2009年宁波市中考数学试题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波市2009年初中毕业生学业考试
数 学 试 题
考生须知:
1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷Ⅰ、答题卷Ⅱ.试题卷共6页,有三个大题,26个小题,满分120分,考试时间为120分钟.
2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.
3.答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B 铅笔涂黑、涂满.将试题卷Ⅱ答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.
4.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线
2
y ax bx c =++的顶点坐标为2424b ac b a
a ⎛⎫
-- ⎪⎝⎭,.
试题卷Ⅰ
一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)
1.下列四个数中,比0小的数是( ) A .
23
B
C .π
D .1-
2.等腰直角三角形的一个底角的度数是( ) A .30° B .45° C .60° D .90°
3.一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( ) A .
12
B .
13
C .
14
D .
16
4.据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万用科学记数法可表示为( ) A .9
0.46410⨯
B .8
4.6410⨯
C .7
4.6410⨯
D .6
46.410⨯
5
x 的取值范围是( ) A .2x ≠ B .2x > C .x ≤2 D .2x ≥ 6.如图是由4个立方块组成的立体图形,它的俯视图是( )
A .
B .
C .
D . 7.下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式
(第6题)
B .了解宁波市居民对废电池的处理情况
C .日光灯管厂要检测一批灯管的使用寿命
D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 8.以方程组2
1
y x y x =-+⎧⎨
=-⎩的解为坐标的点()x y ,在平面直角坐标系中的位置是( )
A .第一象限
B .第二象限
C .第三角限
D .第四象限
9.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( ) A .110° B .108° C .105° D .100°
10.反比例函数k
y x
=
在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .4
11.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形
B .四边形MBON 和四边形MODN 都是菱形
C .四边形AMON 与四边形ABC
D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形
12.如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1
B .3
C .3(1)m -
D .
3
(2)2
m -
试题卷Ⅱ
二、填空题(每小题3分,共18分) 13.实数8的立方根是 .
14.不等式组60
20x x -<⎧⎨->⎩
的解是 .
15.甲、乙、丙三名射击手的20次测试的平均成绩都是8环,方差分别是2
0.4S =甲(环2)
, 1
2 3 4 D C B A E (第9题)
D B C
A N
M O (第11题) (第12题)
2 3.2S =乙(环2),2
1.6S =丙(环2)
,则成绩比较稳定的是 .(填“甲”“乙”“丙”中的一个)
16.如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)
17.如图,梯形ABCD 中,AD BC ∥,7040B C ∠=∠=°
,°,作DE AB ∥交BC 于点E ,若3AD =,10BC =,则CD 的长是 .
18.如图,A ⊙、B ⊙的圆心A 、B 在直线l 上,两圆的半径都为1cm ,开始时圆心距4cm AB =,现A ⊙、B ⊙同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,A ⊙运动的时间为 秒.
三、解答题(第19~21题各6分,第22题10分,第23~24题各8分,第25题10分,第26题12分,共66分)
19.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.
20.如图,点A ,B 在数轴上,它们所对应的数分别是4-,
22
35
x x +-,且点A 、B 到原点的
距离相等,求x 的值. 21.(1)如图1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是 .
(2)如图2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图3中,并写出这个图形的边数.
(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?
C (第16题)
A
B C D
E (第17题) (第18题) A
B (第20题) (图1) (第21
题)
(图2) (图3)
22.2009年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形统计图.(另附:九年级女生立定跳远的计分标准)
(1)求这10名女生在本次测试中,立定跳远距离..的极差和中位数,立定跳远得分..的众数和平均数.
(2)请你估计该校选择立定跳远的200名女生中得满分的人数.
23.如图,抛物线2
54y ax ax a =-+与x 轴相交于点A 、B ,且过点(54)C ,
. (1)求a 的值和该抛物线顶点P 的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
10名女生立定跳远距离条形统计图 女生序号 (第22题)
九年级女生立定跳远计分标准 (注:不到上限,则按下限计分,满分为10分) (第23题) 5,4)
24.已知,如图,O ⊙的直径AB 与弦CD 相交于E , BC
BD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .
(1)求证:CD BF ∥;
(2)连结BC ,若O ⊙的半径为4,3
cos 4
BCD ∠=
,求线段AD 、CD 的长.
25.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%. (1)该市政府2008年投入改善医疗卫生服务的资金是多少万元? (2)该市政府2009年投入“需方”和“供方”的资金各多少万元?
(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.
26.如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐
标为(80)-,
,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 ,
当90α=°时,
BP
BQ
的值是 ; (2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求
BP
BQ
的值; ②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积.
