第二十四章圆检测(1)
第二十四章 圆培优检测卷(解析版)(重点突围)
《第二十四章 圆》培优检测卷班级___________ 姓名___________ 学号____________ 分数____________考试范围:第二十四章; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·浙江·杭州市建兰中学九年级期中)已知O e 的半径为3cm ,点A 到圆心O 的距离为2cm ,那么点A 与O e 的位置关系是( )A .点A 在O e 内B .点A 在O e 上C .点A 在O e 外D .不能确定【答案】A【分析】根据点到圆心的距离d 与圆的半径r 之间的数量关系进行判断即可.【详解】解:由题意得:2,3d r ==,故:d r <,∴点A 在O e 内,故选A .【点睛】本题考查点与圆的位置关系:点到圆心的距离大于圆的半径时,点在圆外,点到圆心的距离等于圆的半径时,点在圆上,点到圆心的距离小于圆的半径时,点在圆内.2.(2022·福建省福州延安中学九年级阶段练习)下列四个命题中,真命题是( )A .如果两条弦相等,那么它们所对的圆心角相等B .圆是轴对称图形, 任何一条直径都是圆的对称轴C .平分弦的直径一定垂直于这条弦D .等弧所对的圆周角相等【答案】D【分析】根据圆心角、弧、弦的关系对A 进行判断,根据对称轴的定义对B 进行判断,根据垂径定理的推论对C 进行判断,根据圆周角定理的推论对D 进行判断.【详解】解:A 、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,故此选项错误,不符合题意;B 、圆是轴对称图形, 任何一条直径所在的直线都是圆的对称轴,故此选项错误,不符合题意;C 、平分弦(非直径)的直径一定垂直于这条弦,故此选项错误,不符合题意;D 、等弧所对的圆周角相等正确,故此选项正确,符合题意,故选:D .理及圆周角定理的推论.3.(2022·湖北孝感·九年级期末)点P 到⊙O 的最近点的距离为2cm ,最远点的距离为7cm ,则⊙O 的半径是( )A .5cm 或9cmB .2.5cmC .4.5cmD .2.5cm 或4.5cm【答案】D【分析】根据已知条件能求出圆的直径,即可求出半径,此题点的位置不确定所以要分类讨论.【详解】解:①当点在圆外时,∵圆外一点和圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径为7﹣2=5(cm ),∴该圆的半径是2.5cm ;②当点在圆内时,∵点到圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径=7+2=9(cm ),∴圆的半径为4.5cm ,故选:D .【点睛】本题考查了点和圆的位置关系的应用,能根据已知条件求出圆的直径是解此题的关键.4.(2022·北京·人大附中九年级阶段练习)如图,AB 为O e 的直径,点C ,D 在O e 上,若130ADC Ð=°,则BAC Ð的度数为( )A .25°B .30°C .40°D .50°【答案】C 【分析】根据圆内接四边形对角互补求得B Ð,根据直径所对的圆周角是直角可得=90°ACB Ð,根据直角三角形的两个锐角互余即可求解.【详解】解:∵AB 为O ⊙的直径,,60OA OB AOB =Ð=°Q ,AOB \ 是等边三角形,12,12OA AB AP AB \====,223OP OA AP \=-=,即这个正六边形的边心距为3,【点睛】本题考查了正多边形的中心角和边心距、等边三角形的判定与性质、勾股定理,熟练掌握正多边形的中心角和边心距的概念是解题关键.6.(2022·全国·九年级单元测试)如图,AB过半⊙O的圆心O,过点B作半⊙O的切线BC,切点为点C,连接AC,若∠A=25°,则∠B的度数是( )A.65°B.50°C.40°D.25°【答案】C【分析】连接OC,根据切线的性质,得出∠OCB=90°,再利用圆的半径相等,结合等边对等角,得出∠A =∠OCA,然后再利用三角形的外角和定理,得出∠BOC的度数,再利用直角三角形两锐角互余,即可得出∠B的度数.【详解】解:连接OC,∵BC与半⊙O相切于点C,∴∠OCB=90°,∵∠A=25°,∵OA=OC,∴∠A=∠OCA,∴∠BOC=2∠A=50°,∴∠B=90°﹣∠BOC=40°.故选:C【点睛】本题考查了切线的性质、等边对等角、三角形外角和定理、直角三角形两锐角互余,解本题的关键在熟练掌握相关的性质、定理.二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·北京市朝阳区人大附中朝阳分校九年级阶段练习)如图,点A、B、C在⊙O上,∠C=45°,半径OB的长为3,则AB的长为_____.【答案】32【分析】首先根据圆周角定理求出∠【答案】1【分析】连接OA、OC、OD然后由含30°角的直角三角形的性质求解即可.【详解】解:连接OA、OC∵点O为正六边形ABCDEF【答案】15【分析】如图,连接CQ,然后求出【详解】解:如图,连接CQ.由题意CQ=CP,CDPQ=∴DQ=DP=12∵PA=QB,【答案】1或3或5e与坐标轴的切点为【分析】设PQ点D是切点,P e的半径是1Q,PB=2Q=,PC2\=+=,52 AP AC PC定及性质,利用分类讨论的思想求解.三、(本大题共5小题,每小题6分,共30分)(1)点M的坐标为 (2)点D(5,﹣2)在⊙M【答案】(1)(2,0)(2)内【分析】(1)由网络可得出线段(2)解:由图知,圆的半径AM∵2513>,∴点D在圆M内,(1)求正六边形的边长;(2)以A为圆心,AF为半径画弧【答案】(1)6(2)4π(1)求ACBÐ的度数;e的半径为3,求圆弧 AC的长.(2)若O【答案】(1)30°(2)2pe的切线∵AB是O^∴OA AB∴90Ð=OAB°∵90Ð=DAC°Ð=Ð∴DAC OAB(2)在(1)的基础上,连接BO 并延长与【点睛】本题考查了作图:无刻度直尺作图,考查了正五边形的对称性质,掌握正五边形的性质是解题的关键.17.(2022·湖南·长沙麓山国际实验学校九年级阶段练习)如图,与A ,B 重合),过O 作OC ⊥AP (1)试判断CD 与AB 的数量和位置关系?并说明理由;(2)若45B Ð=°,AP=4,则⊙∵45B Ð=°,四、(本大题共3小题,每小题8分,共24分)18.(2021·江苏·阜宁县实验初级中学九年级阶段练习)如图,⊙O 的弦AB 、DC 的延长线相交于点E .A D AE DE E E Ð=Ðìï=íïÐ=Ðî,∴△ACE ≌△DBE (ASA ),∴BE =CE ,∵AE =DE ,∴AE -BE =DE -CE ,即AB =CD .【点睛】本题考查了圆的相关计算与证明,三角形全等的判定和性质,正确理解圆心角、弧与弦的关系是解题的关键.19.(2021·广东惠州·九年级期末)如图在Rt ABC 中,∠C =90º,以AC 为直径作⊙O ,交AB 于D ,过O 作OE ∥AB ,交BC 于E .(1)求证:DE 是⊙O 的切线;(2)如果⊙O 的半径为3,DE =4,求AB 的长;(3)在(2)的条件下,求△ADO 的面积.【答案】(1)证明见解析(2)10AB =(3) 4.32ADO S =△【分析】(1)根据平行线的性质,得出123A Ð=ÐÐ=Ð,,再根据等边对等角,得出1A Ð=Ð,再根据等量代换,得出32Ð=Ð,再利用SAS ,得出OCE ODE ≌△△,进而得出OCE ODE Ð=Ð,进而得出OD DE ^,即可得出结论;(2)根据(1),得出ODE 是直角三角形,根据勾股定理,得出5OE =,再根据三角形的中位线定理,即可得出AB 的长;(3)连接CD ,根据圆周角定理,得出90ADC Ð=°,再根据等面积法,得出CD 的长,然后根据勾股定理,得出AD 的长,再根据三角形的面积公式,得出ADC 的面积,再根据三角形中线平分三角形的面积,即可得出ADO △的面积.(1)证明:如图,∵OE AB ∥,∴123A Ð=ÐÐ=Ð,,∵OA OD =,∴1A Ð=Ð,∴32Ð=Ð,∵OC OD OE OE ==,,∴()OCE ODE SAS △≌△,∴OCE ODE Ð=Ð,∵90C Ð=°,∴90OCE ODE Ð=Ð=°,即OD DE ^,∴DE 是⊙O 的切线.(2)解:由(1),可得:三角形ODE 是直角三角形,在Rt ODE △中,∵34OD DE ==,,∴5OE =,【点睛】本题考查了平行线的性质、等边对等角、全等三角形的性质与判定、切线判定定理、勾股定理、三角形的中位线定理、圆周角定理、三角形中线的性质,解本题的关键在熟练掌握相关的性质定理.20.(2022·江苏·泰州市姜堰区南苑学校九年级)如图,在圆心,OB为半径的圆与(1)如图1,若AP=DP,则⊙O的半径r值为_______;(2)求BC=6,求⊙O的半径r长;(3)若AD的垂直平分线和⊙O有公共点,求半径r的取值范围.【答案】(1)8 3(2)3∵Oe与AC相切于点∴AC OD^,∴∠ADO=90°,即∠PDO∵∠ABC =90°, AB =8,∴22AC AB BC =+=∵OD AC ^,AB BC ^∴1122AC OD BC OB ×+×∴AC OD BC OB ×+×=∵∠EFD=∠ODF=∠OEF=90°∴四边形ODFE是矩形,∵OD=OE,∴四边形ODFE是正方形,===∴AF DF OD r∵222,∵OD<OA,∴OB+OD<OB+OA,∴2r<8,∴r<4,∴r的取值范围是252-【点睛】本题主要考查了圆的切线的判定与性质、切线长定理、勾股定理、用不等式求取值范围等知识与方法,熟练掌握相关知识点是解题的关键,属于考试压轴题.五、(本大题共2小题,每小题9分,共18分)(1)求抛物线解析式及D 点坐标.(2)猜测直线CM 与D e 的位置关系,并证明你的猜想.(3)抛物线对称轴上是否存在点P ,若将线段上?若能,求点P 的坐标;若不能,说明理由.【答案】(1)()2125344y x =--+;(3,0)(2)相切;证明见解析;由抛物线的解析式得:M (3,254∵D (3,0),∴()22225225403416CM æö=-+-=ç÷èø∴222CM CD DM +=,根据题意得∠CP C¢=∠CGD=∠GDO ∴∠CPH+∠HP C¢=90°,∠GCP+∴∠GCD=∠HP C¢,OC=GD=4,∵CP=C¢P∴∆CGP≅∆PH C¢,∴PG=C¢H=GD-DP=4-k,CG=PH六、(本大题共12分)。
人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)
第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
第二十四章 圆 试题精选2022-2023学年九年级上册人教版数学 【天津市】
2022-2023年九年级上册人教版数学第二十四章 圆试题精选【天津市】一、单选题(本大题共10小题)1. (天津市河西区2020年数学中考热身数学试卷)一个圆的内接正三角形的边长为23( )A 2B .4C .23D .222. (天津市和平区2019届中考模拟数学试题)如图,⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B ,∠BAC =25°,则∠AMB 的大小为( )A .25°B .30°C .45°D .50°3. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A .6B .3C .9D .124. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,⊙O 是∆ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°5. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,AB 是O 的直径,C ,D 是O 上的两点,连接AC ,CD ,AD ,若75ADC ∠=︒,则BAC ∠的度数是( )A .15°B .25°C .30°D .75°6. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,四边形ABCD为O 的内接四边形,已知140BCD ∠︒=,则BOD ∠的度数为( )A .40°B .50°C .80°D .100°7. (天津市西青区2021-2022学年九年级上学期期末数学试题)如图,OA 是⊙O 的半径,弦BC ⊥OA ,垂足为D .连接AC .若BC =42AC =3,则⊙O 的半径长为( )A .9B .8C .92D .38. (天津市南开区2021-2022学年九年级上学期期末数学试题)如图AB 是O 切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若35ADC ∠=︒,则ABO ∠的度数为( )A .25︒B .20︒C .30D .35︒52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10. (天津市滨海新区2019届九年级第一次模拟试卷数学试题)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .23πB .33πC .323πD .323π 二、填空题(本大题共6小题)11. (天津市南开区2021-2022学年九年级上学期期末数学试题)已知⊙O 的半径为10,直线AB 与⊙O 相切,则圆心O 到直线AB 的距离为 .12. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,一条公路的转弯处是一段圆弧(图中的AB ),点O 是这段弧的圆心,C 是AB 上一点,OC AB ⊥.垂足为D ,160m AB =,40m CD =,则这段弯路的半径是 m .13. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,半径为2的O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则劣弧BD 的长为 .PA PB 、切O 于点A B 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点C D 、,则PCD 的周长是 .15. (天津市河北区2021-2022学年九年级上学期期末数学试题)已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16. (天津市河东区2021-2022学年九年级上学期期末数学试题)如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE ,若AB =4cm ,则OE 的最大值为 cm .三、解答题(本大题共11小题)17. (天津市和平区2022年中考数学二模试题)如图,AB 为⊙O 直径,△ACD 是⊙O 的内接三角形,PB 切⊙O 于点B .(1)如图①,延长AD 交PB 于点P ,若∠C =40°,求∠P 和∠BAP 的度数;(2)如图②,连接AP 交⊙O 于点E ,若∠D =∠P ,弧CE =弧AC ,求∠P 和∠BAP 的度数.18. (天津市津南区2020年中考一模数学试题)已知:ABC 内接于O ,AB AC =,P 是ABC 外一点.(Ⅰ)如图①,点P 在O 上,若78BPC ∠=︒,求CAB ∠和ACB ∠的大小;(Ⅱ)如图②,点P 在O 外,BC 是O 的直径,PB 与O 相切于点B ,若55BPC ∠=︒,求PCA ∠的大小.19. (天津市南开区2020年中考二模数学试题)如图1,AB 是O 的直径,弦CD AB ⊥于G ,过C 点的切线与射线DO 相交于点E ,直线DB 与CE 交于点H ,OG BG =,1BH =.(Ⅰ)求O 的半径;(Ⅱ)将射线DO 绕D 点逆时针旋转,得射线DM (如图2),DM 与AB 交于点M ,与O 及切线CF 分别相交于点N ,F ,当GM GD =时,求切线CF 的长.20. (天津市河东区2021-2022学年中考数学一模试题)已知,四边形ABCD 为菱形,点A ,B ,D 在⊙O 上.(Ⅰ)如图①,若CB ,CD 为⊙O 的切线,求∠C 的大小;(Ⅱ)如图②,BC ,CD 与⊙O 分别交于点E ,点F ,连接BF ,若∠BDC =50°,求∠CBF 的度数.21. (天津市滨海新区2020年中考一模数学试题)如图,△ABC 内接于⊙O .(1)如图①,连接OA ,OC ,若28B ∠=︒,求OAC ∠的度数;(2)如图②,直径CD 的延长线与过点A 的切线相交于点P .若60B ∠=︒,⊙O 的半径为2,求AD ,PD 的长.22. (天津市河西区2019年中考二模数学试题)如图,ABC 中,AB AC = ,以AB 为直径的O 与BC 相交于点D ,与CA 的延长线相交于点E ,O 的切线DF 交EC 于点F .(Ⅰ)求DFC ∠的度数;(Ⅱ)若3AC AE =,12BC = ,求O 的直径AB . 23. (天津市河北区2020年中考一模数学试题)已知AB 是⊙O 的直径,C 为⊙O 上一点,∠OAC =58°.(Ⅰ)如图①,过点C 作⊙O 的切线,与BA 的延长线交于点P ,求∠P 的大小;(Ⅱ)如图②,P 为AB 上一点,CP 延长线与⊙O 交于点Q .若AQ =CQ ,求∠APC 的大小.24. (天津市2019年中考数学试题)已知PA ,PB 分别与O 相切于点A ,B ,80APB ︒∠=,C 为O 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.25. (天津市和平区2019届中考模拟数学试题)已知,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,在CD 的延长线上取一点P ,PG 与⊙O 相切于点G ,连接AG 交CD 于点F .(Ⅰ)如图①,若∠A =20°,求∠GFP 和∠AGP 的大小;(Ⅱ)如图②,若E 为半径OA 的中点,DG ∥AB ,且OA =3PF 的长. 26. (天津市西青区2020年二模数学试题)已知⊙O 是ABC ∆的外接圆, 过点A 作⊙O 的切线, 与CO 的延长线交于点P ,CP 与⊙O 交于点D .(1)如图①, 若ABC ∆为等边三角形, 求P ∠的大小;(2)如图②, 连接AD , 若PD AD =, 求ABC ∠的大小.27. (天津市滨海新区2020年中考二模数学试题)如图①,在O 中,AB 为直径,C 为O 上一点,30A ∠︒=,过点C 作O 的切线,与AB 的延长线相交于点P .(Ⅰ)求P∠的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求F∠的大小;②若O的半径为2,求AF的长.参考答案1. 【答案】D【分析】先根据圆的内接正三角形的边长求出圆的半径,再根据正方形的性质求出圆的内接正方形的边长即可.【详解】根据题意画图如下:过点O作OD⊥BC于D,连接OB,BC=3∴BD=CD=12∵△ABC是等边三角形,∴∠ABC=60°,∴∠OBD=30°,∴OD=1OB,2OB)2=BD2,∴OB2-(12解得:OB=2,即圆的半径为2,∴该圆的内接正方形的对角线长为4,设正方形的边长为x,∴x2+x2=42,解得x=2∴该圆的内接正方形的边长为2故选D.2. 【答案】D【分析】由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC﹣∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数.【详解】解:∵MA切⊙O于点A,AC为直径,∴∠MAC=90°,又∠BAC=25°,∴∠MAB=∠MAC﹣∠BAC=65°,∵MA、MB分别切⊙O于点A、B,∴MA=MB,∴∠MAB=∠MBA=65°,∴∠AMB=180°﹣(∠MAB+∠MBA)=50°,故选D.3. 【答案】A【分析】连接AC,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC.∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.4. 【答案】A【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【详解】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.5. 【答案】A【分析】连结BC ,根据直径所对圆周角可得90ACB ∠=︒ ,由同弧所对圆周可求出∠ABC 的度数,利用直角三角形两锐角互余求出∠BAC 的度数即可.【详解】解:连结BC ,∵AB 是O 的直径,90ACB ∴∠=︒,∵∠ABC =∠ADC =75°,909075BAC ABC ∴∠=︒-∠=︒-︒︒=15 ,故选A .6. 【答案】C【分析】由圆内接四边形的对角互补可得∠A =40°,再根据同弧所对的圆心角是圆周角的2倍,即可求出∠BOD 的度数.【详解】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A =180°-∠BCD =180°-140°=40°,∴∠BOD =2∠A =80°,故选C .7. 【答案】C【分析】如图所示,连接OC ,先由BC ⊥OA ,得到∠ADC =∠ODC =90°,1222CD BD BC ===AD =1,设OA OC r ==,则1OD OA AD r =-=-,由勾股定理得到222OD CD OC +=则()(222122r r -+=,由此即可得到答案.【详解】解:如图所示,连接OC ,∵BC ⊥OA ,∴∠ADC =∠ODC =90°,1222CD BD BC === ∴221AD AC CD -=,设OA OC r ==,则1OD OA AD r =-=-,∵222OD CD OC +=,∴()()222122r r -+=, 解得92r =, 故选C .8. 【答案】B【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由35ADC ∠=︒可求出∠AOC =70︒.再由AB 为圆O 的切线,得AB ⊥OA ,由直角三角形的两锐角互余,即可求出∠ABO 的度数,【详解】解:∵AC AC = ,∴223570AOC ADC ∠=∠=⨯︒=︒,∵AB 为圆O 的切线,∴AB ⊥OA ,即∠OAB =90°,∴90907020ABO AOC ∠=︒-∠=︒-︒=︒,故选:B .9. 【答案】C【分析】过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c --,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .10. 【答案】C【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【详解】连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠O AO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B-(S扇形O′OB-S△OO′B)=12×1×3(260?2360π⨯-12×2×3323π.故选C.11. 【答案】10【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案.【详解】解:∵⊙O的半径为10,直线AB与⊙O相切,∴圆心到直线AB的距离等于圆的半径,∴d =10;故答案为:10;12. 【答案】100【分析】设这段弯路的半径是rm ,可得,40,OA r OD r ==- 由垂径定理可得:80,AD = 再由勾股定理建立方程,解方程可得答案.【详解】解:设这段弯路的半径是rm ,40m CD =,则OA=OC=rm ,()40OD r m =-,∵OC ⊥AB , 160m AB = ∴1802AD AB m ==, 在Rt △AOD 中,由勾股定理得:()2228040r r =+-,解得:100r =,则这段弯路的半径是100m .故答案为:100. 13. 【答案】85π##85π 【分析】连接OB ,OD ,根据正多边形内角和公式可求出∠E 、∠A ,根据切线的性质可求出∠OBA 、∠ODE ,从而可求出∠BOD 的度数,根据弧长的公式即可得到结论.【详解】解:连接OB ,OD ,∵五边形ABCDE 是正五边形,∴∠E =∠A =()521801085-⨯︒=︒. ∵AB 、DE 与⊙O 相切,∴∠OBA =∠ODE =90°,∴∠BOD =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴劣弧BD 的长为14428=1805,故答案为:85π. 14. 【答案】20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE ====所以PCD ∆的周长为 101020PC PD CD PC AC DB PD PA PB ++=+++=+=+= 15. 【答案】26cm π【分析】如图,连接OC 、OD 、CD ,OC 交AD 于点E ,由点C ,D 是这个半圆的三等分点可得60AOC COD ∴∠=∠=︒,在同圆中,同弧所对的圆周角是圆心角的一半,即可得出1302CAD COD ∠=∠=︒,再根据OA OC OD ==得,AOC △,COD △都是等边三角形,所以60ACM DOM ∠=∠=︒,AC OC OD ==,可证()ACM DOM AAS ≅,故=COD S S 阴扇形,由扇形的面积公式计算即可.【详解】如图所示,连接OC 、OD 、CD ,OC 交AD 于点E ,点C ,D 是这个半圆的三等分点,180603AOC COD DOB ︒∴∠=∠=∠==︒, 1302CAD COD ∴∠=∠=︒, OA OC OD ==,AOC ∴,COD △都是等边三角形,60ACM DOM ∴∠=∠=︒,AC OC OD ==,在ACM △与DOM △中,AMC DMO ACM DOM AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACM DOM AAS ∴≅,ACM DOM S S ∴=,2260()60362=6(cm )360360COD AB S S πππ⨯⨯⨯⨯∴===阴扇形. 故答案为:26cm π.16. 【答案】(222)【分析】如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM ,通过△OCD ≌△OBE (SAS ),可得OE =OD ,通过旋转观察如图可知当DO ⊥AB 时,DO 最长,此时OE 最长,设DO 与⊙O 交于点M ,连接CM ,先证明△MED ≌△MEB ,得MD =BM .再利用勾股定理计算即可.【详解】解:如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM , ∵四边形BCDE 是正方形,∴∠BCD =∠CBE =90°,CD =BC =BE =DE ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠BCD +∠OCB =∠CBE +∠OBC ,即∠OCD =∠OBE ,∴△OCD ≌△OBE (SAS ),∴OE =OD ,根据旋转的性质,观察图形可知当DO ⊥AB 时,DO 最长,即OE 最长,∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°,∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM ,在△EMD 和△EMB 中, DE BC MED MEB WE WEE =⎧⎪∠=∠⎨⎪=⎩,∴△MED ≌△MEB (SAS ),∴DM =BM 22OM OB +2222+22(cm ),∴OD 的最大值=2+2,即OE 的最大值=2+2;故答案为:(2)cm .17. 【答案】(1)40︒;50︒(2)60︒;30【详解】解:(1)如图①,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∵在⊙O 中,∠C =∠ABD =40°,∴∠BAD =90°﹣∠ABD =50°. ∵PB 是⊙O 的切线,∴AB ⊥PB∴∠ABP =90°.