蓬安县三中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓬安县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 下列命题中正确的是( )
A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题
B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”
C .“
”是“
”的充分不必要条件
D .命题“∀x ∈R ,2x >0”的否定是“”
2. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
3. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都
成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)
4. 已知函数⎩
⎨⎧≤>=)0(||)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
5. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则
()()
21
0x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,

C .()1-∞-,
D .()1+∞,
6. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )
A .
B .
C .
D .
7. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则
的值为
( )
A .
B .
C .
D .
8. 下列各组函数为同一函数的是( )
A .f (x )=1;g (x )=
B .f (x )=x ﹣2;g (x )=
C .f (x )=|x|;g (x )=
D .f (x )=

;g (x )=
9. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
10.数列1,,,,,,,,,,…的前100项的和等于( )
A .
B .
C .
D .
11.在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )
A .0<
B .0
C .0
D .0
12.已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )
A .﹣2
B .5
C .6
D .7
二、填空题
13.在△ABC 中,a=4,b=5,c=6,则= .
14.给出下列命题:
①把函数y=sin (x ﹣
)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣
);
②若α,β是第一象限角且α<β,则cos α>cos β;
③x=﹣
是函数y=cos (2x+π)的一条对称轴;
④函数y=4sin (2x+)与函数y=4cos (2x ﹣
)相同;
⑤y=2sin (2x ﹣
)在是增函数;
则正确命题的序号 .
15.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市; 丙说:我们三人去过同一城市;
由此可判断乙去过的城市为 .
16.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 . 17.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.
①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;
③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;
⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是 .
18
由表中数据算出线性回归方程为=
x+
.若该公司第五名推销员的工作年限为8年,则估计他(她)的年
推销金额为 万元.
三、解答题
19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2
ln R f x x ax x a =-+-∈.
(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.
20.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥
A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.
21.实数m取什么数值时,复数z=m+1+(m﹣1)i分别是:
(1)实数?
(2)虚数?
(3)纯虚数?
22.已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.23.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第
四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n
24.设F是抛物线G:x2=4y的焦点.
(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;
(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
蓬安县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;
命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
2.【答案】A
【解析】解:由已知得到如图
由===;
故选:A.
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.3.【答案】A
【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,
则f(x)在(﹣∞,0)上是减函数,
则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)
若f(ax+1)≤f(x﹣2)对任意都成立,
当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立
则﹣2≤a ≤0 故选A
4. 【答案】D

Ⅱ卷(共100分)[.Com]
5. 【答案】B 【解析】
试题分析:由
()()()()()2121
02102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()
()11-∞-+∞,,.
考点:1、函数的单调性;2、函数的奇偶性;3、不等式.
6. 【答案】D
【解析】解:根据函数与导数的关系:可知,当f ′(x )≥0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减
结合函数y=f (x )的图象可知,当x <0时,函数f (x )单调递减,则f ′(x )<0,排除选项A ,C
当x >0时,函数f (x )先单调递增,则f ′(x )≥0,排除选项B 故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
7. 【答案】C
【解析】解:F
1,F 2为椭圆
=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.
点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,
|PF 2|=
=,由勾股定理可得:|PF 1|=
=.
==.
故选:C .
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
8. 【答案】C
【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;
C 、因为
,故两函数相同;
D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.
综上可得,C 项正确. 故选:C .
9. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B
=⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 10.【答案】A
【解析】解:
=1×
故选A.
11.【答案】D
【解析】解:∵A1B∥D1C,
∴CP与A1B成角可化为CP与D1C成角.
∵△AD1C是正三角形可知当P与A重合时成角为,
∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,
∴0<θ≤.
故选:D.
12.【答案】A
【解析】解:如图作出阴影部分即为满足约束条件的可行域,
由得A(3,5),
当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.
故选A.
二、填空题
13.【答案】1.
【解析】解:∵△ABC中,a=4,b=5,c=6,
∴cosC==,cosA==
∴sinC=,sinA=,
∴==1.
故答案为:1.
【点评】本题考查余弦定理,考查学生的计算能力,比较基础.
14.【答案】
【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得
到函数y=sin(2x﹣),故①正确.
对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.
对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函
数y=cos(2x+π)的一条对称轴,故③正确.
对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),
故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.
对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,
故答案为:①③④.
15.【答案】A.
【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,
但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,
再由丙说:我们三人去过同一城市,
则由此可判断乙去过的城市为A.
故答案为:A.
【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
16.
【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方
的最值转化为直线与圆相切是解答的关键,属于中档试题.
法,本题的解答中把y
x
17.【答案】①②⑤.
【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x <5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;
因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;
由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,
根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,
综上正确的命题序号为①②⑤.
故答案为:①②⑤.
【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.
18.【答案】.
【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6,
代入回归方程,可得a=﹣,所以=x﹣,
当x=8时,y=,
估计他的年推销金额为万元.
故答案为:.
【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.
三、解答题
19.【答案】(1
)a ≤2
)193
a <<. 【解析】试题分析:
(1)原问题等价于()0f x '≤对()0,+∞恒成立,即1
2a x x
≤+对()0,+∞恒成立,结合均值不等式的结论可
得a ≤
(2)由题意可知()221
0x ax f x x
-+-'=
=在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的
取值范围是19
3
a <<.
试题解析:
(2)∵函数()f x 在()0,3上既有极大值又有极小值,
∴()221
0x ax f x x
-+-'=
=在()0,3上有两个相异实根, 即2
210x ax -+=在()0,3上有两个相异实根,
记()2
21g x x ax =-+,则()()0
03{ 4
0030a
g g ∆><<>>
,得{012 19
3
a a a a -<<<

即19
3
a <<.
20.【答案】
【解析】(1)证明:∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB , 又∵AA 1⊥AB ,AA 1⊥∩AE=A ,∴AB ⊥面A 1ACC 1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
21.【答案】
【解析】解:(1)当m﹣1=0,即m=1时,复数z是实数;
(2)当m﹣1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m﹣1≠0时,即m=﹣1时,复数z 是纯虚数.
【点评】本题考查复数的概念,属于基础题.
22.【答案】
【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,
∵f(x)≤2的解集为[0,4],∴,∴a=2.
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,
∵∃x0∈R,使得,
即成立,
∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,
∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).
23.【答案】
【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.
设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,
解得x=a,即每年拆除的旧住房面积是am2
(Ⅱ)设第n年新建住房面积为a,则a n=
所以当1≤n≤4时,S n=(2n﹣1)a;
当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=

【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
24.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD=|AC||BD|==8(2+k2+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.。

相关文档
最新文档