组合逻辑电路的分析方法和设计方法
组合逻辑电路的分析与设计实验报告.doc
组合逻辑电路的分析与设计实验报告院系:电子与信息工程学院班级:电信13-2班组员姓名:一、实验目的1、掌握组合逻辑电路的分析方法与测试方法。
2、掌握组合逻辑电路的设计方法。
二、实验原理通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
电路在任何时刻,输出状态只取决于同一时刻各输入状态的组合,而与先前的状态无关的逻辑电路称为组合逻辑电路。
1.组合逻辑电路的分析过程,一般分为如下三步进行:①由逻辑图写输出端的逻辑表达式;②写出真值表;③根据真值表进行分析,确定电路功能。
2.组合逻辑电路一般设计的过程为图一所示。
图一组合逻辑电路设计方框图3.设计过程中,“最简”是指按设计要求,使电路所用器件最少,器件的种类最少,而且器件之间的连线也最少。
三、实验仪器设备数字电子实验箱、电子万用表、74LS04、74LS20、74LS00、导线若干。
74LS00 74LS04 74LS20四、实验内容及方法1 、设计4线-2线优先编码器并测试其逻辑功能。
数字系统中许多数值或文字符号信息都是用二进制数来表示,多位二进制数的排列组合叫做代码,给代码赋以一定的含义叫做编码。
(1)4线-2线编码器真值表如表一所示输入输出1 0 0 0 0 00 1 0 0 0 10 0 1 0 1 00 0 0 1 1 14线-2线编码器真值表(2)由真值表可得4线-2线编码器最简逻辑表达式为=((0′1′23′)′(0′1′2′3)′) ′=((0′12′3′)′( 0′1′2′3)′)′(3)由最简逻辑表达式可分析其逻辑电路图4线-2线编码器逻辑图(4)按照全加器电路图搭建编码器电路,注意搭建前测试选用的电路块能够正常工谢谢阅读谢谢阅读作。
(5)验证所搭建电路的逻辑关系。
=1 =0 0 =1 =0 1 =1 =1 0 =1 =1 1 2、设计2线-4线译码器并测试其逻辑功能。
译码是编码的逆过程,它能将二进制码翻译成代表某一特定含义的号.(即电路的某种状态),具有译码功能的逻辑电路称为译码器。
第四章组合逻辑电路的分析与设计
=1
S
C = AB 画出逻辑电路图。 画出逻辑电路图。
S = AB + AB = A ⊕ B
&
C
2.全加器——能同时进行本位数和相邻低位的进位信号的加法运算。 全加器 能同时进行本位数和相邻低位的进位信号的加法运算。
由真值表直接写出逻辑表达式,再经代数法化简和转换得: 由真值表直接写出逻辑表达式,再经代数法化简和转换得:
每一个输出变量是全部或部分 输入变量的函数: 输入变量的函数: L1=f1(A1、A2、…、Ai) 、 L2=f2(A1、A2、…、Ai) 、 …… Lj=fj(A1、A2、…、Ai) 、
4.1 组合逻辑电路的分析方法
分析过程一般包含4个步骤: 分析过程一般包含4个步骤:
例4.1.1:组合电路如图所示,分析该电路的逻辑功能。 组合电路如图所示,分析该电路的逻辑功能。
第四章 组合逻辑电路的分析与设计
组合逻辑电路的概念: 组合逻辑电路的概念: 电路任一时刻的输出状态只决定于该时刻 各输入状态的组合,而与电路的原状态无关。 各输入状态的组合,而与电路的原状态无关。
组合电路就是由门电路组合而成, 组合电路就是由门电路组合而成 , 电路中没有记 忆单元,没有反馈通路。 忆单元,没有反馈通路。
= Ai Bi + ( Ai ⊕ Bi )C i- 1
S i = Ai ⊕ Bi ⊕ C i 1
C i = Ai Bi + ( Ai ⊕ Bi )C i- 1
根据逻辑表达式画出全加器的逻辑电路图: 根据逻辑表达式画出全加器的逻辑电路图:
& Ai Bi Ci-1 =1 Si ≥1 =1 Ci
Ai Bi Ci-1 CI ∑ CO Si Ci