(第24题)
(图1)
(3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使
1
2
BP BQ =
?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
)
(图3)
(图2)
(第26题)
宁波市2009年初中毕业生学业考试 数学试题参考答案及评分标准
一、选择题(每小题3分,共36分)
1 -1为小于0的数
2 三角形三个内角之和为180度,又等腰直角三角形的一个为90度,故两底角的度数之和为90度,故底角是45度
3解:因为只有四个球,红球有2个,所以从布袋里摸出1个球摸到红球的概率=
4 4640万=
5x 满足: x-2≥0,故x 的取值范围是x ≥2
6 根据俯视图的画法可知:该俯视图左列由2个正方形,右列由1个正方形组成,故选B . 7调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,
所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
解:A 、B 项因为数目太大,而不适合进行普查,只能用抽查, C 、因具有破坏性,也只能采用抽查的方式.
D 、了解某甲型H1N1确诊病人同机乘客的健康状况,精确度要求高、事关重大,必须选用普查. 故选D
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
8
9解:根据五边形的内角和公式可知,五边形ABCDE 的内角和为(5-2)×180°=540°,
根据邻补角的定义可得∠EAB=∠ABC=∠BCD=∠CDE=180°-70°=110°, 所以∠AED=540°-110°×4=100°. 故选D .
10
11解:根据位似图形的定义可知
A 、O 与OM 和AM 的大小却无法判断,所以无法判断△AMO 和△AON 是等边三角形,故错误;
B 、无法判断BM 是否等于OB 和BM 是否等于O
C ,所以也无法判断平行四边形MBON 和MODN 是菱形,故错误;
C 、四边形MBCO 和四边形NDCO 是位似图形,故此选项正确;
D 、.无法判断四边形MBCO 和NDCO 是等腰梯形,故此选项错误; 故选C .
13 2的立方=8,故8的立方根为2
14 由x-6<0得:x<6,由x-2>0得:x>2,故26x <<
15解:根据方差的定义,方差越小数据越稳定,因为S 甲2=0.4(环2),S 乙2=3.2(环2),S 丙2=1.6(环2),方差最小的为甲,所以本题中成绩比较稳定的是甲. 故填甲. 16
17解:∵DE ∥AB , ∴∠DEC=∠B=70°, 而∠C=40°, ∴∠CDE=70°,
∴CD=CE .
又∵AD ∥BE ,AB ∥DE , ∴四边形ABED 是平行四边形. ∴BE=AD=3, 又∵BC=10,
∴CE=CB-BE=10-3=7, ∴CD=CE=7.
18解:本题所说的两圆相切,应分为两圆第一次相遇时的相切和两圆继续移动,即将相离时的相切两种情况.
第一种情况两圆所走的路程为4-2=2cm ; 第二种情况两圆所走的路程为4+2=6cm .
不妨设圆A 运动的时间为x 秒,根据题意可得方程2x+2x=2或2x+2x=6, 解得x=1/2, or 3/2
三、解答题(共66分)
注:1.阅卷时应按步计分,每步只设整分;
2.如有其它解法,只要正确,都可参照评分标准,各步相应给分.
19.解:原式2
2
42a a a =--+ ········································································ 2分
24a =-. ················································································· 4分
当1a =-时, 原式2(1)4=⨯--
6=- ····································································································· 6分
20.解:由题意得,
22
435
x x +=-, ································································································ 3分
解得11
5
x =. ································································································ 5分
经检验,11
5x =是原方程的解.
∴x 的值为11
5
. ··················································· 6分 21.(1)12. ························································ 1分 (2)这个图形的边数是20. ·········· 4分(其中画图2分) (3)得到的图形的边数是30. ································ 6分
22.(1)立定跳远距离的极差20517431(cm)=-=.··········································· 2分 立定跳远距离的中位数199197
198(cm)2
+=
=. ·················································· 4分 根据计分标准,这10名女生的跳远距离得分分值分别是: 7,9,10,10,10,8,10,10,9. 所以立定跳远得分的众数是10(分), ································································ 6分 立定跳远得分的平均数是9.3(分). ·································································· 8分
(2)因为10名女生中有6名得满分,所以估计200名女生中得满分的人数是6
20012010
⨯
=(人). ······································································································ 10分 23.解:(1)把点(54)C ,代入抛物线254y ax ax a =-+得,
252544a a a -+=, ····················································································· 1分 解得1a =. ·································································································· 2分
∴该二次函数的解析式为254y x x =-+. 2
2595424y x x x ⎛
⎫=-+=-- ⎪⎝
⎭
∴顶点坐标为5924P ⎛⎫- ⎪⎝⎭
,
. ·············································································· 4分 (2)(答案不唯一,合理即正确)
如先向左平移3个单位,再向上平移4个单位, ··················································· 6分 得到的二次函数解析式为
22
5917342424y x x ⎛⎫⎛
⎫=-+-+=++ ⎪ ⎪⎝⎭⎝
⎭,
即22y x x =++. ························································································· 8分
24.解:(1) 直径AB 平分 CD
, ∴AB CD ⊥. ·
····························································································· 1分 BF 与O ⊙相切,AB 是O ⊙的直径,
AB BF ∴⊥. ······························································································ 2分 CD BF ∴∥. ······························································································ 3分 (2)连结BD ,
AB 是O ⊙的直径, 90ADB ∴∠=°, 在Rt ADB △中,
3
cos cos 4A C ∠=∠= ,428AB =⨯=.