∴∠P =90°﹣∠BAD =40°.(2)如图②,连接CE 交AB 于点F ,∵∠D =∠P ,在⊙O 中,∠D =∠AEC∴∠P =∠AEC .∴CE //BP .∴∠AFE = ∠ABP =90°.∴AB ⊥CE又∵AB 是⊙O 的直径,∴弧AC =弧AE ,弧BC =弧BE .∵弧CE =弧AC∴弧CE =弧AC =弧AE .∴CE =AC =AE .∴△ACE 是等边三角形∴∠CAE =∠ACE = ∠AEC =60°∴∠P = ∠AEC =60°∵弧BC =弧BE∴∠CAB = ∠BAP =12∠CAE =30°18. 【答案】(Ⅰ)102CAB ∠=︒,39ACB ∠=︒;(Ⅱ)80PCA ∠=︒.【分析】(Ⅰ)根据圆内接四边形的性质可得CAB ∠的度数,根据AB AC =可得AB AC =,再根据等腰三角形的定义、三角形的内角和定理即可得ACB ∠的度数;(Ⅱ)先根据圆周角定理得出90CAB ∠=︒,从而可得45ACB ∠=︒,再根据圆的切线的性质得出90PBC ∠=︒,然后根据直角三角形的性质可得35PCB ∠=︒,最后根据角的和差即可得.【详解】(Ⅰ)∵四边形ABPC 是O 的内接四边形,78BPC ∠=︒∴180102CAB BPC ∠=︒-∠=︒∵AB AC =∴AB AC =∴∠=∠ACB ABC102CAB ∠=︒ ∴()1180392ACB CAB ∠=︒-∠=︒; (Ⅱ)∵BC 是O 的直径∴90CAB ∠=︒由(Ⅰ)知,∠=∠ACB ABC∴45ACB ∠=︒ 又PB 与O 相切∴PB BC ⊥,即90PBC ∠=︒55BPC ∠=︒∴9035PCB BPC ∠=︒-∠=︒∴354580PCA PCB ACB ∠=∠+∠=︒+︒=︒即80PCA ∠=︒.19. 【答案】(Ⅰ)2;(Ⅱ)63+【分析】(Ⅰ)由题意连接OC ,结合圆的切线定理和等边三角形性质以及平行线性质和同弧所对的圆心角与圆周角之间的关系进行分析求解;(Ⅱ)根据题意过点F 作PQ DC ⊥.交DC 延长线于点Q ,并设CQ x =,则2CF x =,3QF x =,利用勾股定理建立方程求解进而得出切线CF 的长.【详解】解:(Ⅰ)连接OC ,∵CE 为O 的切线,∴OC CE ⊥∴90OCH ∠=︒∵CD AB ⊥,OG BG =∴OC CB =,又∵OB OC =∴OB OC CB ==∴BOC 为等边三角形∴460OCB ∠=∠=︒∴906030BCH OCH OCB ∠=∠-∠=︒-︒=︒∵OC BC =,CD OB ⊥ ∴113302OCB ∠=∠=∠=︒ 由同弧所对的圆心角与圆周角之间的关系可知:124302∠=∠=︒ ∴23∠∠=∴//DH OC∴90H ∠=︒在Rt BCH 中,90H ∠=︒,30BCH ∠=︒,1BH =∴22BC BH ==∴2OB BC ==即O 的半径为2.(Ⅱ)如图2,过点F 作PQ DC ⊥.交DC 延长线于点Q ,∴90CFQ FCQ ∠+∠=︒,∵OC FC ⊥,∴90OCG FCQ ∠+∠=︒,∴30CFQ OCG ∠=∠=︒,设CQ x =,则2CF x =,3QF x =,∵GM GD =,MG CD ⊥,∴45MDG ∠=︒,∵FQ QD ⊥,∴9045DFQ MDG MDG ∠=︒-∠=︒=∠,∴QF QD QC CD ==+,∵AB CD ⊥,2OC =,1OG GB ==,又∵22222123CD CG ==-= ∴323x x =+ 解得33x = ∴263CF CQ ==+20. 【答案】(Ⅰ)60︒;(Ⅱ)20︒.【分析】(Ⅰ)如图(见解析),先根据圆的切线的性质可得,OB BC OD CD ⊥⊥,再根据四边形的内角和可得180C BOD ∠+∠=︒,然后根据圆周角定理可得2BOD A ∠=∠,最后根据菱形的性质即可得;(Ⅱ)如图(见解析),先根据菱形的性质、等腰三角形的性质可得50CBD ∠=︒,再根据三角形的内角和定理可得80A C ∠=∠=︒,然后根据圆内接四边形的性质可得100BED ∠=︒,又根据三角形的外角性质可得20CDE ∠=︒,最后利用圆周角定理即可得.【详解】(Ⅰ)如图,连接,OB OD ,,CB CD 为O 的切线,,OB BC OD CD ∴⊥⊥,即90OBC ODC ∠=∠=︒,3609090180C BOD ∴∠+∠=︒-︒-︒=︒,由圆周角定理得:2BOD A ∠=∠,2180C A ∴∠+∠=︒, 又四边形ABCD 为菱形,A C ∴∠=∠,2180C C ∴∠+∠=︒,解得60C ∠=°;(Ⅱ)如图,连接DE ,四边形ABCD 为菱形,,A C BC CD ∴∠=∠=,又50BDC ∠=︒,50BDC CBD ∴=∠=∠︒,00881C CB BDC D ∴∠=︒-∠∠=-︒,80A ∴∠=︒,由圆内接四边形的性质得:180100BED A ∠=︒-∠=︒,1008020CDE BED C ∴∠=∠-∠=︒-︒=︒,由圆周角定理得:20CDE CBF ∠∠==︒.21. 【答案】(1)62OAC ∠=︒;(2)2AD =;2PD =【分析】(Ⅰ)由题意根据圆周角定理和∠B=28°,即可求出∠OAC 的度数;(Ⅱ)根据题意连接OA ,再根据切线的性质和圆周角定理可得△AOD 是等边三角形,进而根据特殊角30度即可求出AD ,PD 的长.【详解】解:(Ⅰ)∵∠AOC=2∠ABC ,28B ∠=︒,∴∠AOC=56°.∵OA=OC ,∴∠OAC=∠OCA . ∴18056622OAC ︒-︒∠==︒. (Ⅱ)连接OA .∵PA 与⊙O 相切于点A ,∴PA OA ⊥.∵∠AOC=2∠ABC ,60B ∠=︒,∴∠AOC=120°.∴∠POA=60°又OA OD =,∴AOD △是等边三角形.∴2AD OA ==.∵∠PAO=90°,∴∠P=30°.在Rt PAO △中,24PO OA ==.∴2PD PO OD =-=.22. 【答案】(Ⅰ)90DFC ∠=︒;(Ⅱ)36AB =【分析】(Ⅰ)连接OD .由切线的性质可知OD ⊥DF .再由AC=AB ,OB=OD 可证明∠ODB=∠C ,从而可证明OD ∥AC ,再由平行线的性质可证明DF ⊥AC ; (Ⅱ)连结BE ,根据直径所对的圆周角为直角得出90AEB =︒∠,设AE k =,根据已知用k 表示出AB 、EC,然后根据勾股定理列出关于k 的方程求解即可.【详解】解:(Ⅰ)连接OD ,∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴ODB C ∠=∠,∴OD AC ,∵DF 是O 的切线∴OD DF ⊥,∴DF AC ⊥,∴90DFC ODF ∠=∠=︒;(Ⅱ)连接BE∵AB 是直径,∴90AEB =︒∠,∵AB AC =,3AC AE = ,∴3AB AE =,4CE AE = ,设AE k =,则3AB k =,3AB AC k ==,4EC k = ,∴在Rt ABE △中,22228BE AB AE k =-=,在Rt BEC △中,222BE EC BC +=.∵12BC =,∴22281612k k +=,∴26k =∴6k (负舍),∴直径336AB AE ==.23. 【答案】(I )∠P =26°;(II )∠APC =48°.【分析】(I )根据等腰三角形中有一底角为58度时,可得∠COA =64°,根据切线的性质得出∠OCP =90°,进而求得∠P 的度数;(II )先由(I )知∠AOC =64°,根据圆周角定理得∠Q =12∠AOC =32°,根据等腰三角形的性质和三角形内角和定理得∠QAC =∠QCA =74°,最后由三角形外角的性质可得结论.【详解】(I )如图①,∵OA =OC ,∠OAC =58°,∴∠OCA =58°∴∠COA =180°﹣2×58°=64°∵PC 是⊙O 的切线,∴∠OCP =90°,∴∠P =90°﹣64°=26°;(II )∵∠AOC =64°,∴∠Q =12∠AOC =32°, ∵AQ =CQ ,∴∠QAC =∠QCA =74°,∵∠OCA =58°,∴∠PCO =74°﹣58°=16°,∵∠AOC =∠QCO +∠APC ,∴∠APC =64°﹣16°=48°.24. 【答案】(Ⅰ)50ACB ︒∠=;(Ⅱ)20EAC ︒∠=.【分析】(Ⅰ)连接OA 、OB ,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE ,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【详解】解:(Ⅰ)如图,连接OAOB ,. ∵PA PB ,是O 的切线,∴OA PA ⊥,OB PB ⊥.即90OAP OBP ︒∠=∠=.∵80APB ︒∠=,∴在四边形OAPB 中,360100AOB OAP OBP APB ︒︒∠=-∠-∠-∠=.∵在O 中,12ACB AOB ∠=∠, ∴50ACB ︒∠=.(Ⅱ)如图,连接CE .∵AE 为O 的直径,∴90ACE ︒∠=.由(Ⅰ)知,50ACB ︒∠=,∴40BCE ACE ACB ︒∠=∠-∠=.∴40BAE BCE ︒∠=∠=.∵在ABD ∆中,AB AD =, ∴1(180)702ADB ABD BAE ︒︒∠=∠=-∠=. 又ADB ∠是ADC ∆的一个外角,有EAC ADB ACB ∠=∠-∠,∴20EAC ︒∠=.25. 【答案】(Ⅰ)∠GFP =70°,∠AGP =70°;(Ⅱ)PF =4.【分析】(Ⅰ)连接OG ,在Rt △AEF 中,∠A =20°,可得∠GFP =∠EFA =70°,因为OA =OG ,所以∠OGA =∠A =20°,因为PG 与⊙O 相切于点G ,得∠OGP =90°,可得∠AGP =90°﹣20°=70°.;(Ⅱ)如图,连结BG ,OG ,OD ,AD ,证明△OAD 为等边三角形,得∠AOD =60°,所以∠AGD =30°,因为DG ∥AB ,所以∠BAG =∠AGD =30°,在Rt △AGB 中可求得AG =6,在Rt △AEF 中可求得AF =2,再证明△GFP 为等边三角形,所以PF =FG =AG ﹣AF =6﹣2=4.【详解】解:(Ⅰ)连接OG ,∵CD ⊥AB 于E ,∴∠AEF =90°,∵∠A =20°,∴∠EFA =90°﹣∠A =90°﹣20°=70°,∴∠GFP =∠EFA =70°,∵OA =OG ,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∠AOD=30°,∴∠AGD=12∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=3∴∠AGB=90°,AB=3∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.26. 【答案】(1)30︒;(2)60︒【分析】(1)连接AO ,根据ABC ∆为等边三角形得到60ABC ∠=,根据圆周角定理得到2120AOC ABC ∠=∠=,进而求得60AOP ∠=,再由切线的性质的PAO 90∠=,然后根据三角形内角和得到结果.(2))连接AO ,由已知条件证的2∠=∠OAD PAD ,根据切线的性质推出30PAD ∠=,进而求得答案.【详解】(1)连接AOABC ∆∴为等边三角形;60ABC ∴∠=;2120AOC ABC ∴∠=∠=;180AOC AOP ∴∠+∠=;60AOP ∴∠=; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90P AOP ∴∠+∠=;90906030P AOP ∴∠=-∠=-=;(2)连接AOPD AD =;P PAD ∴∠=∠;OA OD =;ADO OAD ∴∠=∠;2ADO P PAD PAD ∠=∠+∠=∠;2OAD PAD ∴∠=∠; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90PAD OAD ∴∠+∠=;290PAD PAD ∴∠+∠=;30PAD ∴∠=;260ADO PAD ∴∠=∠=;即ADC 60∠=;60ABC ADC ∴∠=∠=;27. 【答案】(Ⅰ)30P ∠=︒;(Ⅱ)①30F ∠=︒;②43AF =【分析】(Ⅰ)如图①中,连接OC .利用切线的性质解决问题即可; (Ⅱ)①证明OC ∥BF ,即可解决问题;②证明△OBC 是等边三角形,利用勾股定理即可解决问题.【详解】(Ⅰ)如图,连接OC .∵O 与PC 相切于点C ,∴OC PC ⊥,即90OCP ∠=︒,∵30A ∠=︒,∴260BOC A ∠=∠=︒,在Rt OPC △中,90POC P ∠+∠=︒ ,∴906030P ∠=︒-︒=︒;(Ⅱ)①由(I )得90OCP ∠=︒,又∵BF PC ⊥,即90PEB ∠=︒∴//OC BF∴30F ACO A ∠=∠=∠=︒;②由①F A ∠=∠,∴AB BF =,连接BC ,∵AB 是直径,∴90BCA ∠=︒,即BC AF ⊥,=∴AC CF∵60=,BOC∠=︒,OC OB∴OBC是等边三角形,∴2BC OC==,∴2222-=-=4223 AC AB BC∴43AF=。
2023年春学期沪科版九年级数学下册第二十四章【圆】检测卷附答案解析
2023年春学期九年级数学下册第二十四章【圆】检测卷一、单选题1.北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是()A .B .C .D .2.如图,在正方形网格中,点A ,B ,C ,D ,O 都在格点上.下列说法正确的是()A .点O 是ABC 的内心B .点O 是ABC 的外心C .点O 是ABD 的内心D .点O 是ABD 的外心3.如图,BC 为直径,35ABC ∠=︒,则D ∠的度数为()A .35︒B .45︒C .55︒D .65︒4.如图,若O 的半径为5,圆心O 到一条直线的距离为2,则这条直线可能是()A .1lB .2l C .3l D .4l 5.底面半径为3,高为4的圆锥侧面积为()A .15πB .20πC .25πD .30π6.如图,圆的两条弦AB ,CD 相交于点E ,且 AD CB=,∠A =40°,则∠DEB 的度数为()A .50°B .100°C .70°D .80°7.下列条件中,不能确定一个圆的是()A .圆心与半径B .直径C .平面上的三个已知点D .三角形的三个顶点8.若一个正n 边形的每个内角为144°,则这个正n 边形的边数为()A .8B .9C .10D .119.如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A .4B .32C .2D .1010.如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,且∠BCD =30°,CD =3部分的面积S 阴影=()A .2πB .83πC .43πD .38π二、填空题11.正十边形的中心角等于度.12.若O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与O 的位置关系是.13.若一个正多边形的一个外角等于36°,则这个正多边形的边数是.14.如图,在边长为4的等边△ABC 中,以B 为圆心、BA 为半径画弧,再以AB 为直径画半圆,则阴影部分的面积为.三、计算题15.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB .若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).16.计算高为4cm ,底面半径为3cm 的圆锥的体积.(圆锥的体积=13×底面积×高,π取3)四、解答题17.如图扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30cm ,贴纸部分BD 长为20cm ,求贴纸部分的面积.18.在一个3m×4m 的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.19.如图,已知O ,A 是 BC的中点,过点A 作AD BC .求证:AD 与O 相切.20.如图,AB 是O 的直径,弦CD AB ⊥于点E ,若8AB =,6CD =,求OE 的长.21.已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12BC.22.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.五、综合题23.如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,作直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.答案解析部分1.【答案】D【解析】【解答】解:A 、不是中心对称图形,是轴对称图形,故该选项不符合题意;B 、是中心对称图形,不是轴对称图形,故该选项不符合题意;C 、不是中心对称图形,是轴对称图形,故该选项不符合题意;D 、既不是中心对称图形,也不是轴对称图形,故该选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此一一判断得出答案.2.【答案】D【解析】【解答】解:根据点A ,B ,C ,D ,O 都在正方形网格的格点上.可知:点O 到点A ,B ,D 的三点的距离相等,所以点O 是△ABD 的外心.故答案为:D.【分析】根据图形可得点O 到点A 、B 、D 的距离相等,然后结合外心的概念进行判断.3.【答案】C【解析】【解答】解:∵CB 是直径,∴∠BAC=90°,∵∠ABC=35°,∴∠ACB=90°-35°=55°,∴∠D=∠C=55°,故答案为:C .【分析】先利用圆周角的性质和三角形的内角和求出∠ACB=90°-35°=55°,再利用圆周角的性质可得∠D=∠C=55°。
【单元练】九年级数学上册第二十四章《圆》知识点总结(1)
一、选择题1.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个B 解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .14D 解析:D【分析】连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r ,所以阴影部分面积是圆的面积的14 【详解】解:如图,连接OC、OD,设O半径为r,∵直径//MN AD,AD∥BC∴MN∥BC,根据三角形面积公式得:S△DON=S△AON,S△CON=S△BON,∴S阴影部分=S扇形COD,∵四边形ABCD是正方形∴∠COD=90°,∴S扇形=290360rπ︒︒=214rπ,∵圆的面积为2rπ∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.3.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.102解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.4.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.22+1 B.22+2 C.42+1 D.42-2A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,BC=,点C为坐标平面内一点,2∴在B上,且半径为2,COD OA,连接CD,取4AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,4OB OD ,90BOD ∠=︒,42BD ∴=, 422CD ,1142222122OM CD , 即OM 的最大值为221+;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒B解析:B【分析】 连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.6.如图△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,则AD的度数为()A.28°B.56 °C.62°D.112°B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD ,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD 的度数为56°;故选:B .【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .43C 解析:C【分析】连接PC ,PA ,过点P 作PD ⊥AB 于点D ,根据切线的性质可知PC ⊥y 轴,故可得出四边形PDOC 是矩形,所以PD=OC=3,再求出AB 的长,由垂径定理可得出AD 的长,故可得出OD 的长,进而得出P 点坐标,再把P 点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC ,PA ,过点P 作PD ⊥AB 于点D ,∵⊙P 与y 轴相切于点C (0,3),∴PC ⊥y 轴,∴四边形PDOC 是矩形,∴PD=OC=3,∵A (1,0),B (7,0),∴AB=7-1=6,∴AD=12AB=12×6=3, ∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77πA解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.10.下列说法中,正确的是()A.三点确定一个圆B.在同圆或等圆中,相等的弦所对的圆周角相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的圆心角所对的弦相等D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题11.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键.12.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.125【分析】根据题意先求出∠ABE=∠BAE=55°然后由等腰三角形的定义和三角形的内角和定理求出∠C=625°即可求出的度数【详解】解:根据题意∵在圆中有∴∴∴在△ABE 中∴在等腰△ABC 中则∴解析:125【分析】根据题意,先求出∠ABE=∠BAE=55°,然后由等腰三角形的定义和三角形的内角和定理,求出∠C=62.5°,即可求出AOB ∠的度数.【详解】解:根据题意,∵在圆中,有AC BD AB ==,∴AC BD =,∴AD BC =,∴ABD BAC ∠=∠,在△ABE 中,70AEB ∠=︒, ∴1(18070)552ABD BAC ∠=∠=⨯︒-︒=︒, 在等腰△ABC 中,AC AB =则1(18055)62.52C ∠=⨯︒-︒=︒, ∴2125AOB C ∠=∠=︒;故答案为:125.【点睛】本题考查了圆内接四边形的性质,圆周角定理,三角形的内角和定理,等腰三角形的定义,解题的关键是熟练掌握所学的知识,正确的进行解题.13.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =--=∴P 的坐标是(3,33, 故答案为:(3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO交弦AB 于D,若△OBD是直角三角形,则弦BC的长为______________.或【分析】如图1当∠DOB=90°时推出△BOC是等腰直角三角形于是得到BC=;如图2当∠ODB=90°时推出△ABC是等边三角形解直角三角形得到BC=AB=【详解】如图1当∠DOB=90°时∴∠B解析:52或53【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到BC=252OB=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴BC=252OB=⊥如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴ △ABC 是等边三角形∴ ∠DBO=30°∵ OB=5∴ 35322BD OB == ∴ BC=AB=53. 综上所述:若△OBD 是直角三角形,则弦BC 的长为52或53.故答案为:52或53. 【点睛】 本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.16.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心,1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 17.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.【分析】首先连接OAOB由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB的长【详解】解:连接OAOB∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴解析:22【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【详解】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴2222+=AB OA OB故答案为:2【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm,弧长是12πcm2,那么这个圆锥的高是________cm.参考答案8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【解析:8【分析】设圆锥的底面半径为r,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r,然后利用勾股定理计算出圆锥的高.解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;(2n ﹣10)【分析】根据题意先求出点AB 的坐标再利用勾股定理求出AA1AA2AA3……AAn 的长可得到点A1A2A3……An 的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n ﹣1,0)【分析】根据题意,先求出点A 、B 的坐标,再利用勾股定理求出AA 1、AA 2、AA 3……AA n 的长,可得到点A 1、A 2、A 3……A n 的坐标,找到规律即可解答.【详解】解:当x=0时,3y=0时,x=﹣1,∴A(﹣1,0),B(03,∴AA 122(01)(3)2++=,则点A 1(1,0),B 1(1,3,∴AA 2=AB 122(11)(23)4++=,则点A 2(3,0),B 2(3,3,∴AA 3=AB 222(31)(43)8++=,则点A 3(7,0),B 3(7,3,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cm OA OB AB===∴== OAB ∴是等边三角形,601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.三、解答题21.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G在BC上,点O在线段AB上,且AO BO≥.以OF为半径的O与直线AB交于点M、N.(1)如图1,若点O为AB中点,且点D,点C都在O上,求正方形BEFG的边长.(2)如图2,若点C在O上,求证:以线段OE和EF为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D在O上,求证:DO FO⊥.解析:(1)12;(2)见解析;12;(3)证明见解析【分析】(1)连接OC,设BE=EF=x,则OE=x+12,得出(x+12)2+x2=(12)2+12,解得:x=12,则答案求出;(2)连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,得出x2+(x+y)2=y2+12,即x(x+y)=12,则结论可得证;(3)连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,可得出12+a2=(1-a+b)2+b2,得出a=b,则OA=EF,证明Rt△AOD≌Rt△EFO(HL),则得出∠FOE=∠ODA,结论得出.