4.3.3 译码器
第三章 组合逻辑电路
特点
应用举例 8421 BCD 码 → 余 3 码
优点:速度快 缺点:电路比较复杂
集成芯片
CMOS:CC4008 TTL:74283 74LS283
C3 超前进位电路
A3 B3
A2 B2 A1 B1 A0 B0 C0-1 逻辑结构示意图
Σ CI
加法器 比较器 数据选择器和分配器 2. 按开关元件不同:
3. 按集成度不同:
编码器 译码器 只读存储器
CMOS SSI MSI TTL LSI VLSI
3. 1 组合电路的分析方法和设计方法
3. 1. 1 组合电路的基本分析方法
一、分析步骤
逻辑图
逻辑表达式
化简
真值表
说明功能
二、分析举例 [例] 分析图中所示电路的逻辑功能 A 0 0 0 0 1 1 1
4.化简或变换: 根据所用元器件的情况将 函数式进行化简或变换。
5.画逻辑图
3.2 加法器和数值比较器
3.2.1 加法器 一、半加器和全加器
1. 半加器(Half Adder)
两个 1 位二进制数相加(不考虑低位进位)。 Ai+Bi = Si (和) Ci (进位)
真 值 表
Ai 0 0 1 1
比 较 输 入
B = B3B2B1B0
输
A0 B0
真值表
出
A3 B3 A2 B2 A1 B1 L G M
4位数值比较器
A3 B3 A2 B2 A1 B1 A0 B0
A> B A= B A< B
L=1 G=1 M=1
> = = = = < = = =
组合逻辑电路设计方法
组合逻辑电路设计方法一、组合逻辑电路设计的基础。
1.1 首先得明白啥是组合逻辑电路。
组合逻辑电路啊,就是那种输出只取决于当前输入的电路。
这就好比你去餐馆点菜,厨师做出来的菜(输出)只看你点了啥(输入),简单直接,没有啥弯弯绕绕。
这里面没有什么记忆功能,每一次的输出都是根据当下的输入值全新计算的。
1.2 了解基本逻辑门。
那组合逻辑电路是由啥组成的呢?就是那些基本逻辑门啦,像与门、或门、非门这些。
这就像是盖房子的砖头一样,是基础中的基础。
与门呢,就有点像两个人合作干一件事,只有两个人都同意(输入都为高电平),这件事才能成(输出为高电平),这就是“众志成城”啊;或门呢,只要有一个人愿意干(输入有一个为高电平),这事儿就能开始干(输出为高电平),有点“广撒网”的感觉;非门就更有趣了,你说东它往西,输入是高电平,输出就是低电平,完全反过来,就像个调皮捣蛋的小鬼。
二、组合逻辑电路设计的步骤。
2.1 确定需求。
在设计组合逻辑电路之前,你得先知道自己想要干啥。
这就像你要出门旅行,你得先想好去哪儿,是去山清水秀的地方看风景呢,还是去繁华都市购物。
比如说,你想要设计一个电路来判断一个数是不是偶数,这就是你的需求。
2.2 列出真值表。
有了需求之后呢,就可以列出真值表了。
真值表就像是一个账本,把所有可能的输入和对应的输出都记下来。
这可不能马虎,要像小学生做数学题一样认真仔细。
就拿判断偶数那个例子来说,输入是这个数的二进制表示,输出就是这个数是不是偶数,是就输出1,不是就输出0。
这一步就像是在给你的电路设计画草图,把大框架先定下来。
2.3 写出逻辑表达式。
根据真值表,就可以写出逻辑表达式了。
这逻辑表达式就像是电路的灵魂,它决定了电路内部的逻辑关系。
这个过程有点像把一堆散的零件组装成一个小机器,要把那些逻辑门按照一定的规则组合起来。
这时候你得运用一些逻辑代数的知识,就像厨师做菜要懂得调味一样,该用加法(或运算)的时候用加法,该用乘法(与运算)的时候用乘法。
组合电路的设计方法
A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
1
(2)化简得到最简输出逻辑函数
Y ABC ABC ABC AB AC
(3)画逻辑图
B
&
A.