3
cos 864
AD AB A ∴=∠=⨯= . ····································································· 5分
AB CD ⊥于E , 在Rt AED △
3cos cos 4A C ∠=∠=
,sin A ∠=.
sin 6DE AD A ∴=∠==
···························································· 7分
直径AB 平分 CD
,
2CD DE ∴==. ·
·················································································· 8分 25.解:(1)该市政府2008年投入改善医疗服务的资金是:
600012504750-=(万元) ··········································································· 2分 (2)设市政府2008年投入“需方”x 万元,投入“供方”y 万元, 由题意得4750(130%)(120%)6000.
x y x y +=⎧⎨
+++=⎩,
解得30001750.x y =⎧⎨
=⎩
,
····························································································· 4分
∴2009年投入“需方”资金为(130%) 1.330003900x +=⨯=(万元), 2009年投入“供方”资金为(120%) 1.217502100y +=⨯=(万元).
答:该市政府2009年投入“需方”3900万元,投入“供方”2100万元. ·················· 6分 (3)设年增长率为x ,由题意得
26000(1)7260x +=, ·
·················································································· 8分 解得10.1x =,2 1.1x =-(不合实际,舍去)
答:从2009~2011年的年增长率是10%. ·························································· 10分
26.解:(1)矩形(长方形); ·········································································· 1分
4
7
BP BQ =. ···································································································· 3分 (2)① POC B OA ''∠=∠,PCO OA B ''∠=∠90=°, COP A OB ''∴△∽△.
CP OC A B OA ∴
=''',即6
68
CP =, 92CP ∴=,7
2
BP BC CP =-=. ···································································· 4分
同理B CQ B C O '''△∽△,
CQ B C
C Q B C '∴
='''
,即10668CQ -=, 3CQ ∴=,11BQ BC CQ =+=. ··································································· 5分
7
22
BP BQ ∴
=. ······························································································· 6分
②在OCP △和B A P ''△中,
90OPC B PA OCP A OC B A ''∠=∠⎧⎪
'∠=∠=⎨⎪''=⎩
,°,
, (AAS)OCP B A P ''∴△≌△. ·········································································· 7分 OP B P '∴=. 设B P x '=,
在Rt OCP △中, 222(8)6x x -+=,解得25
4
x =
. ··········································· 8分 12575
6244
OPB S '∴=⨯⨯=△. ··········································································· 9分
(3)存在这样的点P 和点Q ,使1
2
BP BQ =. ················································· 10分
点P
的坐标是19P ⎛
⎫
- ⎪⎝⎭
,2764P ⎛⎫- ⎪⎝⎭,. ·
················································ 12分 对于第(3)题,我们提供如下详细解答,对学生无此要求. 过点Q 画QH OA '⊥于H ,连结OQ ,则QH OC OC '==,
12POQ S PQ OC =
△,1
2
POQ S OP QH = △, PQ OP ∴=.
设BP x =,
1
2
BP BQ =
, 2BQ x ∴=,
① 如图1,当点P 在点B 左侧时,
3OP PQ BQ BP x ==+=,
在Rt PCO △中,2
2
2
(8)6(3)x x ++=,
解得11x =
,21x =.
9PC BC BP ∴=+=
19P ⎛⎫
∴- ⎪⎝⎭
.
②如图2,当点P 在点B 右侧时,
OP PQ BQ BP x ∴==-=,8PC x =-.
在Rt PCO △中,222(8)6x x -+=,解得254
x =
. PC BC BP ∴=-257844
=-
=, 2764P ⎛⎫∴- ⎪⎝⎭
,.
综上可知,存在点19P ⎛⎫
- ⎪⎝
⎭
,2764P ⎛⎫- ⎪⎝⎭,,使12BP BQ =.。