【详解】解:(1)连接OC∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=12AB=12,设BE=EF=x,则OE=x+12,在Rt△OEF中,∵OE2+EF2=OF2,∴(x+12)2+x2=OF2,在Rt△OBC中,∵OB2+BC2=OC2,∴(12)2+12=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴(x+12)2+x2=(12)2+12,解得:x=12,∴正方形BEFG的边长为12;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=12,即x(x+y)=12,∴EF×OE=12,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为12.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,∵∠DAO=∠OEF=90°,∴DA 2+OA 2=OD 2,OE 2+EF 2=OF 2,∴12+a 2=OD 2,(1-a+b )2+b 2=OF 2,∵OD=OF ,∴12+a 2=(1-a+b )2+b 2,∴(b+1)(a-b )=0,∵b+1≠0,∴a-b=0,∴a=b ,∴OA=EF ,在Rt △AOD 和Rt △EFO 中,OD OF OA EF ⎧⎨⎩==, ∴Rt △AOD ≌Rt △EFO (HL ),∴∠FOE=∠ODA ,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO ⊥FO .【点睛】本题是圆的综合题,考查了圆的性质,正方形的性质,全等三角形的判定与性质,矩形的面积等知识,熟练运用方程的思想是解题的关键.22.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线;(2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离. 解析:(1)证明见解析;(2)217 【分析】(1)连接CE ,由AC 是⊙O 的直径,得出CE ⊥AE ,由P 为BC 的中点,可得EP=BP=CP ,可得∠PEC=∠PCE , 再由∠ACB=90°,即可得到结论.(2)设P 点到直线AD 的距离为d ,根据三角形的面积得到PD AC d AD= ①由勾股定理得63BC =,根据平行线的性质得到∠OPC=∠B=30°,推出OEA △为等边三角形,得到∠EOA=60°,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得即可得到结论.【详解】 证明:(1)连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC=90°.∴∠BEC=90°.∵点P 为BC 的中点,∴EP=BP=CP .∴∠PEC=∠PCE .∵OE=OC ,∴∠OEC=∠OCE .∵∠PCE+∠OCE=∠ACB=90°,∴∠PEC+∠OEC=∠OEP=90°.E 在O 上,∴EP 是⊙O 的切线;(2)解:设P 点到直线AD 的距离为d ,连接,AP OP , 则有:1122PAD S AD d PD AC ==,∴PD ACd AD = ①∵⊙O 的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得:3BC =∴33PC =∵O ,P 分别是AC ,BC 的中点,∴//OP AB ,∴∠OPC=∠B=30°,∵OE=OA ,∠OAE=60°,∴OEA △为等边三角形,∴∠EOA=60°,∴∠ODC=90°-∠COD=90°-∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD ,∵OC ⊥PD , ∴33CD PC ==,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得: 6361221737PD AC d AD ⨯===. 【点睛】本题考查了圆周角定理,切线的判定,勾股定理,等腰三角形,等边三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,含30的直角三角形的性质,等面积法,掌握以上知识是解题的关键.23.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =NE =3.(1)求证:BC 是⊙O 的切线;(2)若AE =4,求⊙O 的直径AB 的长度.解析:(1)见解析;(2)AB =254. 【分析】(1)先由垂径定理得AB ⊥MN ,再由平行线的性质得BC ⊥AB ,然后由切线的判定定理即可得到BC 是⊙O 的切线;(2)连接OM ,设⊙O 的半径是r ,在Rt △OEM 中,根据勾股定理得到r 2=32+(4-r )2,解方程即可得到⊙O 的半径,即可得出答案.【详解】(1)证明:∵ME =NE =3,∴AB ⊥MN ,又∵MN ∥BC ,∴BC⊥AB,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=25 8,∴AB=2r=254.【点睛】本题考查了切线的判定定理、垂径定理和勾股定理等知识;熟练掌握切线的判定和垂径定理是解题的关键.24.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,∠C=90°,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F 与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,−1),D(2,0),求⊙F的半径;(3)请直接写出线段AG、AD、CD三者之间满足的数量关系:___________________.解析:(1)见解析;(2)52;(3)AG=AD+2CD.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可;(3)作FR ⊥AD 于R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)证明:连接EF ,∵AE 平分∠BAC ,∴∠FAE=∠CAE ,∵FA=FE ,∴∠FAE=∠FEA ,∴∠FEA=∠EAC ,∴FE ∥AC ,∴∠FEB=∠C=90°,即BC 是⊙F 的切线;(2)解:连接FD ,∵A(0,−1),D(2,0),∴OA=1,OD=2.在Rt △FOD 中,∵222OF OD DF += 设⊙F 的半径为r ,∴r 2=(r-1)2+22,解得,r=52,即⊙F 的半径为52; (3)解:AG=AD+2CD .证明:作FR ⊥AD 于R ,则∠FRC=90°,又∵BC 是⊙F 的切线;∴∠FEC=∠C=∠FRC=90°,∴四边形RCEF 是矩形,∴EF=RC=RD+CD ,∵FR ⊥AD ,AF=FD,∴AR=RD , ∴EF=RD+CD=12AD+CD , ∴AG=2FE=AD+2CD .【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握相关知识是解题的关键.25.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.解析:(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.26.如图,在33⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).(1)在图1中,圆过格点A ,B ,请作出圆心O ;(2)在图2中,⊙O 的两条弦AB CD =,请作一个45圆周角.解析:(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.27.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .解析:见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD =,∴CD = AB ,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立. 28.如图,一条公路的转弯处是一段圆弧CD ,点O 是CD 的圆心,E 为 CD 上一点,OE ⊥CD ,垂足为F .已知CD=300m ,EF=50m ,求这段弯路的半径.解析:这段弯路的半径为250米.【分析】设这段弯路的半径为R 米,可得50OFOE EF R .由垂径定理得 11300150()22CF CD m .由勾股定理可得222OC CF OF =+,解得 R 的值.【详解】解:连接OC .设这段弯路的半径为R 米则50OF OE EF ROE CD ⊥ 11300150()22CF CD m .根据勾股定理,得222OC CF OF =+即()22215050R R =+-R解之,得250所以这段弯路的半径为250米.【点睛】本题考查了垂径定理及勾股定理的应用,熟悉相关性质是解题的关键.。
第二十四章 圆 2022-2023学年九年级数学上册精选精练(人教版)
第24章 圆一、单选题1.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( ) A .1个B .2个C .3个D .4个2.如图,⊙O 的半径为5cm ,直线l 到点O 的距离OM =3cm ,点A 在l 上,AM =3.8cm ,则点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .以上都有可能3.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,以点C 为圆心,3为半径的圆与AB 所在直线的位置关系是( )A .相交B .相离C .相切D .无法判断4.如图,在由边长为1的7个正六边形组成的网格中,点A ,B 在格点上.若再选择一个格点C ,使△ABC 是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C 的个数是( )A .2B .4C .5D .65.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠BCD =( )A .105°B .110°C .115°D .120°6.已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是( )A .2πB .π﹣2C .1+2π D .1﹣2π 7.已知⊙O 的半径为4,点O 到直线m 的距离为d ,若直线m 与⊙O 公共点的个数为2个,则d 可取( ) A .5B .4.5C .4D .08.如图,在△ABC 中,90ACB ∠=,点D 是AB 的中点,将△ACD 沿CD 对折得△A ′CD .连接BA ',连接AA ′交CD 于点E ,若14cm AB =,4cm BA '=,则CE 的长为( )A .4cmB .5cmC .6cmD .7cm9.如图以CD 为直径的⊙O 中,弦AB ⊥CD 于M .AB =16,CM =16.则MD 的长为( )A .2B .4C .6D .810.如图,点O 是△ABC 的内心,若∠A =70°,则∠BOC 的度数是( )A .120°B .125°C .130°D .135°二、填空题11.如图,O 的直径AB 与弦CD 相交于点P ,且45APC ∠=︒,若2232PC PD +=,则O 的半径为______.12.某圆的周长是12.56米,那么它的半径是______________,面积是__________. 13.如图,将三角形AOC 绕点O 顺时针旋转120°得三角形BOD ,已知OA =4,OC =1,那么图中阴影部分的面积为_____.(结果保留π)14.如图,⊙O 的直径AB =26,弦CD ⊥AB ,垂足为E ,OE :BE =5:8,则CD 的长为______.15.如图,AC BC ⊥,2AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作BA ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是________.16.如图,△ABC 内接于☉O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为_____17.已知点A 、B 、C 、D 在圆O 上,且FD 切圆O 于点D ,OE CD ⊥于点E ,对于下列说法:①圆上AbB 是优弧;②圆上AbD 是优弧;③线段AC 是弦;④CAD ∠和ADF ∠都是圆周角;⑤COA ∠是圆心角,其中正确的说法是________.三、解答题18.如图,AB 是O 的直径,弦CD AB ⊥于点E .若8AB =,1AE =,求弦CD .19.如图,AB 是O 的直径,弦CD AB ⊥于点E ,点M 在O 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O 的直径; (2)若M D ∠=∠,求D ∠的度数.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.21.已知:如图,△ABC中,AB=AC,AB>BC.∠BAC.求作:线段BD,使得点D在线段AC上,且∠CBD=12作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∴∠CPB=1∠BAC.()(填推理的依据)2∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=1∠BAC.222.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在AB上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=2AE.请说明理由;(3)如图②,若点E在AB上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.23.在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,1O的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心1O,求AB长;(2)如图2,2O C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过2O C的中点D,AB=,求O的半径.10cm参考答案:1.A【分析】根据圆心角、弧、弦之间的关系解答即可. 【详解】①若AB CD =,则AB CD =,正确; ②若AB CD =,则AB CD =,故不正确;③由2AB CD =不能得到弧AB=2弧CD ,故不正确; ④若2AOB COD ∠=∠,则2AB CD =,错误. 故选A.【点睛】本题考查了圆心角、弧、弦之间的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.也考查了等腰三角形的性质. 2.A【详解】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA=223 3.823.445+=<.∴点A 与⊙O 的位置关系是:点A 在⊙O 内. 故选A .3.A【分析】过点C 作CD ⊥AB 于点D ,由题意易得AB=5,然后可得125CD =,进而根据直线与圆的位置关系可求解.【详解】解:过点C 作CD ⊥AB 于点D ,如图所示:∵90C ∠=︒,4AC =,3BC =,∴225AB AC BC=+=,根据等积法可得AC BC AB CD⋅=⋅,∴125 CD=,∵以点C为圆心,3为半径的圆,∴该圆的半径为3,∵1235 >,∴圆与AB所在的直线的位置关系为相交,故选A.【点睛】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.4.D【分析】分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°时,分别画出符合条件的图形,即可解答.【详解】解:分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°如图符合条件的格点C的个数是6个故选:D.【点睛】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90°等知识,是基础考点,掌握相关知识是解题关键.5.C【分析】连接AC,然后根据圆内接四边形的性质,可以得到∠ADC的度数,再根据点D是弧AC的中点,可以得到∠DCA的度数,直径所对的圆周角是90°,从而可以求得∠BCD的度数.【详解】解:连接AC,∵∠ABC=50°,四边形ABCD是圆内接四边形,∴∠ADC=130°,∵点D是弧AC的中点,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直径,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故选:C.【点睛】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答.6.B【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=29021222 3602ππ⨯-⨯⨯=-.故选:B.【点睛】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.7.D【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个∴直线与圆相交∴d<半径=4故选D.【点睛】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.8.B【分析】由折叠性质得AA′⊥CD,AD= A′D,根据直角三角形斜边上的中线性质可证得CD=AD=BD= A′D,可证得A、C、A′、B共圆且AB为直径,利用垂径定理的推论和三角形A′B,进而可求解CE的长.的中位线性质证得DE=12【详解】解:由折叠性质得AA′⊥CD,AD= A′D,∵90∠=,点D是AB的中点,ACB∴CD=AD=BD= A′D=1AB,2∴A、C、A′、B共圆且AB为直径,又A A′⊥CD,∴AE= A′E,又AD=BD,∴DE是△AB A′的中位线,A′B,∴DE=12∵14cmAB=,4cmBA'=,∴CD=7cm,DE=2cm,∴CE=CD-DE=7-2=5cm,故选B.【点睛】本题考查直角三角形斜边上的中线性质、三角形的中位线性质、折叠性质、垂径定理的推论,熟练掌握相关知识的联系与运用是解答的关键.9.B【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,根据垂径定理得到AM=BM=8,再根据勾股定理得到82+(16-r)2=r2,解方程求出r=10,然后计算CD-CM即可.【详解】解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,∵AB⊥CD,∴AM=BM=12AB=8,在Rt△AOM中,82+(16-r)2=r2,解得r=10,∴MD=CD-CM=20-16=4.故选:B.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.10.B【分析】利用内心的性质得∠OBC=12∠ABC,∠OCB=12∠ACB,再根据三角形内角和计算出∠OBC +∠OCB =55°,然后再利用三角形内角和计算∠BOC 的度数.【详解】解:∵O 是△ABC 的内心,∴OB 平分∠ABC ,OC 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12(∠ABC +∠ACB )=12(180°﹣∠A )=12(180°﹣70°)=55°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣55°=125°.故选:B .【点睛】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.4【分析】过点O 作,OE CD ⊥ 连接,OC 根据垂径定理可得,CE DE =根据45APC ∠=︒,得到,EP OE =对式子2232PC PD +=进行变换,即可求出半径. 【详解】解:设O 的半径为R过点O 作,OE CD ⊥ 连接,OC,CE DE ∴=45APC ∠=︒,,EP OE ∴=()()2222,PC PD CE EP DE EP +=++-222222,CE CE EP EP DE DE EP EP =+⋅++-⋅+2222,CE EP =+ ()222,CE EP =+ ()222,CE OE =+ ∴2232,R =解得: 4.R =故答案为:4【点睛】此题考查垂径定理,等腰直角三角形的性质等,把式子2232PC PD +=进行变形是解题的关键.12. 2米 12.56平方米【分析】根据周长公式=2r C π转化为r=2C π,将C=12.56代入进行计算得到半径,继续利用面积公式2=S r π,代入半径的值求出面积的结果.【详解】因为C=2πr ,所以r=2C π=12.563.142⨯=2,所以r=2(米), 因为S=πr 2 =3.14×22=12.56(平方米).故答案为:2米 12.56平方米.【点睛】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键.13.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.14.24【分析】连接OC ,由题意得OE =5,BE =8,再由垂径定理得CE =DE ,∠OEC =90°,然后由勾股定理求出CE =12,即可求解.【详解】解:连接OC ,如图所示:∵直径AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE2222135OC OE--,∴CD=2CE=24,故答案为:24.【点睛】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键.15.53 12π【分析】连接CE,如图,利用平行线的性质得∠COE=∠EOB=90°,再利用勾股定理计算出OE3∠OCE=60°,然后根据扇形面积公式,利用S阴影部分=S扇形BCE−S△OCE−S扇形BOD进行计算即可.【详解】解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE22213-=,cos∠OCE=12,∴∠OCE=60°,∴S阴影部分=S扇形BCE−S△OCE−S扇形BOD=226021901133602360ππ⋅⋅⋅⋅-⨯⨯-=53122π-,故答案为53 122π-.【点睛】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.16.2【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=22222222OA OC+=+=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=12222⨯=,故答案为2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键. 17.①②③⑤【分析】根据优弧的定义,弦的定义,圆周角的定义,圆心角的定义逐项分析判断即可【详解】解:AbB,AbD都是大于半圆的弧,故①②正确,,A C在圆上,则线段AC是弦;故③正确;C A D都在圆上,,,∴CAD∠是圆周角而F点不在圆上,则ADF∠不是圆周角故④不正确;O是圆心,,C A在圆上∴COA∠是圆心角故⑤正确故正确的有:①②③⑤故答案为:①②③⑤【点睛】本题考查了优弧的定义,弦的定义,圆周角的定义,圆心角的定义,理解定义是解题的关键.优弧是大于半圆的弧,任意圆上两点的连线是弦,顶点在圆上,并且两边都和圆相交的角叫做圆周角,顶点在圆心,并且两边都和圆相交的角叫做圆心角.18.【分析】连接OC,如图,根据垂径定理得到CE=DE,然后利用勾股定理计算出CE,从而得到CD的长.【详解】解:连接OC,如图,∵AB为直径,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,,∴CD=2CE=【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.19.(1)20;(2)30°【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数.【详解】解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴222(4)8r r =-+,解得:10r =,∴⊙O 的直径是20.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M D ∠=∠,∴∠B =∠D ,∴2∠D +∠D =90°,∴∠D =30°;【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.20.(1)证明见解析;(2)35°【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【点睛】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.21.(1)见解析;(2)圆周角定理;CPB∠,圆周角定理的推论【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到12CPB BAC∠=∠,再利用等腰三角形的性质得到CBD CPB∠=∠,从而得到12CBD BAC ∠=∠.【详解】解:(1)如图,BD为所作;(2)证明:连接PC ,如图,AB AC =,∴点C 在A 上.点P 在A 上, 12CPB BAC ∴∠=∠(圆周角定理), BC PC =,CBD CPB ∴∠=∠(圆周角定理的推论)12CBD BAC ∴∠=∠. 故答案为:圆周角定理;CPB ∠;圆周角定理的推论.【点睛】本题考查了作图-复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.(1)证明见解析;(2)理由见解析;(3)DE=7,CE=2【分析】(1)根据正方形的性质,得AB=AD ;根据圆周角的性质,得ABE ADE ∠=∠,结合DF=BE ,即可完成证明;(2)由(1)结论得AF=AE ,∠=∠DAF BAE ;结合∠BAD=90°,得∠EAF=90°,从而得到△EAF 是等腰直角三角形,即2;最后结合DE-DF=EF ,从而得到答案;(3)连接BD ,将△CBE 绕点C 顺时针旋转90°至△CDH ;结合题意,得∠CBE+∠CDE=180°,从而得到E ,D ,H 三点共线;根据BC=CD ,得BC CD =,从而推导得∠BEC=∠DEC=45°,即△CEH 是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案.【详解】(1)如图,1ADE ∠=∠,2ABE ∠=∠,3DAF ∠=∠,4BAE ∠=∠在正方形ABCD 中,AB=AD在△ADF 和△ABE 中12AB AD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS );(2)由(1)结论得:△ADF ≌△ABE∴AF=AE ,∠3=∠4正方形ABCD 中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF 是等腰直角三角形∴EF 2=AE 2+AF 2∴EF 2=2AE 2∴EF=2AE 即DE-DF=2AE∴DE-BE=2AE ;(3)连接BD ,将△CBE 绕点C 顺时针旋转90°至△CDH∵四边形BCDE 内接于圆∴∠CBE+∠CDE=180°∴E ,D ,H 三点共线在正方形ABCD 中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴BC CD =∴∠BEC=∠DEC=45°∴△CEH 是等腰直角三角形在Rt △BCD 中,由勾股定理得在Rt △BDE 中,由勾股定理得:7在Rt △CEH 中,由勾股定理得:EH 2=CE 2+CH 2∴(ED+DH )2=2CE 2,即(ED+BE )2=2CE 2∴64=2CE 2∴【点睛】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解.23.(1)(2)【分析】(1)如图1,作1O M AB ⊥交AB 于N ,交1O 于M ,连接1AO ,由题意知,1142cm 2O N MN ==⨯=,12AN BN AB ==,在1Rt AO N 中,由勾股定理得AN =AN 的值,进而可求AB 的值;(2)如图2,延长2O C 交2O 于E ,连接2AO ,设半径为r ,由题意知15cm 2AC CB AB ===,由折叠和中点的性质可知213O D DC CE r ===,在2Rt AO C 中,由勾股定理得22221AC AO O C =-,即222253r r ⎛⎫=- ⎪⎝⎭,求出满足要求的解即可. (1)解:如图1,作1O M AB ⊥交AB 于N ,交1O 于M ,连接1AO由题意知,1142cm 2O N MN ==⨯=,12AN BN AB ==在1Rt AO N 中,由勾股定理得221123AN AO O N =-=∴43AB =∴AB 的长为43cm .(2)解:如图2,延长2O C 交2O 于E ,连接2AO ,设半径为r 由题意知15cm 2AC CB AB ===,由折叠和中点的性质可知213O D DC CE r ===,在2Rt AO C 中,由勾股定理得22221AC AO O C =-,即222253r r ⎛⎫=- ⎪⎝⎭解得:35r =35r =-(不合题意,舍去)∴半径的长为35cm .【点睛】本题考查了垂径定理,折叠的性质,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.。