C
&
>=1
Y
2.多输出组合逻辑电路的设计 [例2]设计一个能完成两个一位二进制数相加的
三.组合逻辑电路设计举例
1.单输出组合逻辑电路的设计 [例1]设计一个A、B、C三人表决电路。
当表决某个提案时,多数人同意,提案通过, 同时A具有否决权。用与非门实现。 解:设计步骤 (1)确定输入输出变量,列写真值表
A 同意 “1”,不同意 “0” ;
输入 B 同意 “1”,不同意 “0” ; C 同意 “1”,不同意 “0” ;
组合逻辑电路-半加器。
解:设计步骤 (1)确定输入输出变量,列写真值表
A,B
两个一位二进制数
S
表示二者之和
C进位ABSC0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
(2)化简得到最简输出逻辑函数
S AB AB C AB
(3)画逻辑图
A B
=1
S
&
C
(4)检测此电路,证明逻辑功能符合设计要求
组合逻辑电路分析
实验名称组合逻辑电路分析、设计与测试一、实验目的1.掌握组合逻辑电路的分析与测试方法;2.掌握用门电路设计组合逻辑电路的方法。
二、实验原理1.组合逻辑电路的分析与测试组合逻辑电路是最常见的逻辑电路,即通过基本的门电路(比如与门,与非门,或门,或非门等)来组合成具有一定功能的逻辑电路。
组合逻辑电路的分析,就是根据给定的逻辑电路,写出其输入与输出之间的逻辑函数表达式,或者列出真值表,从而确定该电路的逻辑功能。
组合逻辑电路的测试,就运用实验设备和仪器,搭建出实验电路,测试输入信号和输出信号是否符合理论分析出来的逻辑关系,从而验证该电路的逻辑功能。
组合逻辑电路的分析与测试的步骤通常是:(1)根据给定的组合逻辑电路图,列出输入量和中间量、输出量的逻辑表达式;(2)根据所得的逻辑式列出相应的真值表或者卡诺图;(3)根据真值表分析出组合逻辑电路的逻辑功能;(4)运用实验设备和器件搭建出该电路,测试其逻辑功能。
2.组合逻辑电路的设计与测试组合逻辑电路的设计与测试,就是根据设计的功能要求,列出输入量与输出量之间的真值表,通过化简获得输入量与输出量之间的逻辑表达式,然后根据逻辑表达式用相应的门电路设计该组合逻辑电路,然后运用实验设备与器件搭建实验电路,测试该电路是否符合设计要求。
组合逻辑电路的设计与测试的步骤通常是:(1)根据设计的功能要求,列出真值表或者卡诺图;(2)化简逻辑函数,得到最简的逻辑表达式;(3)根据最简的逻辑表达式,画出逻辑电路;(4)搭建实验电路,测试所设计的电路是否满足要求。
三、预习要求1.阅读理论教材上有关组合逻辑电路的分析与综合以及半加器等章节内容,以达到明确实验内容的目的。
2.查阅附录有关芯片管脚定义和相关的预备材料。
四、实验设备与仪器1.数字电路实验箱;2.芯片74LS00;74LS20。
五、实验内容1.半加器逻辑电路的分析与测试SC图5.5.1 半加器的逻辑电路(1) 根据图5.5.1写出中间量(1Z 、2Z 和3Z )和输出量(S 和C )关于输入量(A 和B )的逻辑表达式。
组合逻辑电路的分析
组合逻辑电路的分析在分析组合逻辑电路时,我们可以使用真值表、卡诺图或布尔代数等方法。
下面将分别介绍这些方法的基本原理和应用。
1.真值表分析法真值表是列出电路的所有可能输入和对应输出的表格。
通过逐行检查真值表的输出列,可以确定电路的功能。
真值表分析法适用于较小规模的电路,但对于较复杂的电路可能不够实用。
2.卡诺图分析法卡诺图是一种图形表示方法,用于描述逻辑函数之间的关系。
它将所有可能的输入组合表示为一个方格矩阵,每个方格代表一个状态。
相邻的方格表示输入之间只有一个位不同。
通过合并相邻的方格,我们可以找到简化逻辑函数的最小项或最小项组合。
