福州四中2018-2019学年上学期高三期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州四中2018-2019学年上学期高三期中数学模拟题
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
2. 已知实数y x ,满足不等式组⎪⎩
⎪
⎨⎧≤-≥+≤-5342
y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
3. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D6
4. 数列{}n a 中,11a =,对所有的2n ≥,都有2
123n a a a a n = ,则35a a +等于( )
A .
259 B .2516 C .6116 D .31
15 5. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( )
A .(2)(3)f a f +>
B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定
D
A
B
C
O
6. 若某程序框图如图所示,则该程序运行后输出的值是( ) A.7
B.8
C. 9
D. 10
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 7. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.
8. 复数i i -+3)1(2的值是( )
A .i 4341+-
B .i 4341-
C .i 5351+-
D .i 5
351-
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 9. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )
A.()||x f e x =
B.2()x x f e e =
C.2
(ln )ln f x x = D.1(ln )f x x x
=+
【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.
10.已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )
A .6
B .0
C .2
D .2
11.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )
A .10
B .11
C .12
D .13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 12.已知角α的终边经过点(sin15,cos15)- ,则2
cos α的值为( )
A .
124+
B .124
- C. 34 D .0 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知x ,y 为实数,代数式222
2)3(9)2(1y x x y ++
-++-+的最小值是 .
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 14.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN
⋅=时,则MN
的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
15.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.
16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×
的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=
,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.
18.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
A
B
C
D
P
19.(本小题满分14分) 已知函数()ln k
f x x x x
=-
(k R ∈),其图象与x 轴交于不同两点1(,0)A x ,2(,0)B x ,且12x x <. (1)求实数k 的取值范围; (2)证明:11
2
1222e x x e --<+<.
20.(本小题满分12分)已知函数()2
ln f x ax bx x =+-(,a b ∈R ).
(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求
出b 的值;若不存在,说明理由;
21.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,2
3
3-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:2
7
<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重
点突出运算、论证、化归能力的考查,属于中档难度.
福州四中2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 2. 【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
3. 【答案】B
【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 4. 【答案】C 【解析】
试题分析:由2
123n a a a a n = ,则2
1231(1)n a a a a n -=- ,两式作商,可得2
2
(1)
n n a n =-,所以2235223561
2416
a a +=+=,故选C .
考点:数列的通项公式. 5. 【答案】A
【解析】
试题分析:由()()()(
)()log 1,,1log 1,1,a a x x f x x x -∈-∞⎧⎪=⎨-∈+∞⎪⎩且()f x 在(),1-∞上单调递增,易得01,112a a <<∴<+<.()f x ∴在()1,+∞上单调递减,()()23f a f ∴+>,故选A.
考点:1、分段函数的解析式;2、对数函数的单调性. 6. 【答案】A
【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A. 7. 【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
8. 【答案】C
【解析】i
i i i i i i i i i
5
3
51
1062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.
9. 【答案】D.
10.【答案】A 解析:解:由
作出可行域如图,
由图可得A (a ,﹣a ),B (a ,a ),
由
,得a=2.
∴A (2,﹣2),
化目标函数z=2x ﹣y 为y=2x ﹣z ,
∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 11.【答案】C
【解析】由题意,得甲组中78888486929095
887
m +++++++=,解得3m =.乙组中888992<<,
所以9n =,所以12m n +=,故选C .
12.【答案】B
【解析】
考
点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13. 【
解
析
】
14.
【答案】
(02x #,02y #)上的点(,)x y 到定点(2,2)
2,故MN 的取值
范围为.
2
2
y
x
B
15.【答案】7
【
解
析】
16.【答案】8
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】解: (Ⅰ)当13
PE PB =
时,//CE 平面PAD . 设F 为PA 上一点,且13
PF PA =,连结EF 、DF 、EC , 那么//EF AB ,13
EF AB =. ∵//DC AB ,13
DC AB =,∴//EF DC ,EF DC =,∴//EC FD . 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥.
又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B , (1,2,0)C -
.由2PO ===知(0,0,2)P . (9分) 设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r 则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n = . 设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r
,则||sin |cos ,|||||
AP n AP n AP n θ⋅=<>==⋅ ∴
πθ=,∴直线PB 与平面PAD 所成角为3π. (13分) 18.【答案】 【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.
19.【答案】
【解析】【命题意图】本题考查利用导数研究函数单调性,极值,构建新函数的思想,分类讨论的思想等基础知识,意在考查运用转化与化归思想、综合分析问题解决问题以及运算求解能力,逻辑思维能力.
所以102k e -<<.
∵
2()1ln k f x x x '=++,∴22212()1x k x x k f x x x x
--+'≥++=.
∵102k e -<<,∴方程220x x k -+=有唯一正根14x *=,则22
2)(****+-≥x
k x x x f . 又21()0f ke e '=<,()f x '在区间1(,)x e * 单调递增,
所以根据零点存在定理,得()f x '在区间1(,)x e *有唯一零点0x .
所以22000ln k x x x -=+,………………① 又min 0000
()()ln 0k f x f x x x x ==-<,…………②
20.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当0a =时,()ln f x bx x =-. 假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,
1
1
()bx f x b x x -'=-=.………7分
①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4
()e 13,f x f be b e ==-==(舍去).………8分 ②当1
0e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤
⎥⎝⎦上单调递增, ∴2
min 1()1ln 3,e f x g b b b ⎛⎫
==+== ⎪⎝⎭,满足条件.……………………………10分 ③当1
e b ≥时,()
f x 在(]0,e 上单调递减,()min 4
()e e 13,e f x g b b ==-==(舍去),………11分
综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分
21.【答案】(1)3B π
=;(2)[1,2).
【解析
】
22.【答案】
【解析】。