2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)
2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。
性质:不在同一条直线上的三个点确定一个圆。
2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)
第二十四章圆单元检测题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( )A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形2.已知☉O的半径为6,圆心O到直线l的距离为7,则直线l与☉O的位置关系是( )A.相离B.相交C.相切D.无法确定3.(2023自贡)如图所示,△ABC内接于☉O,CD是☉O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )第3题图A.41°B.45°C.49°D.59°4.圆锥的底面圆的半径r=3,高h=4,则圆锥的侧面积是( )A.10πB.15πC.30πD.45π5.如图所示,☉O的直径为10,弦AB的长为6,P为弦AB上的动点,则线段OP的取值范围是( )第5题图A.3<OP<5B.3≤OP≤5C.4<OP<5D.4≤OP≤56.如图所示,四边形ABCD内接于☉O,F是CD上一点,且DF=BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图所示,☉O是△ABC的外接圆,∠BAC=60°,若☉O的半径OC为2,则弦BC的长为( )第7题图A.4B.23C.338.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )2 B.22-22 D.2-29.(2022娄底改编)如图所示,等边三角形内切圆中的黑色部分和白色部分关于等边三角形ABC 的内心成中心对称,则圆中的黑色部分的面积与△ABC 的面积之比是( )第9题图3π18 B.3183π9 D.3910.(2022广大附中一模)如图所示,点A,B 的坐标分别为A(2,0), B(0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )2+1 B.2+12C.22+1D.22-12二、填空题:本大题共5小题,每小题3分,共15分.11.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设 .12.如图所示,C为AB的中点,CN⊥OB于点N,CD⊥OA于点M,CD=4 cm,则CN= cm.13.已知圆心角为120°的扇形的面积为12π cm2,则扇形的弧长是 cm.14.如图所示,☉O的半径为1,PA,PB是☉O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为 .第14题图15.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示),让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得AB的中点C到AB的距离CD=1.6 cm,AB=6.4 cm,则求得圆形瓦片所在圆的半径为 cm.第15题图三、解答题(一):本大题3小题,第16题10分,第17,18题各7分,共24分.16.(1)(2022湘潭节选)如图所示,在☉O中,直径AB与弦CD相交于点E,连接AC,BD,AD.若AD=3,∠C=30°,求☉O的半径.(2)如图所示,扇形OAB的圆心角为120°,半径OA为6 cm.若把扇形纸片OAB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.17.如图所示,四边形ABCD内接于☉O,AB=AD,∠C=110°,若点E在AD 上,求∠E的度数.18.(2022珠海一模改编)如图所示,已知AB是☉O的直径,直线CD是☉O的切线,过点A作AD⊥CD,垂足为D,直线CD与AB的延长线交于点E.当AB=2BE,且CE=3时,求AD的长.四、解答题(二):本大题3小题,每小题9分,共27分.19.(原创)综合与实践素材:一张三角形纸板.操作:如图(1)所示,将一块三角形纸板ABC,准备裁剪成一个面积最大的圆形,已知∠C=90°,BC=3,AC=4.如图(2)所示,作△ABC的内切圆☉O,切点分别为D,E,G,连接OG,OD,OE.解决问题:请求出裁剪出的最大圆形面积.20.(2022眉山改编)如图所示,AB为☉O的直径,点C是☉O上一点,CD 与☉O相切于点C,过点B作BD⊥DC,连接AC,BC.(1)求证:BC平分∠ABD;(2)若BC=23,AB=4,求阴影部分的面积.21.(2022新疆节选)如图所示,☉O是△ABC的外接圆,AB是☉O的直径,点D在☉O上,AC=CD,连接AD,延长DB交过点C的切线于点E.求证:(1)∠ABC=∠CAD;(2)BE⊥CE.五、解答题(三):本大题2小题,每小题12分,共24分.22.(2022金华)综合探究如图(1)所示,正五边形ABCDE内接于☉O,阅读以下作图过程,并回答下列问题:作法如图(2)所示.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与☉O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN是正三角形吗?请说明理由;(3)从点A开始,以DN长为半径,在☉O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.23.(2022宁波)综合运用如图(1)所示,☉O为锐角三角形ABC的外接圆,点D在BC上,AD交BC 于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连接BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD;(2)求证:△BDE≌△FDG;(3)如图(2)所示,若AD为☉O的直径,当AB的长为2时,求AC的长.答案:一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.A 10.B二、填空题11.∠B≥90° 12.2 13.4π 14.33 15.4三、解答题(一)16.(1)解:∵∠C=∠B,∠C=30°,∴∠B=30°.∵AB是☉O的直径,AD=3,∴∠ADB=90°.∴AB=6.∴☉O的半径为3.(2)如图所示,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH=OC2-H C2=42(cm).17.解:如图所示,连接BD,∵∠C+∠BAD=180°,∠C=110°,∴∠BAD=180°-110°=70°.∵AB=AD,∴∠ABD=∠ADB.×(180°-70°)=55°.∴∠ABD=12∵四边形ABDE是☉O的内接四边形,∴∠E+∠ABD=180°.∴∠E=180°-55°=125°.18.解:如图所示,连接OC,∵直线CD为☉O的切线,∴∠OCE=90°.∵AB=2BO,AB=2BE,∴BO=BE=CO.设BO=BE=CO=x,∴OE=2x.在Rt△OCE中,根据勾股定理,得OC2+CE2=OE2,即x2+(3)2=(2x)2.∴x=1.∴AE=3,∠E=30°.∴AD=32.四、解答题(二)19.解:∵∠C=90°,BC=3,AC=4,OG=OE=OD,∴AB=32+42=5.∴S △ABC =12AC×BC=12AC×OG+12BC×OE+12AB×OD=12OG×C △ABC ,即12AC×BC=12OG×C △ABC .∴12×3×4=12×OG×(3+4+5),解得OG=1,∴裁剪出的最大圆形面积为π×12=π.20.(1)证明:连接OC,如图所示,∵CD 与☉O 相切于点C,OC 为半径,∴OC ⊥CD.∵BD ⊥CD,∴OC ∥BD.∴∠OCB=∠DBC.∵OC=OB,∴∠OCB=∠OBC.∴∠DBC=∠OBC.∴BC 平分∠ABD.(2)解:如图所示,作CE ⊥AO 于点E,∵AB是直径,AB=4,∴∠ACB=90°,OA=OC=2.在Rt△ABC中,AC=AB2-B C2=42-(23)2=2,∴AO=CO=AC=2.∴△AOC是等边三角形.∴∠AOC=60°.∵CE⊥OA,∴OE=12OA=1.∴CE=3.∴阴影部分的面积S=60×π×22360-12×2×3=2π3-3.21.证明:(1)∵AC=CD,∴∠CAD=∠ADC.∵∠ABC=∠ADC,∴∠ABC=∠CAD.(2)如图所示,连接OC,∵CE与☉O相切于点C,∴∠OCE=90°.∵四边形ADBC是圆内接四边形,∴∠CAD+∠DBC=180°.∵∠DBC+∠CBE=180°,∴∠CAD=∠CBE.∵∠ABC=∠CAD,∴∠CBE=∠ABC.∵OB=OC,∴∠OCB=∠ABC.∴∠OCB=∠CBE.∴OC∥BE.∴∠E=180°-∠OCE=90°.∴BE⊥CE.五、解答题(三)22.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5-2)×180°=108°,5即∠ABC=108°.(2)△AMN是正三角形.理由如下:如图所示,连接ON,NF,由题意,得FN=ON=OF,∴△FON是等边三角形.∴∠NFA=60°.∴NMA=60°.同理,得∠ANM=60°,∴∠MAN=60°.∴△MAN是正三角形.(3)∵∠AMN=60°,∴∠AON=120°.×2=144°,∵∠AOD=360°5∴∠NOD=∠AOD-∠AON=144°-120°=24°.∵360°÷24°=15,∴n的值是15.23.(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,.∴∠BFD=90°-α2,(2)证明:由(1),得∠BFD=90°-α2∵∠ADB=∠ACB=α,.∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴∠BFD=∠FBD.∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.在△BDE 和△FDG 中,{DB =DF ,∠DBE =∠DFG ,BE =FG ,∴△BDE ≌△FDG(SAS).(3)解:∵△BDE ≌△FDG,∴∠FDG=∠BDE=α,DE=DG.∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2.∴∠DBG=180°-∠BDG-∠DGE=90°-3α2.∵AD 是☉O 的直径,∴∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2.∴AC 与AB 所对的圆心角度数之比为3∶2.∴AC 与AB 的长度之比为3∶2.∵AB =2,∴AC =3.。
人教版九年级数学上册《第二十四章圆》单元检测卷带答案
人教版九年级数学上册《第二十四章圆》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知点A为⊙O内的一点,且⊙O的半径为5cm,则线段OA的长度可能是()A.3cm B.5cm C.6cm D.7cm⌢的中点,半径OC交弦AB于点D,已知OC=5,AB=8,则CD的长为()2.如图,在⊙O中,点C为ABA.2B.√5C.√7D.33.如图,点A、B、C在⊙O上∠ACB=55°,则∠ABO的度数是()A.30°B.35°C.40°D.55°4.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=15°,则∠C的度数是()A.45°B.65°C.60°D.70°5.如图,点O是△ABC内切圆的圆心,已知∠ABC=50°,∠ACB=80°,则∠BOC的度数是()A.100°B.115°C.125°D.130°6.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若∠BEC=20°,则∠ADC的度数为()A.100°B.110°C.120°D.130°7.如图,过正六边形内切圆圆心的两条直线夹角为60°,圆的半径为√3,则图中阴影部分面积之和为()A.π−√3B.π−23√3C.√3−23πD.√3−12π8.如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则BC⌢的长为()A.6πB.2πC.32πD.π二、填空题9.如图,AB是⊙O的直径,弦CD⊥AB交于点E,若OE=4,CE=3,则⊙O的半径为.10.如图,四边形ABCD内接于⊙O,点M在AD的延长线上∠CDM=71°,则∠AOC=.11.如图,AB是⊙O的直径,DE切⊙O于点E,BD⊥DE于点D,交⊙O于点C.若AB=5,BC=3,则CD=.12.如图,在正八边形ABCDEFGH中,连接AC、AE,则∠CAE的度数是.13.如图:一把折扇的骨架长是 30 厘米,扇面宽为 20 厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.三、解答题14.如图,在△ABC中AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求AD⏜的长.15.如图,AB是⊙O的直径,C是BD⏜的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.16.如图,在△ABC中BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD;(2)求证:DE为⊙O的切线.17.如图,水平放置的圆柱形排水管的截面半径为12cm,截面中有水部分弓形的高为6cm.(1)求截面中弦AB的长;(2)求截面中有水部分弓形的面积.18.如图,直角三角形ABC中,∠C=90°,点E为AB上一点,以AE为直径的⊙O上一点D在BC上,且AD平分∠BAC.(1)证明:BC是⊙O的切线;(2)若BD=4,BE=2,求AB的长.参考答案1.A2.A3.B4.C5.B6.B7.D8.D9.510.142°11.112.45°13.187.5π14.(1)证明:如图,连接AE.∵AB是圆O的直径∴∠AEB=90°即AE⊥BC.又∵AB=AC∴AE是边BC上的中线∴BE=CE;(2)解:∵AB=6∴OA=3.又∵OA=OD,∠BAC=54°∴∠AOD=180°−2×54°=72°∴AD⏜的长为:72×π×3180=6π5.15.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∴∠A=90°-∠ABC.∵CE⊥AB∴∠ECB=90°-∠ABC∴∠ECB=∠A.又∵C是BD⌢的中点∴CD⌢=BC⌢∴∠DBC=∠A∴∠ECB=∠DBC∴CF= BF ;(2)解:∵BC⌢=CD ⌢ ∴BC=CD=6.在Rt △ABC 中,AB= √BC 2+AC 2=√62+82=10 ∴⊙O 的半径为5;∵S △ABC = 12AB ×CE= 12BC ×AC∴CE= BC×AC AB =6×810=245.16.(1)证明:∵AB 为直径∴∠ADB =90° ∵BA =BC ∴AD =CD ;(2)证明:连接OD ,如图∵AD =CD ,AO =OB∴OD 为△BAC 的中位线∴OD ∥BC ∴DE ⊥BC ∴OD ⊥DE ∴DE 为⊙O 的切线.17.(1)解:如图:作OC ⊥AB 交⊙O 于D ,连结OB∴OB=12cm.∵O是圆心OC⊥AB∴AB=2BC∵CD=6cm∴OC=OD−CD=12−6=6(cm)∴BC=√OB2−OC2=√122−62=6√3(cm)∴AB=2BC=12√3cm.即弦AB长12√3cm.(2)解:连结OA∵OC⊥AB,OB=2OC∴∠BOC=60°∴∠AOB=120°∴S弓形=120360π×122−12×12√3×6=48π−36√3(cm2).即截面中有水部分弓形的面积为(48π−36√3)cm2.18.(1)证明:连接ODAD平分∠BAC ∴∠1=∠2∵OA=OD ∴∠2=∠3 ∴∠1=∠3∴AC//OD∵∠C=90°∴∠ODE=90°,即OD⊥BC ∵OD是半径∴BC是⊙O的切线(2)解:设OD=OE=r在Rt△ODB中,BD=4,BE=2,故OB=r+2由勾股定理,得:r2+42=(r+2)2解之,得:r=3故OD=OA=OE=3,AB=6+2=8.。
2022年人教版数学九年级第24章圆单元试卷及参考答案(一)
第二十四章圆单元检测一.填空题1.如图,AB 是⊙O 的直径,假设AB =4㎝,∠D =30°,那么AC =㎝.2.⊙O 的直径AB 为2cm,那么以AB 为底,第三个顶点在圆周上的三角形中,面积最大的三角形的面积等于㎝2.3. 如图,ΔABC 是⊙O 的内接三角形,BC =4cm, ∠A =30°,那么ΔOBC 的面积为cm 2.4.矩形ABCD 中,AB =6cm ,AD =8cm ,假设以A 为圆心作圆,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,那么⊙A 的半径r 的取值范围是.5.如图,∠AOB =30°,M 为OB 边上一点,以M 为圆心、2cm 为半径作⊙M . 假设点M 在OB 边上运动,那么当OM =cm 时,⊙M 与OA 相切.6.两圆相切,圆心距为5,其中一个圆的半径为4,那么另一个圆的半径为.7.在半径为10 cm 的圆中,72°的圆心角所对的弧长为cm.8. 将一个弧长为12πcm, 半径为10cm 的扇形铁皮围成一个圆锥形容器(不计接缝), 那么这个圆锥形容器的高为_____cm.9.假设圆锥侧面积是底面积的2倍,那么这个圆锥的侧面展开图的圆心角是 . 10.如图,圆柱体底面圆的半径为π2,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线,假设一只小虫从A 点出发,从侧面爬行到C 点,那么小虫爬行的最短的路线的长度是 (结果保存根式). 二.选择题11.⊙O 的半径为2cm,弦AB 的长为23,那么这条弦的中点到弦所对优弧的中点的距离为〔 〕A.1cmB.3cmC.(2+2)cmD.(2+3 )cm12.如图,A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,那么∠A +∠B +∠C =〔 〕度. A .30 B .45 C .60 D .9013.⊿ABC 中,∠C =90°,AB =5,BC =4,以A 为圆心,以3为半径,那么点C 与⊙A 的位置关系为〔 〕A.点C 在⊙A 内B.点C 在⊙A 上C.点C 在⊙A 外D.点C 在⊙A 上或点C 在⊙A 外 14.设⊙O 的半径为r ,圆心O 到直线L 的距离为d ,假设直线L 与⊙O 有交点,那么d 与r 的关系为〔 〕A.d =rB.d <rC.d >rD.d ≤rABCDO (第1题)OBAM5题图OCAB3题图第10题 第10题OAEB D12题图15.以点P 〔1,2〕为圆心,r 为半径画圆,与坐标轴恰好有三个交点,那么r 应满足〔 〕 A. r =2或5B. r =2 C.r =5D. 2≤r ≤516.如图中的正方形的边长都相等,其中阴影局部面积相等的图形的个数是〔 〕 A .1个 B .2个 C .3个 D .4个17.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚〔如图〕,那么B 点从开始至结束所走过的路径长度为〔 〕 A.23πB.34π C.4 D.2+23π18.如图,半径为2的两个等圆⊙O 1与⊙O 2外切于点P ,过O 1作⊙O 2的两条切线,切点分别为A 、B ,与⊙O 1分别交于C 、D ,那么APB 与CPD 的弧长之和为〔〕A.π2B.π2C.πD.π2119.现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面〔接缝忽略不计〕,那么该圆锥底面圆的半径为〔 〕 A .4cmB .3cmC .2cmD .1cm20.两个等圆⊙O 1和⊙O 2相交于A ,B 两点,且⊙O 1经过点O 2,那么四边形O 1AO 2B 是〔〕 A 、两个邻边不相等的平行四边形B 、菱形C 、矩形D 、正方形 三、解答题21.如图,⊙O是△ABC 的外接圆,AB 为直径,AC =CF ,CD ⊥AB 于D ,且交⊙O 于G ,AF 交CD 于E . 〔1〕求∠ACB 的度数;〔2〕求证:AE =CE ; 22.如图,点A 是一个半径为300m 村庄,现要在B ,C 两村庄之间修一条长为1000m =45°,∠ACB =30°,问此公路是否会穿过该森林公园?并通过计算进行说明.23.如图,AB 是⊙O 的直径,CB 、CE 分别切⊙O 于点B 、D ,CE与BA 的延长线交于点E ,连结OC 、OD . 〔1〕求证:△OBC ≌△ODC ; 〔2〕DE =a ,AE =b ,BC =c ,请你思考后,选用以上适当的数,设计出计算⊙O 半径r 的一种方案:①你选用的数是; ① 写出求解过程.〔结果用字母表示〕 24.:如图,∠MAN =30°,O 为边AN 上一点,以O 为圆心、(第18题图)17题图A B 第24题图〔1〕第24题图〔2〕2为半径作⊙O ,交AN 于D 、E 两点,设AD =x , ⑴.如图⑴当x 取何值时,⊙O 与AM 相切;⑵.如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°. 25.如图中〔1〕、〔2〕、…〔m 〕分别是边长均大于2的三角形、四边形、…、凸n以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧……、n 条弧. ⑴图⑴中3条弧的弧长的和为_________;⑵中4条弧的弧长的和为___________; ⑵求图(m )中n 条弧的弧长的和 (用n 表示). 26.在一次科学探究实验中,小明将半径为5cm 的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形. (1)取一漏斗,上部的圆锥形内壁〔忽略漏斗管口处〕的母线OB 长为6cm ,开口圆的直径为6cm.当滤纸片重叠局部三层,且每层为14圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴此漏斗的内壁〔忽略漏斗管口处〕,请你用所学的数学知识说明;(2)假设有一特殊规格的漏斗,其母线长为6cm ,开口圆的直径为7.2cm ,现将同样大小的滤纸围成重叠局部为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠局部每层的面积为多少?第二十四章 单元检测答案一.填空题129993 4.π0°2二.选择题 三.解答题21.〔1〕90° 〔2〕略 A 作AD ⊥BC 交BC 于D .求得AD =500〔3-1〕>300,所以此公路不会穿过该森林公园.23.〔1〕略 〔2〕答案不唯一.现提供两例:一 .①a 和b ②r =bb a 222- 二. ①a 、b 、c ②r =abc 24.(1)x =2 (2)x =22-225.(1)π;2π (2)(n-2)π26. (1) 通过计算得知滤纸围成的漏斗与真正的漏斗“展开〞圆心角都是180°,所以能.(2)5π 备注:已发表于07--08学年《学苑新报》第25期 第二套一、选择题:〔本大题10个小题,每题4分,共40分〕每题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。
【5套打包】徐州市初三九年级数学上(人教版)第24章圆单元检测试卷(解析版)