卡诺图分析法可以用来优化逻辑电路,减少门的数量和延迟。
3.布尔代数分析法布尔代数是一种用符号和运算规则描述逻辑函数的代数系统。
我们可以使用布尔代数的运算规则来简化和优化逻辑电路。
常见的布尔代数运算包括与运算、或运算、非运算和异或运算等。
通过应用这些运算规则,我们可以将复杂的逻辑函数简化为最小项或最小项组合,从而简化电路。
在进行组合逻辑电路的分析时,我们首先需要确定电路的输入和输出。
然后,我们可以根据电路的功能和输出要求,绘制真值表或卡诺图。
通过分析真值表或卡诺图,我们可以找到逻辑函数的最小项或最小项组合。
接下来,我们可以将这些最小项或最小项组合转化为逻辑门的输入方式。
最后,我们可以使用布尔代数的运算规则来简化逻辑函数和电路。
组合逻辑电路的分析是电路设计和优化的重要一步。
通过应用不同的分析方法,我们可以更好地理解电路的功能和性质,从而更好地设计和优化电路。
在分析组合逻辑电路时,我们需要注意电路的输入和输出要求,合理选择和配置逻辑门,以及优化电路的延迟和开销。
实验二 组合逻辑电路功能分析与设计
实验二组合逻辑电路功能分析与设计一、实验目的:1、了解组合逻辑电路的特点;2、掌握组合逻辑电路功能的分析方法;3、学会组合逻辑电路的连接方法;4、掌握组合逻辑电路的设计方法。
二、实验原理:1、组合逻辑电路的特点:组合电路的输出只与当时输入的有关,而与电路以前的状态无关,即输出与输入的关系具有及时性,不具备记忆功能。
2、组合逻辑电路的分析方法:a写表达式:一般方法是从输入到输出逐级写出逻辑函数的表达式。
b化简:利用公式法和图行法进行化简,得出最简的函数表达式。
c列真值表:根据最简函数表达式列出函数真值表。
d功能描述:判断该电路所完成的逻辑功能,做出简要的文字描述,或进行改进设计。
3、组合逻辑电路的设计步骤:a根据设计的要求列出真值表。
B根据真值表写出函数表达式。
C化简函数表达式或做适当的形式转换。
D画出逻辑电路图。
三、实验器件集成块:74LS00、74LS04、74LS08、74LS32四、实验内容:(一)、组合逻辑电路功能分析当电路A,B都输入0或1时,Y值输出为1;当电路A,B输入为不一样的值时,Y值输出为0.1图4-1(二)、组合逻辑电路设计(根据组合逻辑电路的设计步骤,分别写出各个组合逻辑电路的设计步骤。
)1、设计一个举重裁判表决器。
设举重比赛有三个裁判,一个主裁判和两个副裁判。
杠铃完全举上的裁决由每一个裁判按一下自己面前的按钮来确定。
只有当两个或两个以上裁判(其中必须有主裁判)判明成功时,表示“成功”的灯才亮。
(要求用与非门实现)设输入变量:主裁判为A ,副裁判分别为B ,C ,按下按钮为1,不按为0;输出变量:表示成功与否用Y 表示,灯亮为1,不亮为0,根据题意可以列出如图的真值表。
Y=AB ==*AC ==2、某设备有开关A 、B 、C ,要求仅在开关A 接通的条件下,开关B 才能接通;开关C 仅在开关B 接通的条件下才能接通。
违反这一规程,则发出报警信号。
设计一个由与非门组成的能实现这一功能的报警控制电路。
组合逻辑电路
输出Y.~Y.为低电平0有效。代码1010~1111
没有使用,称为伪码。由上表可知,当输入伪
码1010~1111时,输出Y9~Y0都为高电平1, 不会出现低电平0。因此译码器不会产生错误译
码。
图13.7 二-十进制译码器逻辑图
1.3 译 码 器
10
1.3 译 码 器
11
1.3.3 BCD-7段显示译码器
二进制码器是用于把二进制 代码转换成相应输出信号的译码 器。常见的有2线-4线译码器、 3线-8线译码器和4线-16线译码 器等。如图13.5所示为集成3线 -8线译码器74LS138的逻辑图 。
