MB,MC=MD,则四边形ABCD为蝴蝶四边形.
(1)【概念理解】如图2,正方形ABCD中,对角线AC与BD相交于O.求证:正方形ABCD为蝴蝶四边形;
(2)【性质探究】如图3,在蝴蝶四边形ABCD中,∠AMB=∠CMD=90°.求证:AC =BD;
(3)【拓展应用】如图3,在蝴蝶四边形ABCD中,∠AMB=∠CMD=90°,MA=MB =,MC=MD=1.当△ACD是等腰三角形时,求此时以BD为边的正方形的面积.
24.如图,点C在AB为直径的圆O上,连接AC,BC,∠ACB的角平分线交AB于点E,交圆O于点P.G是BP上一点,且PG=BC,连接AG并延长交CB的延长线于点F,连接EG.
(1)求证:AC=CF;
(2)若BC=3,AC=4,
①求AG的长度;
②求△AEG的面积.
(3)设=x,tan∠AGE=y,求y关于x的函数表达式.。

相关文档
最新文档