人教版九年级数学上册第二十四章圆单元测试题(含答案)一、选择题 ( 每题 4 分,共 32 分 )1.用反证法证明时,假定结论“点在圆外”不建立,那么点与圆的地点关系只好是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内2.如图 1, AB为⊙ O的直径, CD是⊙ O的弦,∠ ADC= 35°,则∠ CAB的度数为 ()图 1A. 35°B. 45°C. 55°D. 65°3.已知圆锥的底面积为9π cm2,母线长为 6 cm,则圆锥的侧面积是 ()A. 18π cm2B. 27π cm2C. 18 cm2D. 27 cm 24.一元钱硬币的直径约为24 mm,则用它能完整覆遮住的正六边形的边长最大不可以超过()A. 12 mm B. 12 3 mmC. 6 mm D. 6 3 mm5.如图 2,半圆的直径 BC恰与等腰直角三角形ABC的一条直角边完整重合,若 BC= 4,则图中暗影部分的面积是 ()图 2A. 2+πB. 2+ 2π C . 4+πD. 2+ 4π6.如图 3,四边形 ABCD内接于⊙ O,点 I 是△ ABC的心里,∠ AIC= 124°,点 E 在 AD的延伸线上,则∠CDE的度数为 ()图 3A. 56°B. 62°C. 68°D. 78°7.如图 4,已知⊙ O 的半径为5,弦 AB, CD所对的圆心角分别是∠AOB,∠ COD,若∠AOB与∠ COD互补,弦 CD= 6,则弦 AB 的长为 ()图 4A. 6B. 8C.5 2D.5 3︵︵︵8.如图 5,在⊙ O中, AB 是⊙ O的直径, AB= 10, AC= CD= DB,点 E 是点 D 对于 AB的对称点, M是 AB上的一动点,有以下结论:①∠ BOE= 60°;②∠ CED=1∠ DOB;③ DM⊥CE; 2④CM+ DM的最小值是10. 上述结论中正确的个数是()图 5A. 1B. 2C. 3D. 4二、填空题 ( 每题 5分,共 35分 )9.已知正方形 ABCD的边长为1,以点 A 为圆心, 2 为半径作⊙ A,则点 C在 ________( 填“圆内”“圆外”或“圆上”) .10.如图 6 所示,一个宽为2 厘米的刻度尺 ( 刻度单位:厘米 ) 放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰巧是 3 和9,那么玻璃杯的杯口外沿的半径为________厘米.图 6︵11.如图 7, PA,PB分别切⊙ O于 A,B 两点, C 是 AB上的一点,∠ P=40°,则∠ ACB的度数为 ________.图 712.如图 8,在△ ABC中, AB= AC= 10,以 AB为直径的⊙ O与 BC交于点 D,与 AC交于点 E,连结 OD交 BE于点 M,且 MD= 2,则 BE的长为 ________.图 813.如图 9,△ABC是正三角形,曲线 CDEF叫做正三角形的渐开线,此中弧 CD、弧 DE、弧 EF 的圆心挨次是 A, B, C,假如 AB=1,那么曲线 CDEF的长为 ________.图 9CAB= 30°, BC= 2,O, H分别为边AB, AC 14.如图10,Rt △ABC中,∠ ACB= 90°,∠B 顺时针旋转120°到△A1BC1的地点,则整个旋转过程中线段OH所的中点,将△ABC绕点扫过部分的面积( 即暗影部分面积) 为 ________.图 1015.如图 11,给定一个半径为 2 的圆,圆心O 到水平直线l 的距离为d,即 OM= d. 我们把圆上到直线l 的距离等于 1 的点的个数记为m.如 d=0 时,l 为经过圆心O的一条直线,此时圆上有四个到直线l 的距离等于 1 的点,即m= 4,由此可知:图 11(1)当 d= 3 时, m= ________;(2)当 m= 2 时, d 的取值范围是________.三、解答题 ( 共 33 分)16. (10 分 ) 如图 12, AN是⊙ M的直径, NB∥x 轴, AB交⊙ M于点 C.(1)若点 A(0 , 6) , N(0 ,2) ,∠ ABN= 30°,求点 B 的坐标;(2)若 D 为线段 NB的中点,求证:直线 CD是⊙ M的切线.图 1217. (10 分) 已知 AB 是⊙ O的直径, AT 是⊙ O的切线,∠ ABT= 50°, BT 交⊙ O于点 C,E 是 AB上一点,连结 CE交并延伸⊙ O于点 D.(1) 如图 13①,求∠ T 和∠ CDB的大小;(2)如图 13②,当 BE= BC时,求∠ CDO的大小.图 1318.(13 分 ) 如图 14,AB是⊙ O的直径, BC是⊙ O的弦,半径OD⊥ BC,垂足为 E,若 BC =6 3,DE= 3. 求:(1)⊙O的半径;(2)弦 AC的长;(3)暗影部分的面积.图 141.D 2.C 3.A4.A5.A 6.C 7.B 8.C9.圆上1310. 411 . 110°12. 813. 4π14.π[15. (1)1(2)1 < d< 316.解: (1) ∵ A(0 , 6) ,N(0 , 2) ,∴ AN=4.∵∠ ABN= 30°,∠ ANB=90°,∴AB=2AN= 8,∴由勾股定理,得NB=223 ,∴ B(43,2) .AB- AN=4(2)证明:连结 MC, NC,如图.∵ AN是⊙ M的直径,∴∠ ACN= 90°,∴∠ NCB= 90° .在 Rt△ NCB中,∵ D 为 NB的中点,1∴CD=2NB= ND,∴∠ CND=∠ NCD.∵MC=MN,∴∠ MCN=∠ MNC.又∵∠ MNC+∠ CND= 90°,∴∠ MCN+∠ NCD= 90°,即 MC⊥ CD.∴直线 CD是⊙ M的切线.17.解: (1) 如图①,连结AC,∵AB是⊙O的直径,AT 是⊙O的切线,∴ AT⊥AB,即∠ TAB= 90° .∵∠ ABT= 50°,∴∠ T= 90°-∠ ABT= 40° .∵AB是⊙O的直径,∴∠ ACB= 90°,∴∠ CAB= 90°-∠ ABT=40°,∴∠ CDB=∠ CAB= 40° .(2)如图②,连结 AD,在△ BCE中, BE= BC,∠ EBC= 50°,∴∠ BCE=∠ BEC= 65°,∴∠ BAD=∠ BCD= 65° .∵OA=OD,∴∠ ODA=∠ OAD= 65°.∵∠ ADC=∠ ABC= 50°,∴∠ CDO=∠ ODA-∠ ADC= 15° .18.解: (1) ∵半径 OD⊥BC,∴ CE= BE.∵BC= 6人教版九年级上册第二十四章圆单元检测(含答案)一、单项选择题()1.以下命题中,不正确的选项是A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对2.如图, AB 是如图, AB 是⊙ O 的直径, AB=2,点 C 在⊙ O 上,∠ CAB=30°, D 为弧 BC的中点,点P 是直径 AB 上一动点,则PC+PD的最小值是()A.1B.2C.3D.53.如图,⊙P 与y 轴相切于点C(0, 3),与x 轴订交于点A(1, 0), B(9,0).直线y=kx-3 恰巧均分⊙P 的面积,那么k 的值是()6A.51B.25C.6D. 24.已知⊙ O 的直径为 10,圆心A.4B. 6 5.如图,⊙ O 的半径为4,点O 到弦 AB 的距离 OM 为 3,则弦 AB 的长是()C.7D.8A 为⊙ O 上一点,OD⊥弦 BC于 D,假如∠ BAC=60°,那么OD 的长是()A.4B. 23C. 2D.36.以下命题:①长度相等的弧是等弧② 半圆既包含圆弧又包含直径③ 相等的圆心角所对的弦相等④ 外心在三角形的一条边上的三角形是直角三角形此中正确的命题共有()A.0 个B.1 个C.2 个D.3 个7.如图,AB, CD 是⊙ O 的直径,若∠AOC=55°,则的度数为()A.55 °8.如图,B.110 °C.125 °C、 D 为半圆上三均分点,则以下说法:①AD= CDD.135 °= BC;② ∠ AOD=∠ DOC=∠ BOC;③AD= CD= OC;④ △AOD 沿 OD 翻折与△COD重合.正确的有()A.4 个9.如图,B.3 个A、D 是⊙ O 上的两个点,若∠C.2 个ADC= 33°,则∠D.1 个ACO的大小为()A.57°B. 66°C. 67°D. 44°10.⊙ O 的半径为5cm ,点 A 到圆心O 的距离 OA=3cm,则点 A 与圆 O 的地点关系为()A.点 A 在圆上B.点 A 在圆内C.点 A 在圆外D.没法确立11.如图, P 为⊙ O 外一点, PA、 PB 分别切⊙ O 于点 A、 B, CD切⊙ O 于点 E,分别交 PA、PB 于点 C、 D,若 PA= 6,则△PCD的周长为()A.8B.6C.12D.1012.边长为 2 的正方形内接于⊙O,则⊙O 的半径是()A.1B.2C.2D.22二、填空题13.一个正多边形的每一个内角都为144 ,则正多边形的中心角是_____,它是正 ______边形 .14.如图,半圆的直径点C 在半圆上,BAC=30,则暗影部分的面积为 _____AB=6,(结果保存).15.如图,正六边形ABCDEF内接于⊙ O,边长 AB= 2,则扇形AOB的面积为 _____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.三、解答题17.如图,在⊙ O 中,已知∠ ACB=∠ CDB=60°, AC=3,求△ABC 的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为 16 米,拱高( CD)为 4 米,求:(1)桥拱半径.(2)若大雨事后,桥下河面宽度(EF)为 12 米,求水面涨高了多少?19.如图, AB 为⊙ O 的直径, C 为⊙ O 上一点, D 为 BC 的中点.过点 D 作直线 AC的垂线,垂足为 E,连结 OD.(1)求证:∠ A=∠ DOB;(2) DE 与⊙ O 有如何的地点关系?请说明原因.20.已知:如图,⊙O 是 Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm, BC=9cm,求⊙O 的半径r;(2)若AC=b, BC=a,AB=c,求⊙O 的半径r.O, BE 是⊙ O 的直径,连结BF,延伸BA,过 F 作FG 21.如图,正六边形ABCDEF内接于⊙⊥BA,垂足为G.(1)求证:FG是⊙ O 的切线;(2)已知FG= 2 3 ,求图中暗影部分的面积.22.已知△ABC中, a、 b、c 分别为∠ A、∠ B、∠ C 的对边,方程ax2bx c0 是对于x 的一元二次方程.(1)判断方程ax2bx c0 的根的状况为(填序号);① 方程有两个相等的实数根;② 方程有两个不相等的实数根;③ 方程无实数根;④ 没法判断(2)如图,若△ABC 内接于半径为 2 的⊙ O,直径 BD⊥ AC 于点 E,且∠ DAC=60°,求方程ax 2bx c0 的根;1 c 是方程ax2bx c 0的一个根,△ABC的三边a、b、c的长均为整数,试(3)若x4求 a、 b、 c 的值.答案1.D2.B3.A4.D5.C6.B7.C8.A9.A10. B11. C12. B13.36十14.3934215..316. 417.∠ A=∠ BDC,而∠ ACB=∠ CDB=60°,∠ A=∠ ACB=60°.△ABC为等边三角形 .AC=3,△ABC的周长为 9.18.( 1)∵拱桥的跨度AB=16m,∴ AD=8m,由于拱高CD=4m,利用勾股定理可得:222 AO-( OC-CD)=8 ,解得 OA=10( m).因此桥拱半径为10m;(2)设河水上升到EF 地点(如下图),这时 EF=12m, EF∥ AB,有 OC⊥ EF(垂足为 M),∴EM= 1EF=6m,2连结 OE,则有 OE=10m,222 2 2OM =OE -EM =10 -6 =64,因此 OM=8 ( m) OD=OC-CD=10-4=6( m), OM-OD=8-6=2( m).即水面涨高了2m .19.( 1)证明:连结OC,∵D 为BC的中点,∴CD =BD,∴∠ DOB=1∠ BOC,2∵∠ A=1∠ BOC,2∴∠ A=∠ DOB;(2) DE 与⊙ O 相切,原因:∵∠ A=∠ DOB,∴AE∥ OD,∵DE⊥AE,∴OD⊥DE,∴DE 与⊙ O 相切.20.( 1)如图人教版九年级数学上册第二十四章圆单元测试(含答案)一、单项选择题1.以下命题:① 直径相等的两个圆是等圆;② 等弧是长度相等的弧;③ 圆中最长的弦是经过圆心的弦;④ 一条弦把圆分为两条弧,这两条弧不行能是等弧.此中真命题是 () A.①③B.①③④C.①②③D.②④2.如图, AB 是⊙ O 的直径,弦 CD⊥ AB,垂足为 P.若 CD=AP=8 ,则⊙ O 的直径为()A.10B. 8C. 5D. 33.如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面AB 宽为()A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如下图,已知 EF CD 4 ,则球的半径长是()A.2B. 2.5C. 3D. 45.如图,C、 D 为半圆上三均分点,则以下说法:①AD= CD= BC;②∠ AOD=∠ DOC =∠ BOC;③AD= CD= OC;④ △AOD 沿 OD 翻折与△COD重合.正确的有()A.4 个B.3 个C.2 个D.1 个6.以下各角中,是圆心角的是()A. B. C. D.7.如图,点 A、B、C、D 在⊙ O 上,∠ AOC= 120 °,点 B 是弧 AC 的中点,则∠ D 的度数是 ()A.60°8.如图,一块直角三角板B. 35°ABC的斜边C. 30.5 °D. 30°AB 与量角器的直径恰巧重合,点D对应的刻度是60°,则∠ ACD的度数为()A.60°B. 30°C. 120 °D. 45°9.已知⊙ O 的半径是 4, OP=3,则点 P 与⊙ O 的地点关系是()A.点 P 在圆内B.点 P 在圆上C.点 P 在圆外D.不可以确立10.如图, AB 是⊙ O 的直径,BC是⊙ O 的切线,若 OC=AB,则∠ C 的度数为()A.15°B. 30°C. 45°D. 60°11.如图,在平行四边形ABCD中,∠ A= 2∠ B,⊙ C 的半径为 3,则图中暗影部分的面积是()A.πB. 2πC. 3πD. 6π12.如图,已知在⊙O 中, AB=4, AF=6, AC 是直径,AC⊥ BD 于F,图中暗影部分的面积是()A. B. C.D.AB 的中点为圆心,OA 的长为13.如图,在Rt△ABC 中,∠ ABC=90°, AB=2 3 ,BC=2,以半径作半圆交AC 于点D,则图中暗影部分的面积为()5353C.2 3D.4 3A. B.42224二、填空题14.已知扇形的弧长为2,圆心角为60°,则它的半径为________.15.如图,在⊙ O 中,已知∠ AOB= 120 °,则∠ ACB= ________.16.如图,在O 中,直径 AB 4 ,弦CD AB 于E,若 A 30 ,则CD____ 17.如图,在O 中,AOB 120 ,P为劣弧AB上的一点,则APB 的度数是_______.三、解答题18.如图,在△ABC中,已知∠ ACB=130°,∠ BAC=20°, BC=2,以点 C 为圆心, CB为半径的圆交 AB 于点 D,求弦 BD 的长19.如图,在Rt△ABC 中,∠ C=90°,以 BC 为直径的⊙ O 交 AB 于点D,过点 D 作∠ADE=∠ A,交AC 于点E.(1)求证: DE 是⊙ O 的切线;(2)若BC 3,求 DE 的长.AC 420.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(6)一、选择题 (每题 3 分,共 30 分)1.以下说法中不正确的选项是()A.圆是轴对称图形B.三点确立一个圆C.半径相等的两个圆是等圆D.每个圆都有无数条对称轴2.若⊙O的面积为25π,在同一平面内有一个点P,且点 P 到圆心 O 的距离为4.9,则点 P 与⊙ O 的地点关系为 ()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.没法确立3.如图,⊙O 是△ABC的外接圆,∠BOC=120°,则∠ BAC的度数是 () A. 70°B.60°C.50°D. 30°(第3题)(第4题)(第5题)(第6题)4.如下图,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为点N,则ON=()A.5B.7C.9D.115.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A 的半径长为 3,⊙ D 与⊙ A 订交,且点 B 在⊙ D 外,那么⊙ D 的半径长 r的取值范围是 ()A. 1< r<4B.2<r<4C.1<r< 8D. 2< r<8.如图,四边形内接于⊙,是︵︵︵上一点,且 DF=BC,连结 CF并延伸6ABCD O F CD交 AD 的延伸线于点 E,连结 AC.若∠ ABC=105°,∠ BAC=25°,则∠ E 的度数为()A. 45°B.50°C.55°D. 60°.如图,⊙的边相切于点,,,点︵上一点,则∠ P 7O 与矩形 ABCD E F G P 是EFG 的度数是 ()A. 45°B.60°C.30°D.没法确立8.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角极点C 逆时针旋转 60°得△A′B′C,则点 B 转过的路径长为 ()π3π2πA.3B. 3C. 3D.π(第 7 题)(第 8 题)(第 10题)9.若圆锥的侧面积等于其底面积的 3 倍,则该圆锥侧面睁开图所对应扇形圆心角的度数为 ()A. 60°B.90°C.120°D. 180°10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形 A1B1C1D1E1F1的各边相切,正六边形 A3B3C3D3 E3F3的外接圆与正六边形 A2B2C2D2E2F2的各边相切按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为()24381381813A.9B.9C. 9D.28222二、填空题 (每题 3 分,共 30 分)11.如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠ D 的度数是 ________.(第 11 题)(第 12 题)(第 13 题)(第 14 题)︵12.如图,PA,PB是⊙O的切线,切点分别为A,B,若OA=2,∠P=60°,则AB 的长为 ________.︵︵13.如图,⊙O中,AB=AC,∠BAC=50°,则∠AEC的度数为________.14.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC =110°.连结 AC,则∠ A 的度数是 ________.15.一元钱硬币的直径约为24 mm,则用它能完整覆遮住的正六边形的边长最大不可以超出 ________mm.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.17.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如下图,则该圆锥形漏斗的侧面积为 ________.(第 16 题)(第 17 题)(第18 题)(第19 题)18.如图,AC⊥BC,AC=BC=4,以BC长为直径作半圆,圆心为点O.以点 C为圆心, BC长为半径作弧 AB,过点 O 作 AC的平行线交两弧于点 D,E,则暗影部分的面积是 ________.19.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是 AC,BC的中点,直线 EF与⊙ O 交于 G,H 两点,若⊙ O 的半径是 7,则 GE+FH 的最大值是 ________.(第 20 题)20.如下图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,︵︵︵N 在⊙ O 上.以下结论:① MC=ND;② AM= MN=NB;③四边形 MCDN 是1正方形;④ MN=2AB,此中正确的结论是 ________.(填序号 )三、解答题 (21、22 题每题 8 分, 23、24 题每题 10 分,其他每题 12 分,共 60分)21.如图,AB是圆O的直径,CD为弦,AB⊥CD,垂足为H,连结BC、BD.(1)求证: BC=BD;(2)已知 CD= 6, OH=2,求圆 O 的半径长.(第 21 题)22.“不在同一条直线上的三个点确立一个圆”.请你判断平面直角坐标系内的三个点 A(2, 3),B(- 3,- 7),C(5,11)能否能够确立一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连结 BP并延伸,交直线l 于点 C,恰有 AB=AC.(1)求证: AB是⊙ O 的切线;(2)若 PC=25, OA= 5,求⊙ O 的半径.(第 23 题)24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证: OA= OB;(2)已知 AB=43,OA=4,求暗影部分的面积.(第 24 题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 米,桥拱到水面的最大高度为 20 米.(1)求桥拱的半径.(2)现有一艘宽 60 米,顶部截面为长方形且超出水面9 米的轮船要经过这座拱桥,这艘轮船能顺利经过吗?请说明原因.(第 25 题)26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延伸线上的动点,在运动过程中,保持CD=OA.(1)当直线 CD与半圆 O 相切时,如图①,连结OC,求∠ DOC的度数;(2)当直线 CD与半圆 O 订交时,如图②,设另一交点为E,连结 AE, OC,若 AE∥O C.①试猜想 AE 与 OD 的数目关系,并说明原因;②求∠ ODC的度数.(第 26 题)答案一、 1.B 2.C 3.B 4.A 5.B 6.B7.A点拨:连结OE,OG,易得OE⊥ AB,OG⊥AD.∵四边形ABCD是矩形,∴1∠A=90°,∴∠ EOG=90°,∴∠ P=2∠EOG= 45°.122 8.B点拨:∵∠ ACB=90°,∠ABC=30°,AB=2,∴AC=2AB=1.∴ BC=AB - AC60π·33π229.C(3)1-110.D点拨:∵正六边形A1 B1C1D1E1F1的边长为2=21-2,∴正六边形A2B2C2D2E2F2的外接圆的半径为3,则正六边形A2B2C2D2E2F2的边长为3=(3)2-122-2人教版九年级数学上册第24 章圆单元测试题(含答案)一、选择题 (每题 3 分,共 24 分 )1.已知⊙O 的半径为 5 cm,点P 在直线l 上,且点P 到圆心O 的距离为 5 cm,则直线 l 与⊙ O()A.相离B.相切C.订交 D .订交或相切2.若一个圆锥的侧面积是18π,侧面睁开图是半圆,则该圆锥的底面圆半径是()A . 6B. 3 C.3D. 123.如图1,四边形ABCD内接于⊙O,若∠ C= 36°,则∠ A 的度数为()A.36°B. 56°C. 72°D. 144°图 1图 24.如图 2 所示,⊙ O 的半径为︵4 cm, C 是AB的中点,半径 OC 交弦 AB 于点 D,OD =2 3 cm ,则弦 AB 的长为 ()A . 2 cmB . 3 cmC .2 3 cmD . 4 cm5.如图 3 所示,D 是弦 AB 的中点 ,点 C 在⊙ O 上,CD 经过圆心 O ,则以下结论不一定正确的选项是 ( )A .CD ⊥ABB .∠ OAD = 2∠ CBDC .∠ AOD =2∠ BCD︵ ︵ D. AC =BC图3图 4点 6.如图 4,直线 AB 是⊙ O 的切线 ,C 为切点 ,OD ∥AB 交于⊙E 在⊙ O 上,连结 OC , EC , ED ,则∠ CED 的度数为 ()O 点D ,A .30°B .35°C . 40°D . 45°7. 把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5 所示 ,已知 EF =CD = 4 cm ,则球的半径是()A . 2 cmB . 2.5 cmC . 3 cmD .4 cm图 5图 68. 如图 6,在 Rt △ABC 中, ∠ ACB = 90° , ∠A = 30°, BC = 2 3,以直角边 AC 为直径作⊙ O 交 AB 于点 D ,则图中暗影部分的面积是 ()15 3-3 B.15 3-3C.7 3- π7 3- π A. 42π22π46D.26 π二、填空题 (每题 4分,共 32 分)9. 如图 7,AB 是⊙ O 的直径 ,弦 CD ⊥AB 于点 E ,若 AB = 8, AE =1,则弦 CD 的长是________.图7图810.如图 8,AB 为⊙ O 的直径,CD 为⊙ O 的弦,∠ ACD =54°,则∠ BAD= ________° .11.在 Rt△ ABC 中,∠ C= 90°,若 AC= 4,BC= 3,则△ ABC 的内切圆半径r = ________.12.一个扇形的圆心角是120°,它的半径是 3 cm,则扇形的弧长为________ cm.13.如图 9,⊙ M 与 x 轴相切于原点,平行于 y 轴的直线交⊙ M 于 P, Q 两点,点 P 在点Q 的下方.若点 P 的坐标是 (2, 1),则圆心 M 的坐标是 ________.图914.若用圆心角为120°,半径为9 的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是 ________.︵15.如图 10 所示,AB 是半圆 O 的直径,E 是BC的中点,OE 交弦 BC 于点 D.若 BC= 8cm,DE =2 cm,则 OD =________ cm.16.如图11,以AD图 10为直径的半圆O 经过Rt△ ABC图11的斜边AB 的两个端点,交直角边AC 于点E.B,E 是半圆弧的三均分点2π,弧 BE 的长为,则图中暗影部分的面积为3________.三、解答题 (共 44 分)︵17. (10 分 )如图 12, AB 是⊙ O 的直径,弦 CD ⊥ AB 于点 E, G 是 AC上的一点, AG 与DC 的延伸线交于点 F.(1)若 CD = 8,BE= 2,求⊙ O 的半径;(2)求证:∠ FGC=∠ AGD.图 1218.(10 分 )如图 13,在 Rt△ABC 中,∠ ACB= 90°,以斜边 AB 上的中线 CD 为直径作⊙O,分别与 AC,BC 交于点 M, N.(1)过点 N 作⊙ O 的切线 NE 与 AB 订交于点 E,求证: NE⊥ AB;(2)连结 MD ,求证: MD = NB.图 1319. (12 分 )如图 14,在 Rt△ ABC 中,∠B= 90°,点 O 在边 AB 上,以点 O 为圆心,OA 长为半径的圆经过点 C,过点 C 作直线 MN ,使∠ BCM =2∠ A.(1)判断直线MN 与⊙ O 的地点关系,并说明原因;(2)若 OA= 4,∠ BCM =60°,求图中暗影部分的面积.图 1420.(12 分)如图15①所示,OA 是⊙O 的半径,D 为OA 上的一个动点,过点D 作线段CD⊥ OA 交⊙ O 于点 F ,过点 C 作⊙ O 的切线 BC,B 为切点,连结 AB,交 CD 于点 E. (1)求证: CB= CE;︵(2)如图② ,当点 D 运动到 OA 的中点时, CD 恰巧均分 AB ,求证:△ BCE 是等边三角形;(3)如图③ ,当点 D 运动到与点O 重合时,若⊙ O 的半径为2,且∠ DCB= 45°,求线段 EF 的长.图 11. D2.[ 分析 ] B 设圆锥的母线长为 R,π×R2÷ 2= 18π,解得 R= 6,∴圆锥侧面睁开图的弧长为 6π,∴圆锥的底面圆半径是 6π ÷ 2π= 3.应选 B.3. D4. [ 分析 ] D 由圆的对称性,将圆沿 OC 折叠, A, B 两点重合,因此 OC⊥ AB.连结OA,由勾股定理求得 AD= 2 cm,因此 AB= 4 cm.5.[分析 ] B∵D是弦AB的中点,CD经过圆心O,︵︵∴CD⊥AB ,AC =BC,故 A, D 正确;连结 OB,∴∠ AOD=∠ BOD .∵∠ BOD= 2∠C,∴∠ AOD= 2∠BCD ,故 C 正确; B 不必定正确.应选 B.6. D7.[分析 ] B过点O作OM⊥ EF于点M,延伸MO交BC于点N,连结OF,如图.∵四边形 ABCD 是矩形,∴∠ C=∠ D= 90°,∴四边形 CDMN 是矩形,∴MN= CD= 4.设 OF = x,则 ON=OF =x,∴OM= MN - ON= 4- x, MF= 2,在 Rt△OMF 中, OM 2+ MF2=OF2,即 (4- x)2+ 22= x2,解得 x= 2.5.应选 B.8. A9.[答案 ] 27[分析 ] 连结 OC,如图,由题意,得 OE= OA- AE= 4-1= 3,∴CE= ED = OC2- OE2= 7,∴ CD= 2CE= 2 7.10. [答案 ] 36[分析 ] 连结 BD,如下图.∵∠ ACD= 54°,∴∠ ABD= 54° .∵AB为⊙O的直径,∴∠ ADB= 90°,∴∠ BAD= 90°-∠ ABD =36° .11. [答案 ] 1[分析 ] 如图,设△ ABC 的内切圆与各边分别相切于点D, E,F ,连结 OD , OE, OF ,则 OE⊥ BC,OF ⊥ AB, OD⊥ AC.设⊙ O 的半径为r,∴CD=CE =r .∵∠ C= 90°, AC= 4, BC= 3,∴AB= 5,∴BE= BF = 3- r,AF =AD= 4- r ,∴4- r +3- r= 5,∴r= 1,∴△ ABC 的内切圆的半径为 1.12. [答案 ] 2π120π × 3[分析 ] 依据题意,扇形的弧长为=2π .13. [答案 ] (0 ,2.5)[分析 ] 如图,连结 MP,过点 P 作 PA⊥ y 轴于点 A,设点 M 的坐标是 (0, b),且 b> 0.∵PA⊥ y 轴,∴∠ PAM = 90°,∴ AP2+ AM2= MP 2,∴ 22+ (b- 1)2= b2,解得 b= 2.5.故答案是 (0, 2.5).14. [答案 ] 6[分析 ] 扇形的弧长 l =120π ×9= 6π,因此圆锥底面圆的周长为6π,则圆锥底面圆的180直径为6ππ= 6.15. [答案 ] 3︵[分析 ] 由于 E 为 BC的中点,因此 OE ⊥BC,因此△ OBD 为直角三角形.设 OD =x cm,则 OB= OE= OD+ DE= (x+ 2)cm.在 Rt△OBD 中,依据勾股定理,得(x+ 2)2= 42+ x2,解得 x=3.故 OD =3 cm.16. [答案 ]33-2π23[分析 ] 如图 ,连结 BD ,BE ,BO , EO.∵ B , E 是半圆弧的三均分点 , ∴∠ EOA =∠ EOB =∠ BOD = 60° ,∴∠ BAC =∠ EBA =∠ BAD = 30°, ∴ BE ∥ AD .︵∵ BE 的长为2 60π × R 23π , ∴ 180 = 3π ,解得R = 2,1易得 AB = 2 3,∴ BC = 2AB = 3,∴ AC = AB 2- BC 2= (2 3) 2-( 3) 2= 3,1 1 3× 3=3 3∴ S △ABC = BC ·AC = × 2.2 2∵△ BOE 和△ ABE 同底等高 ,∴△ BOE 和△ ABE 面积相等 ,60π ×2 22π .∴图中暗影部分的面积为S △ABC - S 扇形 BOE = 3 3- =33-2 360 2 3故答案为33- 2π .2317. 解: (1) 如图,连结 OC.设⊙ O 的半径为 R.∵ CD ⊥AB , ∴ DE = EC = 4.在 Rt △OEC 中,∵ OC 2= OE 2+ EC 2, ∴ R 2= (R - 2)2+ 42,解得 R = 5.(2)证明:连结 AD ,∵ CD ⊥AB ,︵ ︵ ∴ AD = AC ,∴∠ ADC =∠ AGD.∵四边形 ADCG 是圆内接四边形 ,∴∠ ADC=∠ FGC,∴∠ FGC=∠ AGD.18.证明: (1) 连结 ON,如图.∵CD 为斜边 AB 上的中线,∴ CD=AD =DB ,∴∠ 1=∠ B.∵OC=ON,∴∠ 1=∠ 2,∴∠ 2=∠ B,∴ ON∥ DB.∵NE为⊙O的切线,∴ ON⊥NE ,∴ NE⊥ AB.(2)连结 DN,如图.∵CD 为⊙O 的直径,∴∠CMD =∠ CND =90° .而∠ MCB= 90°,∴四边形 CM。