图13.5 3线-8线译码器逻辑图
1.3 译 码 器
9
1.3.2 二-十进制译码器
将4位BCD码的10组代码翻译成0~9这10个
图1.11 数据选择器
1. 4选1数据选择器
图1.12所示为4选1数据选择器的逻辑图 ,A1、A0是地址端。D0~D3是4个数据端 ,ST是低电平有效的使能端,具有两个互 补输出端Y和Y。对于不同的二进制地址输 入,可按地址选择D0~D3中一个数据输出 。其功能如表13.8所示。
图1.12 4选1数据选择器逻辑图
1
1.1 组合逻辑电路的分析与设计
2
1.1.1 组合逻辑电路的分析方法
组合逻辑电路的分析是根据给定的逻辑电路图,弄清楚它的逻辑功 能,求出描述电路输出与输入之间的逻辑关系的表达式,列出真值表 。一般方法如下所述。
1)根据给定的逻辑电路的逻辑图,从输入端向输出端逐级写出各 个门对其输入的逻辑表达式,从而写出整个逻辑电路的输出对输入的 逻辑函数表达式。
2)利用逻辑代数运算法则化简逻辑函数表达式。 3)根据化简后的逻辑函数表达式,列出真值表,使逻辑功能更加 清晰。 4)根据化简后的逻辑函数表达式或真值表,分析逻辑功能。 下面通过一个例子说明组合逻辑电路的分析方法。
「组合逻辑电路分析和设计」
「组合逻辑电路分析和设计」组合逻辑电路分析和设计是计算机科学与工程领域中的重要内容。
本文主要从以下几个方面来进行阐述和介绍。
首先,组合逻辑电路是由与门、或门、非门等基本逻辑门按照一定规则组合而成的电路。
相比于时序逻辑电路,组合逻辑电路没有时钟信号的影响,其输出仅取决于输入。
因此,组合逻辑电路的分析和设计相对较为简单。
组合逻辑电路的分析主要涉及输入与输出之间的逻辑关系。
通过给定的真值表或逻辑函数,可以根据组合逻辑电路的输入和输出关系,推导出电路的逻辑表达式。
例如,对于一个4输入与门,当且仅当所有的输入都为1时,输出才为1、通过对输入和输出进行逻辑运算,可以得到逻辑表达式为Y=A*B*C*D。
组合逻辑电路的设计是根据给定的逻辑关系,构造出满足要求的电路结构。
设计的过程主要包括确定逻辑门的类型和数量,以及逻辑门之间的连接方式。
通过逻辑门的级联、并联、或者反馈连接,可以实现各种复杂的逻辑功能。
组合逻辑电路的设计通常采用两种方法:卡诺图和最小项拓展。
卡诺图是一种图形化的方法,将真值表中的1所对应的位置连接起来,形成一个矩形或者一组矩形。
通过对卡诺图进行化简和合并,可以得到最简化的逻辑表达式。
最小项拓展方法则是将逻辑关系转化为多个最小项的组合。
通过对最小项进行合并和优化,可以得到最简化的逻辑电路。
在实际的组合逻辑电路设计中,还需要考虑一些逻辑优化的技巧。
例如,引入分立的反相器可以简化逻辑表达式,减少逻辑门的使用数量。
另外,使用触发器可以引入时序逻辑,实现更复杂的功能。
总之,组合逻辑电路分析和设计是计算机科学与工程中非常重要的内容。
通过对组合逻辑电路的分析,可以得到逻辑表达式;通过对组合逻辑电路的设计,可以构造出满足需求的电路结构。
熟练掌握组合逻辑电路的分析和设计方法对于计算机科学与工程专业的学生来说是非常重要的。
组合逻辑电路功能分析【精选】
实验二 组合逻辑电路功能分析与设计一、实验目的:1、了解组合逻辑电路的特点;2、掌握组合逻辑电路功能的分析方法;3、学会组合逻辑电路的连接方法;4、掌握组合逻辑电路的设计方法。
二、实验原理:1、组合逻辑电路的特点:组合电路的输出只与当时输入的有关,而与电路以前的状态无关,即输出与输入的关系具有及时性,不具备记忆功能。
2、组合逻辑电路的分析方法:a 写表达式:一般方法是从输入到输出逐级写出逻辑函数的表达式。
b 化简:利用公式法和图行法进行化简,得出最简的函数表达式。
c 列真值表:根据最简函数表达式列出函数真值表。
d 功能描述:判断该电路所完成的逻辑功能,做出简要的文字描述,或进行改进设计。
3、组合逻辑电路的设计步骤:a 根据设计的要求列出真值表。
B 根据真值表写出函数表达式。
C 化简函数表达式或做适当的形式转换。
D 画出逻辑电路图。
三、实验器件集成块:74LS00、74LS04、74LS08、74LS32四、实验内容:(一)、组合逻辑电路功能分析分析图4-1所示电路的逻辑功能:当电路A ,B 都输入0或1时,Y 值输出为1;当电路A ,B 输入为不一样的值时,Y 值输出为0.(二)、组合逻辑电路设计(根据组合逻辑电路的设计步骤,分别写出各个组合逻辑电路的设计步骤。
)1、设计一个举重裁判表决器。
设举重比赛有三个裁判,一个主裁判和两个副裁判。
杠铃完全举1图4-1学习教系列上的裁决由每一个裁判按一下自己面前的按钮来确定。
只有当两个或两个以上裁判(其中必须有主裁判)判明成功时,表示“成功”的灯才亮。
(要求用与非门实现)设输入变量:主裁判为A ,副裁判分别为B ,C ,按下按钮为1,不按为0;输出变量:表示成功与否用Y 表示,灯亮为1,不亮为0,根据题意可以列出如图的真值表。
Y=Error!*Error!2、某设备有开关A 、B 、C ,要求仅在开关A 接通的条件下,开关B 才能接通;开关C 仅在开关B 接通的条件下才能接通。
3.1组合逻辑电路的分析
第三章组合逻辑电路基本要求:熟练掌握组合逻辑电路的分析方法;掌握组合逻辑电路的设计方法;理解全加器、译码器、编码器、数据选择器、数据比较器的概念和功能,并掌握它们的分析与实现方法;了解组合逻辑电路中的险象本章主要内容:组合逻辑电路的分析方法和设计方法。
本章重点:组合逻辑电路的分析方法组合逻辑电路的设计方法常用逻辑部件的功能本章难点:组合逻辑电路的设计一、组合逻辑电路的特点若一个逻辑电路,在任一时刻的输出仅取决于该时刻输入变量取值组合,而与电路以前的状态无关,则电路称为组合逻辑电路(简称组合电路)。
可用一组逻辑函数描述。
组合电路根据输出变量分为单输出组合逻辑电路和多输出组合逻辑电路。
注意:1.电路中不存在输出端到输入端的反馈通路。
2.电路不包含记忆元件。
3.电路的输出状态只由输入状态决定。
二、组合逻辑电路的分析方法分析的含义:给出一个组合逻辑电路,分析它的逻辑功能。
分析的步骤: 1.根据给出的逻辑电路图,逐级推导,得到输出变量相对于输入变量的逻辑函数。
2.对逻辑函数化简。
3.由逻辑函数列出对应的真值表。
4.由真值表判断组合电路的逻辑功能。
三、组合电路的分析举例1、试分析图3-1所示的单输出组合逻辑电路的功能解:(1)由G1、G2、G3各个门电路的输入输出关系,推出整个电路的表达式:Z1=ABCF=Z1+Z2 (2)对该逻辑表达式进行化简:(3)根据化简后的函数表达式,列出真值表3-1。
(4)从真值表中可以看出:当A、B、C三个输入一致时(或者全为“0”、或者全为“1”),输出才为“1”,否则输出为“0”。
所以,这个组合逻辑电路具有检测“输入不一致”的功能,也称为“不一致电路”。
2.试分析图3-2所示的输出组合逻辑电路的功能解:(1)由G1、G2、G3、G4、G5各个门电路的输入、输出关系,推出整个组合逻辑电路的表达式:(2)对该逻辑表达式进行化简:(3)根据化简后的函数表达式,列出真值表3-2。
(4)若设A、B各为一位二进制加数,则从真值表中可以看出,S为两加数相加后的一位和、C为两加数相加后的进位值。
实验二 组合逻辑电路分析与设计
实验二组合逻辑电路分析与设计一、实验目的1.掌握组合逻辑电路的分析方法与测试方法;2.掌握组合逻辑电路的设计方法。