九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文
可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点2.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是()A.25∘B.30∘C.40∘D.50∘3.如图,⊙O的半径OD垂直于弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.2√15B.8C.2√10D.2√134.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO.则图中阴影部分的面积之和()A.10−32πB.14−52πC.12 D.145.如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是( )A.72∘B.36∘C.18∘D.54∘6.如图,在半径为5的⊙O中AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√27.如图,已知OB为⊙C的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )A.3cm B.6cm C.12cm D.24cm8.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(−1,2),则点Q的坐标是( )A.(−4,2)B.(−4.5,2)C.(−5,2)D.(−5.5,2)二、填空题9.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为.(结果保留π)10.在半径为3cm的圆中,120∘的圆心角所对的弧长等于.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50∘,则∠AOD=.12.如图所示,点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP= 4,PB=2则PC的长为.13.如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9则⊙O的半径是.三、解答题14.已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?15.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.16.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.17.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.18.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC.(2)若PC=2 √5,求⊙O的半径.参考答案1.C2.A3.C4.B5. B6. C7. C8. A9. 350πcm210. 2πcm11. 80°12. 2√213. 514.解:ID=BD.理由:如图所示:连接BI.由三角形的外角的性质可知:∠1+∠2=∠BIA.∵点I是△ABC的内心∴∠1=∠4,∠2=∠3.又∵∠4=∠5∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.∴ID=BD.15.证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC16.解:如图,连接OD∵OD=OA∴∠ODA=∠DAB=30°∴∠DOB=∠ODA+∠DAB=60°∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°即OD⊥BD∴直线BD与⊙O相切.17.(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A=∠DCE∵DC=DE∴∠DCE=∠DEC∴∠A=∠AEB(2)证明:∵DC⊥OE∴DF=CF∴OE是CD的垂直平分线∴ED=EC,又DE=DC∴△DEC为等边三角形∴∠AEB=60°,又∠A=∠AEB∴△ABE是等边三角形.18.(1)证明:连接OB∵OB=OP∴∠OPB=∠OBP∵∠OPB=∠APC∴∠OBP=∠APC∵AB与⊙O相切于点B∴OB⊥AB∴∠ABO=90°∴∠ABP+∠OBP=90°∵OA⊥AC∴∠OAC=90°∴∠ACB+∠APC=90°∴∠ABP=∠ACB∴AB=AC(2)证明:设⊙O的半径为r在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2 在Rt△ACP中,AC2=PC2﹣PA2AC2=(2 √5)2﹣(5﹣r)2∵AB=AC∴52﹣r2=(2 √5)2﹣(5﹣r)2 解得:r=3则⊙O的半径为3。
人教版九年级数学上册 第二十四章 圆测试题AB卷
第一学期第24章圆整章综合水平测试题(A)(时间:90分钟满分:100分)安徽李庆社一.选择题(每小题3分,共30分)1.两圆的圆心都在x轴上,且两圆相交于A,B两点,点A的坐标是(3,2),那么点B的坐标为()(A)(–3,2).(B)(3,–2).(C)(–3,–2).(D)(3,0).2.如果两圆的半径分别为2和3,圆心距为5,那么这两个圆的位置关系是()(A)外离.(B)外切.(C)相交.(D)内切.3.已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=400,则∠A的度数等于()(A)1400.(B)1200.(C)1000.(D)800.第3题图第4题图第5题图4.如图,在⊙O中,直径CD与弦AB相交于点E,若BE=3,AE=4,DE=2,则⊙O 的半径是()(A)3.(B)4.(C)6.(D)8.5.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,若PA·PB=PC·PD,则PD的长是()(A)3.(B)7.5.(C)5.(D)5.5.6.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是()7.两圆外切,半径分别为6、2,则这两圆的两条外公切线的夹角的度数是()(A)30°.(B)60°.C、90°D、120°8.正六边形内接于圆,它的边所对的圆周角是()(A)60°.(B)120°.(C)60或120.(D)30°或150°.9.若扇形的面积是56cm2,周长是30cm,则它的半径是()(A)7cm(B)8cm(C)7cm或8cm(D)15cm10.若两圆有且仅有一条公切线,则两圆的位置关系是()(A)内切(B)相交(C)外切(D)内含二.填空题(每小题3分,共15分)11.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小从锯锯之,深1寸,锯道长1尺,问径几何?”A(第13题图)B10m8m 用数学语言可表述为:“如图2,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB =10寸,则直径CD 的长为___.第7题图 第9题图 第10题图 12.一个多边形的每一个外角都等于72°,这个多边形是___.13.如图8,⊙O 1,⊙O 2相交,P 是⊙O 1上的一点,过P 点作两圆的切线,则切线的条数可能有___.14.如图所示,矩形中长和宽分别为10cm 和6cm ,则阴影部分的面积为______. 15.已知⊙O 1和⊙O 2外切,半径分别为1cm 和3cm ,那么半径为5cm 且与⊙O 1、⊙O 2都相切的圆一共可以作出___________个. 三.解答题(每小题8分,共16分)16.已知:如图,过圆O 外一点B 作圆O 的切线BM ,M 为切点.BO 交圆O 于点A ,过点A 作BO 的垂线,交BM 于点=3,PA=1.3,圆O 的半径为1.求:MB 的长.17.在直径为10m 的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB =8m ,求油的最大深度.四.(8分)18.如图,已知:在⊙O 中,OA ⊥OB ,∠A=35°,求和的度数.五.(8分)19.如图,PA 、PB 分别切⊙O 于A 、B ,连接PO 与⊙O 相交于C ,连接AC 、BC ,求证:AC=BC.六.(10分)20.(1)如图(1),若⊙O1、⊙O2外切于A,BC是⊙O1、⊙O2的一条外公切线,B、C是切点,则AB⊥AC.(2)如图(2),增加添加,连心线O1O2分别交⊙O1、⊙O2于M、N,BM、CN的延长线交于P,则BP与CP是否垂直?证明你的结论.(3)如图(3),⊙O1与⊙O2相交,BC是两圆的外公切线,B、C是切点,连心线O1O2分别交两圆于M、N,Q是MN上一点,连结BQ、CQ则与BQ是否垂直?证明你的结论.图(1)图(2)图(3)七、探究题(13分)21.如图,一个圆形街心花园,有三个出口A,B,C,每两个出口之间有一条60米长的道路,组成正三角形ABC,在中心点O处有一亭子,为使亭子与原有的道路相通,需再修三条小路OD,OE,OF,使另一出口D、E、F分别落在ΔABC分成三个全等的多边形,以备种植不同品种的花草.(1)请你按以上要求设计两种不同的方案,将你的设计方案分别画在图1,图2中,并附简单说明.(2)要使三条小路把ΔABC分成三个全等的等腰梯形,应怎样设计?请把方案画在图3中,并求此时三条小路的总长.(3)请你探究出一种一般方法,使得出口D不论在什么位置,都能准确地找到另外两个出口E、F的位置,请写明这个方法.(4)你在(3)中探究出的一般方法适用于正五边形吗?请结合图5予以说明,这种方法能推广到正n边形吗?参考答案:一.;由对称性知(3,-2).;提示:2+3=5,两圆半径等于圆心距. ;提示:连OB 、OC. ;设圆的半径为R ,由3×4=(R-2)(2R-2),R =4. ;提示:由PA·PB=PC·PD. ;直径所对的圆周角是直角. ;转化为解直角三角形问.;圆内接正六边形的边长等于半径. ;根据闪形面积公式. ;两圆内切.二.11.26寸; 12、正五边形; 13、一条或2条3条或4条; 14、90――41/2π; 15、4个.三.提示:16、由切线长定理及其勾股定理得,BM=4. 17、2m.四.18、分析:连结OC ,通过求圆心角的度数求解. 解:连结OC ,在Rt △AOB 中,∠A=35°, ∴∠B=55°,又∵OC=OB , ∴∠COB=180°-2∠B=70°,∴的度数为70°,∠COD=90°-∠COB=90°-70°=20°,∴ 的度数为20°.五.19.提示:证明△PAC ≌△PBC. 六、20.提示:(1)过点A 作公切线;(2)易证BP 与CP 垂直;(3)中CQ 与BQ 不垂直.七、[分析]:21.(1)方案1:D ,E ,F 与A ,B ,C 重合,连OD ,OE ,OF. 方案2:OD ,OE ,OF 分别垂直于AB ,BC ,AC. (2)OD//AC ,OE//AB ,OF//BC , 如图(3) 作OM ⊥BC 于M ,连OB , ∵ΔABC 是等边Δ,∴BM=21BC=30,且∠OBM=30°, ∴OM=103,∵OE//AB ,∴∠OEM=60°,OE==20,又OE=OF=OD ,∴OE+OF+OD=3OE=60,答:略.(3)如图(4)方法1:在BC ,CA ,AB 上分别截取BE=CF=AD ,连结OD ,OE ,OF , 方法2:在AB 上任取一点D ,连OD ,逆时针旋转OD120°两次,得E ,F.(4)设M 1为A 1A 2上任一点,在各边上分别取A 2M 2=A 3M 3=A 4M 4=A 5M 5=A 1M 1,连OM 1……OM 5即可,∴可推广到正n 边形.[评析]:本题集探索、猜想方案设计于一体.第一学期第24章圆整章综合水平测试题(B )(满分120分,时间120分钟)四川 蒋成富一、选择题(每小题3分,共30分)1. 如图,A 、B 、C 、是⊙O 上的三点,∠BAC=45°,则∠BOC 的大小是( )。
第24章《圆》检测题含试卷分析人教版九年级数学上
第二十四章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A .25° B .50° C .60° D .80°第1题图第2题图2.如图,在平面直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P 的所有弦中,最短的弦的长为( )A .4B .5C .8D .103.(2016·自贡)如图,⊙O 中,弦AB 与CD 交于点M ,∠A =45°,∠AMD =75°,则∠B 的度数是( )A .15°B .25°C .30°D .75°第3题图第4题图4.(2016·黔南州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为5 cm ,则圆心O 到弦CD 的距离为( )A .52cm B .3 cm C .3 3 cm D .6 cm 5.(2016·河北)如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心第5题图第6题图第8题图6.(2016·邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD =30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°7.(2016·自贡)圆锥的底面半径为4 cm ,高为5 cm ,则它的表面积为( )A .12π cm 2B .26π cm 2C .41π cm 2D .(441+16)π cm 28.(2016·昆明)如图,AB 为⊙O 的直径,AB =6,AB ⊥弦CD ,垂足为点G ,EF 切⊙O 于点B ,∠A =30°,连接AD ,OC ,BC ,下列结论不正确的是( )A .EF ∥CDB .△COB 是等边三角形C .CG =DGD .BC ︵的长为32π9.如图,边长为40 cm 的等边三角形硬纸片,小明剪下与边BC 相切的扇形AEF ,切点为D ,点E ,F 分别在AB ,AC 上,做成圆锥形圣诞帽(重叠部分忽略不计),则圆锥形圣诞帽的底面圆的半径是( )A .103 3 cm B .203 cm C .36 cm D .233 cm第9题图第10题图10.(2016·深圳)如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-4 二、填空题(每小题3分,共24分)11.(2016·南京)如图,扇形OAB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =______°.第11题图第14题图12.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数是________.13.(2016·宁夏)已知正△ABC 的边长为6,那么能够完全覆盖这个正△ABC 的最小圆的半径是______.14.(2016·台州)如图,△ABC 的外接圆O 的半径为2,∠C =40°,则AB ︵的长是______. 15.(2016·呼和浩特)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为______.16.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,直到半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于______.第16题图第17题图第18题图17.如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O.以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是________.18.一走廊拐角的横截面如图所示,已知AB⊥BC ,AB ∥DE ,BC ∥FG ,且两组平行墙壁间的走廊宽度都是1 m ,EF ︵的圆心为O ,半径为1 m ,且∠EOF =90°,DE ,FG 分别与⊙O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与⊙O 相切于点P ,P 是EF ︵的中点,则木棒MN 的长度为____________m .三、解答题(共66分)19.(6分)如图所示,破残的圆形轮片上弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D. (1)求作此残片所在的圆;(不写作法,保留作图痕迹) (2)已知AB =16,CD =4,求(1)中所作圆的半径.20.(6分)如图,AB 和CD 分别是⊙O 上的两条弦,过点O 分别作ON ⊥CD 于点N ,OM ⊥AB 于点M ,若ON =12AB ,求证:OM =12CD.21.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO 的延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是圆O的切线;(2)若PB=6,DB=8,求⊙O的半径.22.(8分)如图所示,已知圆锥底面半径r=10 cm,母线长为40 cm.(1)求它的侧面展开图的圆心角和表面积;(2)若一小虫从A点出发沿着圆锥侧面运动到母线SA的中点B处,请你计算它所走的最短路线是多少?23.(8分)如图,AB是⊙O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.24.(9分)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且AE =DE ,BC =CE. (1)求∠ACB 的度数;(2)过点O 作OF ⊥AC 于点F ,延长FO 交BE 于点G ,DE =3,EG =2,求AB 的长.25.(10分)如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC ,BC 分别交于点D ,E ,过点D 作DF ⊥BC ,垂足为点F.(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.26.(11分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,弦AB 不经过圆心O ,延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长;(2)求证:BF=12 BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.。
北京市西城区九年级数学上册 学习 探究 诊断 第二十四章 圆同步测试
第二十四章圆测试1 圆学习要求理解圆的有关概念,掌握圆和弧的表示方法,掌握同圆的半径相等这一性质.课堂学习检测一、基础知识填空1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.2.战国时期的《墨经》中对圆的定义是________________.3.由圆的定义可知:(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.4.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.5.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.6.圆的________的两个端点把圆分成两条弧,每________都叫做半圆.7.在一个圆中_____________叫做优弧;_____________叫做劣弧.8.半径相等的两个圆叫做____________.二、填空题9.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.综合、运用、诊断10.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.11.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.拓广、探究、思考12.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.测试2 垂直于弦的直径学习要求1.理解圆是轴对称图形.2.掌握垂直于弦的直径的性质定理及其推论.课堂学习检测一、基础知识填空1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.二、填空题4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.5题图6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.6题图7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.7题图8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.8题图9.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.9题图10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10题图综合、运用、诊断11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD 的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.15.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.拓广、探究、思考16.已知:如图,A ,B 是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =80°,B 是的中点.(1)在CD 上求作一点P ,使得AP +PB 最短;(2)若CD =4cm ,求AP +PB 的最小值.17.如图,有一圆弧形的拱桥,桥下水面宽度为,拱顶高出水面,现有一竹排运送一货箱从桥下经过,已知货箱长10m ,宽3m ,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?测试3 弧、弦、圆心角学习要求 1.理解圆心角的概念.2.掌握在同圆或等圆中,弧、弦、圆心角及弦心距之间的关系.课堂学习检测一、基础知识填空1.______________的______________叫做圆心角.2.如图,若长为⊙O 周长的nm ,则∠AOB =____________.3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.二、解答题5.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.综合、运用、诊断6.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.7.已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.拓广、探究、思考8.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.10.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D 与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.测试4 圆周角学习要求1.理解圆周角的概念.2.掌握圆周角定理及其推论.3.理解圆内接四边形的性质,探究四点不共圆的性质.课堂学习检测一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.5题图6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.6题图7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.7题图二、选择题8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°°D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).10题图A.64°B.48°C.32°D.76°11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°综合、运用、诊断14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.拓广、探究、思考18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD=∠FMC.测试5 点和圆的位置关系学习要求1.能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系.2.能过不在同一直线上的三点作圆,理解三角形的外心概念.3.初步了解反证法,学习如何用反证法进行证明.课堂学习检测一、基础知识填空1.平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r⇔点P在⊙O______;d=r⇔点P在⊙O______;d<r⇔点P在⊙O______.2.平面内,经过已知点A,且半径为R的圆的圆心P点在__________________________ _______________.3.平面内,经过已知两点A,B的圆的圆心P点在______________________________________ ____________________.4.______________________________________________确定一个圆.5.