二、实验预习要求1.熟悉门电路工作原理及相应的逻辑表达式;2.熟悉数字集成电路的引脚位置及引脚用途;3.预习组合逻辑电路的分析与设计步骤。
三、实验原理通常, 逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
电路在任何时刻, 输出状态只决定于同一时刻各输入状态的组合, 而与先前的状态无关的逻辑电路称为组合逻辑电路。
1.组合逻辑电路的分析过程, 一般分为如下三步进行:(1)由逻辑图写出输出端的逻辑表达式;(2)画出真值表;(3)根据对真值表进行分析, 确定电路功能。
2. 组合逻辑电路的一般设计过程为图实验2.1所示。
设计过程中, “最简”是指电路所用器件最少, 器件的种类最少, 而且器件之间的连线也最少.四、实验仪器设备1. TPE-ADⅡ实验箱(+5V电源, 单脉冲源, 连续脉冲源, 逻辑电平开关, LED显示, 面包板数码管等)1台;2. 四两输入集成与非门74LS00 2片;3. 四两输入集成异或门74LS86 1片;4. 两四输入集成与非门74LS20 3片。
五、实验内容及方法1. 分析、测试74LS00组成的半加器的逻辑功能。
(1)用74LS00组成半加器, 如图实验2.2所示电路, 写出逻辑表达式并化简, 验证逻辑关系。
Z1=AB;Z2= Z1A = ABA;Z3= Z1B = ABB;Si= Z2Z3 = ABA ABB = ABA+ABB = AB+ AB = A + B;Ci = Z1A = AB;(2)列出真值表。
(3)分析、测试用异或门74LS86与74LS00组成的半加器的逻辑功能, 自己画出电路, 将测试结果填入自拟表格中, 并验证逻辑关系。
评价: 通过这种方法获得测试结果和上述电路完全相同, 并且在有异或门的情况下实现较为简单, 所以我们应当在设计的时候在条件允许的情况实现最简。
数字电子技术 第4章 组合逻辑电路
图 4.3.8 7448逻辑符号图
数字电子技术
/// 16 ///
图4.3.9 7448驱动BS201A数码管的工作电路 图4.3.10 有灭零控制的8位数码显示系统
数字电子技术
/// 17 ///
3.译码器的应用 由于译码器的输出为最小项取反,而逻辑函数可以写成最小项之和的形式,故可以利用附加的 门电路和译码器实现逻辑函数。
组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
数字电子技术
/// 4 ///
4.1.2 组合逻辑电路的分析
根据逻辑功能的不同特点,可以把数字电路分成两大类,分别是: (1)是组合逻辑电路(简称组合电路) (2)是时序逻辑电路(简称时序电路) 组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
图4.5.6 数值比较器逻辑电路图
4.2.3 优先编码器
识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。 在优先编码器电路中,允许同时输入两个以上编码信号。 在设计优先编码器时已将所有的输入信号按优先顺序排了队,当几个编码信号同时出现时,只 对其中优先权最高的一个进行编码。
1.设计优先编码器线(4线-2 线优先编码器)
图4.1.3 组合逻辑电路设计步骤
数字电子技术
/// 6 ///
4.1.4 组合逻辑电路的竞争和冒险
同一个门的一组输入信号,由于它们在此前通过不同数目的门,经过不同长度导线的传输,到 达门输入端的时间会有先有后,这种现象称为竞争。
逻辑门因输入端的竞争而导致输出产生不应有的尖峰干扰脉冲的现象,称为冒险。
图4.1.6 两种冒险波形图
数字电子技术
/// 7 ///
4.2 编码器