在⊙O上任取三点A,B,C,分别连结AB,BC,CA,则△ABC叫做⊙O的______;⊙O叫做△ABC的______;O点叫做△ABC的______,它是△ABC___________的交点.6.锐角三角形的外心在三角形的___________部,钝角三角形的外心在三角形的__________ ___部,直角三角形的外心在________________.7.若正△ABC外接圆的半径为R,则△ABC的面积为___________.8.若正△ABC的边长为a,则它的外接圆的面积为___________.9.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.10.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.二、解答题11.已知:如图,△ABC.作法:求件△ABC的外接圆O.综合、运用、诊断一、选择题12.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).A.5个圆B.8个圆C.10个圆D.12个圆13.下列说法正确的是( ).A.三点确定一个圆B.三角形的外心是三角形的中心C.三角形的外心是它的三个角的角平分线的交点D.等腰三角形的外心在顶角的角平分线上14.下列说法不正确的是( ).A.任何一个三角形都有外接圆B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点D.一个三角形的外心不可能在三角形的外部15.正三角形的外接圆的半径和高的比为( ).A .1∶2B .2∶3C .3∶4D .1∶316.已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若关于x 的方程x 2-2x +d =0有实根,则点P ( ).A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 的内部二、解答题17.在平面直角坐标系中,作以原点O 为圆心,半径为4的⊙O ,试确定点A (-2,-3),B (4,-2),)2,32(-C 与⊙O 的位置关系.18.在直线123-=x y 上是否存在一点P ,使得以P 点为圆心的圆经过已知两点A (-3,2),B (1,2).若存在,求出P 点的坐标,并作图.测试6 自我检测(一)一、选择题1.如图,△ABC 内接于⊙O ,若AC =BC ,弦CD 平分∠ACB ,则下列结论中,正确的个数是( ).1题图①CD 是⊙O 的直径 ②CD 平分弦AB ③CD ⊥AB④=⑤=A .2个B .3个C .4个D .5个 2.如图,CD 是⊙O 的直径,AB ⊥CD 于E ,若AB =10cm ,CE ∶ED =1∶5,则⊙O 的半径是( ).2题图A .cm 25B .cm 34C .cm 53D .cm 623.如图,AB 是⊙O 的直径,AB =10cm ,若弦CD =8cm ,则点A 、B 到直线CD 的距离之和为( ).3题图A .12cmB .8cmC .6cm D.4cm4.△ABC 内接于⊙O ,OD ⊥BC 于D ,若∠A =50°,则∠BOD 等于( ).A .30°B .25°C .50°D .100°5.有四个命题,其中正确的命题是( ).①经过三点一定可以作一个圆②任意一个三角形有且只有一个外接圆③三角形的外心到三角形的三个顶点的距离相等④在圆中,平分弦的直径一定垂直于这条弦A .①、②、③、④B .①、②、③C .②、③、④D .②、③6.在圆内接四边形ABCD 中,若∠A ∶∠B ∶∠C =2∶3∶6,则∠D 等于( ).° B .135°°°二、填空题7.如图,AC 是⊙O 的直径,∠1=46°,∠2=28°,则∠BCD =______.7题图8.如图,AB 是⊙O 的直径,若∠C =58°,则∠D =______.8题图9.如图,AB 是⊙O 的直径,弦CD 平分∠ACB ,若BD =10cm ,则AB =______,∠BCD =______.9题图10.若△ABC 内接于⊙O ,OC =6cm ,cm 36 AC ,则∠B 等于______.三、解答题11.已知:如图,⊙O 中,AB =AC ,OD ⊥AB 于D ,OE ⊥AC 于E .求证:∠ODE =∠OED .12.已知:如图,AB 是⊙O 的直径,OD ⊥BC 于D ,AC =8cm ,求OD 的长.13.已知:如图,点D的坐标为(0,6),过原点O,D点的圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点的坐标.14.已知:如图,试用尺规作图确定这个圆的圆心.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点.求∠CAD的度数及弦AC,AD和围成的图形(图中阴影部分)的面积S.测试7 直线和圆的位置关系(一)学习要求1.理解直线与圆的相交、相切、相离三种位置关系,掌握它们的判定方法.2.掌握切线的性质和切线的判定,能正确作圆的切线.课堂学习检测一、基础知识填空1.直线与圆在同一平面上做相对运动时,其位置关系有______种,它们分别是____________ __________________.2.直线和圆_________时,叫做直线和圆相交,这条直线叫做____________.直线和圆_________时,叫做直线和圆相切,这条直线叫做____________.这个公共点叫做_________.直线和圆____________时,叫做直线和圆相离.3.设⊙O的半径为r,圆心O到直线l的距离为d,_________⇔直线l和圆O相离;_________⇔直线l和圆O相切;_________⇔直线l和圆O相交.4.圆的切线的性质定理是__________________________________________.5.圆的切线的判定定理是__________________________________________.6.已知直线l及其上一点A,则与直线l相切于A点的圆的圆心P在__________________ __________________________________________________________________.二、解答题7.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:(1)当R为何值时,⊙C和直线AB相离?(2)当R为何值时,⊙C和直线AB相切?(3)当R为何值时,⊙C和直线AB相交?8.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.9.已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE与⊙O的位置关系,并证明你的结论.综合、运用、诊断10.已知:如图,割线ABC与⊙O相交于B,C两点,E是的中点,D是⊙O上一点,若∠EDA=∠AMD.求证:AD是⊙O的切线.11.已知:如图,Rt △ABC 中,∠ACB =90°,以AC 为直径的半圆O 交AB 于F ,E 是BC 的中点.求证:直线EF 是半圆O 的切线.12.已知:如图,△ABC 中,AD ⊥BC 于D 点,.21BC AD 以△ABC 的中位线为直径作半圆O ,试确定BC 与半圆O 的位置关系,并证明你的结论.13.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F .求证:EF 与⊙O 相切.14.已知:如图,以△ABC 的一边BC 为直径作半圆,交AB 于E ,过E 点作半圆O 的切线恰与AC垂直,试确定边BC与AC的大小关系,并证明你的结论.15.已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与⊙O 相切?说明你的理由.拓广、探究、思考16.已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.求⊙O的半径长.测试8 直线和圆的位置关系(二)学习要求1.掌握圆的切线的性质及判定定理.2.理解切线长的概念,掌握由圆外一点引圆的切线的性质.3.理解三角形的内切圆及内心的概念,会作三角形的内切圆.课堂学习检测一、基础知识填空1.经过圆外一点作圆的切线,______________________________叫做这点到圆的切线长.2.从圆外一点可以引圆的______条切线,它们的____________相等.这一点和____________平分____________.3.三角形的三个内角的平分线交于一点,这个点到__________________相等.4.__________________的圆叫做三角形的内切圆,内切圆的圆心是____________,叫做三角形的____________.5.设等边三角形的内切圆半径为r,外接圆半径为R,边长为a,则r∶R∶a=______.6.设O为△ABC的内心,若∠A=52°,则∠BOC=____________.二、解答题7.已知:如图,从两个同心圆O的大圆上一点A,作大圆的弦AB切小圆于C点,大圆的弦AD切小圆于E点.求证:(1)AB=AD;(2)DE=BC.8.已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.9.已知:如图,△AB C.求作:△ABC的内切圆⊙O.10.已知:如图,PA,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.综合、运用、诊断11.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.12.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.13.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.测试9 自我检测(二)一、选择题1.已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB 等于( ).1题图A.65°B.50°C.45°D.40°2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC =,则( ).2题图A .∠A =90°-B .∠A =C .∠ABD = D .∠α2190o -=ABD 3.如图,△ABC 中,∠A =60°,BC =6,它的周长为16.若⊙O 与BC ,AC ,AB 三边分别切于E ,F ,D 点,则DF 的长为( ).3题图A .2B .3C .4D .64.下面图形中,一定有内切圆的是( ).A .矩形B .等腰梯形C .菱形D .平行四边形5.等边三角形的内切圆半径、外接圆半径和高的比是( ).A .3:2:1B .3:2:1C .2:3:1D .1∶2∶3二、解答题6.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,以AB 为直径的⊙O 切DC 边于E 点,AD =3cm ,BC =5cm .求⊙O 的面积.7.已知:如图,AB是⊙O的直径,F,C是⊙O上两点,且=,过C点作DE⊥AF的延长线于E点,交AB的延长线于D点.(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)试判断∠BCD与∠BAC的大小关系,并证明你的结论.8.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.9.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.10.已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .11.已知:如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC ⊥PQ 于C ,交⊙O 于D .(1)求证:AT 平分∠BAC ;(2)若,3,2==TC AD 求⊙O 的半径.测试10 圆和圆的位置关系学习要求1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d 与两个圆的半径r 1和r 2之间的关系,讨论两圆的位置关系.2.对两圆相交或相切时的性质有所了解.课堂学习检测一、基础知识填空1.没有______的两个圆叫做这两个圆相离.当两个圆相离时,如果其中一个圆在另一个圆的______,叫做这两个圆外离;如果其中有一个圆在另一个圆的______,叫做这两个圆内含.2.____________的两个圆叫做这两个圆相切.这个公共点叫做______.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的______,叫做这两个圆外切;如果其中有一个圆(除切点外)在另一个圆的______,叫做这两个圆内切.3.______的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的______以这两个公共点为端点的线段叫做两圆的______.4.设d 是⊙O 1与⊙O 2的圆心距,r 1,r 2(r 1>r 2)分别是⊙O 1和⊙O 2的半径,则⊙O 1与⊙O 2外离⇔d ________________________;⊙O 1与⊙O 2外切⇔d ________________________;⊙O 1与⊙O 2相交⇔d ________________________;⊙O 1与⊙O 2内切⇔d ________________________;⊙O 1与⊙O 2内含⇔d ________________________;⊙O 1与⊙O 2为同心圆⇔d ____________________.二、选择题5.若两个圆相切于A 点,它们的半径分别为10cm 、4cm ,则这两个圆的圆心距为( ).A .14cmB .6cmC .14cm 或6cmD .8cm6.若相交两圆的半径分别是17+和17-,则这两个圆的圆心距可取的整数值的个数是( ).A.1B.2 C.3 D.4综合、运用、诊断一、填空题7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B 的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.7题图8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为______cm.二.解答题9.已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.9题图10.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.11.已知:如图,两圆相交于A,B两点,过A点的割线分别交两圆于D,F点,过B点的割线分别交两圆于H ,E 点.求证:HD ∥EF .12.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.拓广、探究、思考13.如图,工地放置的三根外径是1m 的水泥管两两外切,求其最高点到地平面的距离.14.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,圆心O 1在⊙O 2上,过B 点作两圆的割线CD ,射线DO 1交AC 于E 点.求证:DE ⊥AC .15.已知:如图,⊙O1与⊙O2相交于A,B两点,过A点的割线分别交两圆于C,D,弦CE∥DB,连结EB,试判断EB与⊙O2的位置关系,并证明你的结论.16.如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?测试11 正多边形和圆学习要求1.能通过把一个圆n(n≥3)等分,得到圆的内接正n边形及外切正n边形.2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.课堂学习检测一、基础知识填空1.各条边______,并且各个______也都相等的多边形叫做正多边形.2.把一个圆分成n(n≥3)等份,依次连结各等分点所得的多边形是这个圆的______.3.一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.4.正n边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角等于______________.5.设正n边形的半径为R,边长为a n,边心距为r n,则它们之间的数量关系是______.这个正n边形的面积S n=________.6.正八边形的一个内角等于_______,它的中心角等于_______.7.正六边形的边长a,半径R,边心距r的比a∶R∶r=_______.8.同一圆的内接正方形和正六边形的周长比为_______.二、解答题9.在下图中,试分别按要求画出圆O的内接正多边形.(1)正三角形 (2)正方形 (3)正五边形(4)正六边形 (5)正八边形 (6)正十二边形综合、运用、诊断一、选择题10.等边三角形的外接圆面积是内切圆面积的( ).A.3倍B.5倍 C.4倍D.2倍11.已知正方形的周长为x,它的外接圆半径为y,则y与x的函数关系式是( ).A .x y 42=B .x y 82=C .x y 21=D .x y 22= 12.有一个长为12cm 的正六边形,若要剪一X 圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是( ).A .10cmB .12cmC .14cmD .16cm二、解答题13.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A 8内接于半径为R 的⊙O .(1)求A 1A 3的长;(2)求四边形A 1A 2A 3O 的面积;(3)求此正八边形的面积S .14.已知:如图,⊙O 的半径为R ,正方形ABCD ,A ′B ′C ′D 分别是⊙O 的内接正方形和外切正方形.求二者的边长比AB ∶A ′B ′和面积比S 内∶S 外.拓广、探究、思考15.已知:如图,⊙O 的半径为R ,求⊙O 的内接正六边形、⊙O 的外切正六边形的边长比AB ∶A ′B ′和面积比S 内∶S 外.测试12 弧长和扇形面积学习要求掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.课堂学习检测一、基础知识填空1.在半径为R 的圆中,n °的圆心角所对的弧长l =_______.2.____________和______所围成的图形叫做扇形.在半径为R 的圆中,圆心角为n °的扇形面积S 扇形=__________;若l 为扇形的弧长,则S 扇形=__________.3.如图,在半径为R 的⊙O 中,弦AB 与所围成的图形叫做弓形.当为劣弧时,S 弓形=S 扇形-______; 当为优弧时,S 弓形=______+S △OAB .3题图4.半径为8cm 的圆中,72°的圆心角所对的弧长为______;弧长为8cm 的圆心角约为______(精确到1′).5.半径为5cm 的圆中,若扇形面积为2cm 3π25,则它的圆心角为______.若扇形面积为15cm 2,则它的圆心角为______.6.若半径为6cm 的圆中,扇形面积为9cm 2,则它的弧长为______.二、选择题7.如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ).7题图A .π425 B .π825 C .π1625D .π3225 8.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).8题图A .2πcm 100B .2πcm 3400 C .2πcm 800 D .2πcm 3800 9.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则圆中阴影部分的面积是( ).A .9π4-B .9π84-C .94π8-D .98π8-综合、运用、诊断 10.已知:如图,在边长为a 的正△ABC 中,分别以A ,B ,C 点为圆心,a 21长为半径作 ,,,求阴影部分的面积.11.已知:如图,Rt △ABC 中,∠C =90°,∠B =30°,,34=BC 以A 点为圆心,AC 长为半径作,求∠B 与围成的阴影部分的面积.拓广、探究、思考12.已知:如图,以线段AB 为直径作半圆O 1,以线段AO 1为直径作半圆O 2,半径O 1C 交半圆O 2于D 点.试比较与的长.13.已知:如图,扇形OAB 和扇形OA ′B ′的圆心角相同,设AA ′=BB ′=d .=l 1,=l 2. 求证:图中阴影部分的面积.)(2121d l l S +=测试13 圆锥的侧面积和全面积学习要求掌握圆锥的侧面积和全面积的计算公式.课堂学习检测一、基础知识填空1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.3.Rt △ABC 中,∠C =90°,AB =5cm ,BC =3cm ,以直线BC 为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.4.若把一个半径为12cm ,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.二、选择题5.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为( ).A .2cm 2B .3cm 2C .6cm 2D .12cm 26.若圆锥的底面积为16cm 2,母线长为12cm ,则它的侧面展开图的圆心角为( ).A .240°B .120°C .180°D .90°7.底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).A .5cmB .3cmC .8cmD .4cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).A .120°B .1 80°C .240°D . 300°综合、运用、诊断一、选择题9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则R 与r 之间的关系是( ).A .R =2rB .r R 3C .R =3rD .R =4r10.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21B .22C .2D .22二、解答题 11.如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC边相切,交AD于F点,连结OF.若将这个扇形OBF围成一个圆锥,求这个圆锥的底面积S.拓广、探究、思考12.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.求在圆锥的侧面上从B点到P点的最短路线的长.答案与提示第二十四章 圆测试11.平面,旋转一周,图形,圆心,半径,⊙O ,圆O .2.圆,一中同长也.3.(1)半径长,同一个圆上,定点,定长,点.(2)圆心的位置,半径的长短,圆心,半径长.4.圆上的任意两点,线段,圆心,弦,最长.5.任意两点间,弧,圆弧AB ,弧AB .6.任意一条直径,一条弧.7.大于半圆的弧,小于半圆的弧.8.等圆.9.(1)OA ,OB ,OC ;AB ,AC ,BC ,AC ;;及 (2)40°,50°,90°.10.(1)提示:在△OAB 中,∵OA =OB ,∴∠A =∠B .同理可证∠OCD =∠ODC .又 ∵∠AOC =∠OCD -∠A ,∠BOD =∠ODC -∠B ,∴∠AOC =∠BOD .(2)提示:AC =BD .可作OE ⊥CD 于E ,进行证明.11.提示:连结OD .不难得出∠C =36°,∠AOC =54°.12.提示:可分别作线段AB 、BC 的垂直平分线.测试21.轴,经过圆心的任何一条直线,中心,该圆的圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.弦,不是直径,垂直于,弦所对的两条弧.4.6. 5.8; 6..120,36o 7.a 22,a 21 8.2. 9..13 10..13 11..2412.提示:先将二等分(设分点为C ),再分别二等分和.13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.14.75°或15°.15.22cm 或8cm .16.(1)作法:①作弦B B '⊥CD .②连结B A ',交CD 于P 点,连结PB .则P 点为所求,即使AP +PB 最短.(2)cm.3217.可以顺利通过.测试31.顶点在圆心,角.2.⋅⨯nm 360 3.它们所对应的其余各组量也分别相等 4.相等,这两条弦也相等. 5.提示:先证=. 6.EF =GH .提示:分别作PM ⊥EF 于M ,PN ⊥GH 于N .7.55°. 8.C .9.=3 .提示:设∠COD =α,则∠OPD =2α,∠AOD =3α=3∠BOC .10.(1)作OH ⊥CD 于H ,利用梯形中位线.(2)四边形CDEF 的面积是定值,96221)(21⨯=⋅⋅⋅=⋅+=CD CH CD DE CF S =54. 测试4 1.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等.4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°.6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C .14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.3815.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH .17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC .19.提示:连结MB ,证∠DMB =∠CMB .测试51.外,上,内. 2.以A 点为圆心,半径为R 的圆A 上.3.连结A ,B 两点的线段垂直平分线上. 4.不在同一直线上的三个点.5.内接三角形,外接圆,外心,三边的垂直平分线.6.内,外,它的斜边中点处. 7..4332R 8..3π2a 9.26cm . 10.20πcm . 11.略. 12.C . 13.D . 14.D . 15.B . 16.D .17.A 点在⊙O 内,B 点在⊙O 外,C 点在⊙O 上. 18.)25,1(--,作图略.测试61.D . 2.C . 3.C . 4.C . 5.D . 6.C . 7.72°.8.32°. 9.,cm 21045° 10.60°或120°. 11.提示:先证OD =OE . 12.4cm . 13.)0,32(A ,提示:连结AD . 14.略.15.∠CAD =30°,.πcm 6)(π6122==AO S 提示:连结OC 、CD . 测试71.三,相离、相切、相交.2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点.3.d >r ;d =r ;d <r .4.圆的切线垂直于过切点的半径.5.经过半径的外端并且垂直于这条半径的直线是圆的切线.6.过A 点且与直线l 垂直的直线上(A 点除外).7.(1)当cm 13600<<R 时;(2)cm 1360=R ;(3)当cm 1360>R 时. 8.提示:作PF ⊥OB 于F 点.证明PF =PE .9.直线DE 与⊙O 相切.提示:连结OA ,延长AO 交⊙O 于F ,连结CF .10.提示:连结OE 、OD .设OE 交BC 于F ,则有OE ⊥BC .可利用∠FEM +∠FME =。
【2014新人教版】九年级数学第二十四章圆检测题
19.已知:△ABC内接于⊙O,过点A作直线EF。
(1)如图,AB为直径,∠CAE=∠B,则可以证明EF是⊙O的。(只要求填空);
(2)如图,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线。(要求证明).
A.(0,3)B.(0, )C.(0,2)D.(0, )
10.如图,在△ABC中,∠BAC= ,AB=AC=2,以AB为直径的圆交
BC于D,则图中阴影部分的面积为( )
(A)1(B)2(C)1+ (D)2-
二.填空题:
11.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为.
A.P1< P2B.P1= P2C.P1> P2D.不能确定
6.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是()
A. B. C. D.
7.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺
次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积
20.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD。(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论。
21.如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,F在AD上,连结BE.(1)求△CDF的面积.(2).20°
4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()
人教版九年级数学(上)第二十四章《圆》单元检测卷含答案
人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。
(必考题)初中九年级数学上册第二十四章《圆》复习题(提高培优)(1)
一、选择题1.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 2.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°3.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( )A .2:1:2B .2:1:1C .2:1:1D .2:2:4 6.已知⊙O ,如图, (1)作⊙O 的直径AB ; (2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个 7.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 9.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .无法判断10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠11.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .6 12.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°13.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 14.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A .18cm 2B .218cm πC .27cm 2D .227cm π15.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题 16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.18.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .19.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.20.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.21.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.22.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.23.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.24.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.25.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.26.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.三、解答题27.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.28.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()2,1-.(1)画出将ABC 关于y 轴对称的111A B C △;(2)画出ABC 绕点O 的逆时针旋转90°得到的图形222A B C △,并求出在此旋转过程中点A 运动到点2A 所经过路径的长.29.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,∠C=90°,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A(0,−1),D(2,0),求⊙F 的半径;(3)请直接写出线段AG 、AD 、CD 三者之间满足的数量关系:___________________.30.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若25PC ,求⊙O 的半径.。
第24章《圆》单元复习测试题(含答案)
九年级数学第二十四章《圆》单元复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.已知AB是半径为6的圆的一条弦,则AB的长不可能是()A.8 B.10 C.12 D.142.已知⊙O的半径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.在圆内接四边形ABCD中,∠A=80°,则∠A的对角∠C=()A.20°B.40°C.80°D.100°4.如题4图,在⊙O中,AB=AC.若∠B=75°,则∠A的度数为()题4图A.15°B.30°C.75°D.60°5.如题5图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=36°,则∠D的度数为()题5图A.72°B.54°C.45°D.36°6.已知半径为9的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π7.如题7图,点I为△ABC的外心,且∠BIC=150°,则∠A的度数为()题7图A.70°B.75°C.140°D.150°8.如题8图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长,交⊙O于点C,连接AC.若AB =8,∠P=30°,则AC=()A .43B .42C .4D .39.小英家的圆形镜子被打碎了,她拿了如题9图(网格中的每个小正方形边长为1)所示的一块碎片到玻璃店,配制成形状、大小与原来 一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .310.如题10图,将矩形ABCD 绕点A 逆时针旋转90°得到矩形AEFG ,点D 的旋转路径为DG .若AB =2,BC =4,则阴影部分的面积为( )A .π2B .8π3C .4π3+43D .4π3+23二、填空题(本大题7小题,每小题4分,共28分)11.已知⊙O 的半径为5cm ,点P 在⊙O 内,则OP ________5cm.(填“>”“<”或“=”) 12.如题12图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长是__________.13.如题13图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,若P A =6cm ,C 是AB 上一动点(点C 与A ,B 两点不重合),过点C 作⊙O 的切线,分别交P A ,PB 于点D ,E ,则△PED 的周长是________cm.14.如题14图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =________.题14图15.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝处忽略不计),则这个圆锥的底面圆的半径为________.16.如题16图,AB 是⊙O 的弦,AB =8,C 是⊙O 上一动点,且∠ACB =45°.若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.题16图17.如题17图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,直线MN 与l 1相交于点M ,与l 2相交于点N ,⊙O 的半径为1,∠1=60°,直线MN 从图中位置向右平移.下列结论:①l 1和l 2的距离为2;②MN =433 ;③当直线MN 与⊙O 相切时,∠MON =90°;④当AM +BN =433 时,直线MN 与⊙O 相切.其中正确的结论是____________.(填序号)题17图三、解答题(一)(本大题3小题,每小题6分,共18分)18.如题18图,点A ,B ,C ,D 在⊙O 上,BD =AC .求证:AB =CD .题18图19.用铁皮制作如题19图所示的圆锥形容器盖,求这个容器盖所需铁皮的面积(结果保留π),并求制作容器盖的扇形的圆心角.题19图20.如题20图,在△ABC 中,AB =AC .(1)求作一点P ,使得点P 为△ABC 外接圆的圆心;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AP ,BP ,延长AP 交BC 于点D ,若∠BAC =50°,求∠PBC 的度数.题20图四、解答题(二)(本大题3小题,每小题8分,共24分)21.如题21图,隧道的截面由半圆和矩形构成,矩形的长BC为12m,宽AB为3m,若该隧道内设双行道,现有一辆货运卡车高8m,宽2.3m,则这辆货运卡车能否通过该隧道?请说明理由.题21图22.如题22图,已知△ABC内接于⊙O,AD为⊙O的直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°试判断α与β之间的关系,并给出证明.题22图23.在如题23图所示的网格中,每个小正方形的顶点叫格点,且边长均为1,△ABC的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB,AC于点E,F.(1)求△ABC三边的长;(2)求图中由线段EB,BC,CF及EF所围成的阴影部分的面积.题23图五、解答题(三)(本大题2小题,每小题10分,共20分)24.如题24图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E,D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①AB是⊙O的切线;②∠EDC=∠FDC.(2)求CD的长.题24图25.阅读以下材料,并回答问题:若一个三角形两边平方的和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.(1)命题“等边三角形一定是奇异三角形”是________命题;(填“真”或“假”)(2)在△ABC中,∠C=90°,△ABC的内角∠A,∠B,∠C所对边的长分别为a,b,c,且b>a,若Rt △ABC 是奇异三角形,求a ∶b ∶c 的值;(3)如题25图,已知AB 是⊙O 的直径,C 是⊙O 上一点(点C 与点A ,B 不重合),D 是ADB 的中点,点C ,D 在直径AB 的两侧,若存在点E ,使得AE =AD ,CB =CE .求证:△ACE 是奇异三角形.题25图参考答案1.D 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.D 11.< 12.63 13.12 14.36° 15.1 16.42 17.①②③④ 18.证明:∵BD =AC ,∴BD =AC .∴BD -AD =AC -AD ,即AB =CD .∴AB =CD .19.解:由图可知圆锥的底面圆的直径为80 cm ,母线长为50 cm , ∴圆锥的底面圆的周长为80π cm.∴圆锥形容器盖的侧面展开图的弧长为80π cm. ∴面积为 12 ×80π×50=2 000π(cm 2).设制作容器盖的扇形的圆心角为n °. ∴n π×50180=80π.解得n =288.答:这个容器盖所需铁皮的面积为2 000π cm 2,制作容器盖的扇形的圆心角为288°. 20.解:(1)如答题20图,点P 即为△ABC 外接圆的圆心.答题20图(2)∵点P 为△ABC 外接圆的圆心,AB =AC ,∠BAC =50°, ∴AD ⊥BC ,∠BAP =∠CAP =25°,P A =PB . ∴∠BPD =2∠BAP =50°,∠BDP =90°. ∴∠PBD =90°-50°=40°,即∠PBC =40°.21.解:这辆货运卡车能通过该隧道.理由如下:如答题21图,设点O 为AD 的中点,在AD 上取点G ,使得OG =2.3,过点G 作GF ⊥BC 于点F ,延长FG 交半圆于点E ,则GF =AB =3,半圆的半径OE =12 AD =12BC =6.答题21图∴EG =OE 2-OG 2 =62-2.32 ≈5.54.∴EF =EG +GF ≈5.54+3=8.54>8. ∴这辆货运卡车能通过该隧道. 22.解:β-α=90°.证明:如答题22图,连接BD .答题22图∵AD 为⊙O 的直径,∴∠DBA =90°. ∵∠DAB =α,∴∠D =90°-α. ∵B ,D ,A ,C 四点共圆, ∴∠ACB +∠D =180°. ∵∠ACB =β,∴β+90°-α=180°.∴β-α=90°.23.解:(1)由图可得AB =22+62 =210 ,AC =62+22 =210 , BC =42+82 =45 .(2)由(1)得AB 2+AC 2=(210 )2+(210 )2=(45 )2=BC 2. ∴∠BAC =90°. 如答题23图,连接AD ,则AD ⊥BC ,BD =DC =12BC =25 .答题23图∴AD =AB 2-BD 2 =(210)2-(25)2 =25 . ∴S 阴=S △ABC -S 扇形AEF =12 AB ·AC -90π360 ·AD 2=20-5π.24.(1)证明:①如答题24图,连接OC .∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 为⊙O 的半径, ∴AB 是⊙O 的切线.②∵OA =OB ,CA =CB ,∴∠AOC =∠BOC . ∴EC =FC .∴∠EDC =∠FDC .答题24图(2)解:如答题24图,过点O 作ON ⊥DF 于点N ,延长DF 交AB 于点M . ∵ON ⊥DF ,OD =OF ,DF =6, ∴DN =NF =12 DF =3,∠DON =∠FON .在Rt △ODN 中,OD =12 DE =5,DN =3,∴ON =OD 2-DN 2 =4.∵∠AOC =∠BOC ,∠DON =∠FON , ∴∠BOC +∠FON =12 ×180°=90°.∴∠OCM =∠CON =∠MNO =90°. ∴四边形OCMN 是矩形.∴CM =ON =4,MN =OC =12DE =5.在Rt △CDM 中,CM =4,DM =DN +MN =8, ∴CD =DM 2+CM 2 =82+42 =45 . 25.(1)解:真. (2)解:∵∠C =90°,∴a 2+b 2=c 2.①∵Rt △ABC 是奇异三角形,且b >a ,∴a 2+c 2=2b 2.② 由①②,得b =2 a ,c =3 a .∴a ∶b ∶c =1∶2 ∶3 . (3)证明:如答题25图,连接BD .答题25图∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,AC2+CB2=AB2,在Rt△ADB中,AD2+BD2=AB2.∵点D是ADB的中点,∴AD=BD.∴AD=BD.∴AB2=AD2+BD2=2AD2.∴AC2+CB2=2AD2.又CB=CE,AE=AD,∴AC2+CE2=2AE2.∴△ACE是奇异三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆测试题F列关系成立的是(
)
1.下列命题中,假命题是()
A.两条弧的长度相等,它们是等弧
C.直径所对的圆周角是直角角的
2倍.
2 •若圆的一条弦把圆分成度数的比为
()
A• S = S2 = S3,B。
s<):::
S2:::S3
C. S-i S2 S3D。
S2S3 S|
B.
D.
B。
90
等弧所对的圆周角相等
一条弧所对的圆心角等于它所对圆周
3的两段弧,则劣弧所对的圆周角等于
C。
135 D。
270
3•已知正六边形的周长是12a,则该正六边形的半径是()A 6a B. 4a C. 2a
D. a
2
4•如图1, )A.外离B相切 C.相交 D.内含
圆与圆的位置关系是
5.如图2,LI代_B,_C,_D,LI E的半径都是1,顺次连结这些圆心得到五边形
ABCDE ,则图中的阴影部分面积之和为
(
A.二
3 二
B.—
2
C2:
5
D. 一
2
6•过L O内一点N的最长弦为6,最短的弦长为4,那么ON的长为()A 3 B.2
7•若正三角形、正方形、正六边形的周长相等,它们的面积分别是S(,S2,S3,则
8. 平行四边形的四个顶点在同一个圆上,则该
平行四边形一定是()A.正方形 B 菱形C.矩形D.等腰梯形
9. 在半径等于5cm的圆内有长为3cm的
弦,则此弦所对的圆周角为()
A. 120 B 30 或120 C. 60 D60 或120
10.已知L 01、L O2丄O3两两外切,且半径分别为2cm、3cm > 10cm,贝[OOO3
的形状是()A锐角三角形
等腰直角三角形
B.直角三角形C钝角三角形 D.
二、填空题(每小题3分,共30分)
11.如图3,已知AB为L O的直径,AB— CD,垂足为E,由图你还能知道哪些正确的
结论?请把它们一一写出来 . _____________________ .
图3
12.如图4, AB是L O的直径,C为圆上一点,A= 60:,OD _ BC, D为垂足,且
OD=10,则AB= ______ ,BC= ______ .
13.如图5,已知L O 中,AB = BC ,且AB: AMC = 3: 4,则N AOC = ______
14.如图6,在条件:①Z COA=NAOD=60‘;②AC=AD=OA③点E分别是AO CD的
中
占.
I 八
\、
,
④0A_ CD,且• ACO =60:中,能推出四边形OCAD是菱形的条件有
c
图6 图7
15.为了改善市区人民的生活环境 ,某市建设污水管网工程,某圆柱型水管的直径为
100cm ,截面如图7所示,若管内的污水的面宽 AB =60cm ,则污水的最大深度为
16丄O 的直径为11cm ,圆心到一直线的距离为 5cm ,那么这条直线和圆的位置关 系是 ;若圆心到一直线的距离为 5.5c m ,那么这条直线和圆的位置关系是
17. 若两圆相切,圆心距为8cm ,其中一个圆的半径为12cm ,则另一个圆的半径为 18. ___________________________________ 正五边形的一个中心角的度数是 , 19. 已知L 01和L 02的半径分别为2和3,如果它们既不相交又不相切 ,那么它们的圆
心距d 的取值范围是 _________ .
20已知在同一平面内圆锥两母线在顶点处最大的夹角为 60,母线长为8,则圆锥的
侧面积为 ______ .
三.解答题(共90分)
21. ( 6分)如图8,已知L ABC 中,C =90[AC=3,BC=4,已点C 为圆心作LI C ,半 径为r .
(1)当r 取什么值时,点A 、B 在L C 外?
(2 )当r 取什么值时,点A 在L C 内,点B 在L C 外? 22.
( 6分)如图9,两个同心圆,作一直线交大圆于 A 、B ,
交小圆于C 、D , AC
与BD 有何关系?请说明理由.
23. ( 6分)如图10,PA 、PB 是L O 的两条切线,A 、B 是切点,AC 是LI O 的直 24. ( 8分)如图11,P 是L O 的直径AB 上的一点,PC_ AB ,PC 交L O 于C , -OCP 的平分线交L O 于D ,当点P 在半径OA (不包括O 点和A 点)上移动时, 试探究
AD 与BD 的大小关系
径,.BAC =35:,求.P 的度数.
C
B
正八边形花布来做一个形状为正八边形的风筝?
28( 10分)如图14,已知一底面半径为r ,母线长为3r 的圆锥,在地面圆周上有 一蚂蚁位于A 点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它 指出一条爬行最
短的路径,并求出最短路径的长
26.( 8分)如图13, L 0的直径AB 和弦CD 相交于点E ,已知AE=1,EB=5, DEB
=60,求 CD 的长.
备用题(每题10分,共30分)
1.如图1,L ABC 中,AB=AC ,BD 是.ABC 的平分线,A 、B 、D 三点的圆 与BC 相交于点E ,你认为AD=CE 吗?如果不能,请举反例;如果 AD=CE ,请说 明理由.
27.( 8分)现有边长为a 的正方形花布,问怎样剪裁,才能得到一个面积最大的
25 ( 8分)•如图12, OC=BC.求AB 的长.
L O 的半径OA=5,点C 是弦AB 上的一点,且 0C _ AB ,
2•如图2,在直角梯形ABCD中,AB // CD,以AD为直径的圆切BC于E, 谅解OB、0C,试探究0B与0C有何位置关系?
3如图所示,铁路MN和公路PQ在点0处交汇,/ QON = 30°,在点A处有栋居民楼,AO = 200m.如果火车行驶时,周围200m以内会受到噪音影响,那么火车在铁路MN上沿ON 方向行驶时,居民楼是否会受到影响?如果火车行驶的速度是每小时72km,居民楼受噪音影响的时间约为多少秒?(精确到0.1秒)。