第01讲 简单事件的概率(知识解读+真题演练+课后巩固)(原卷版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第01讲简单事件的概率
1.了解什么是必然发生事件、不可能发生事件和随机事件.
2.在具体情境中了解概率的意义,体会概率是描述不确定事件发生可能性大小的数学概念,理解概率取值范围的意义.
3.能够运用列举法(包括列表、画树状图)计算简单事件发生的概率.
4.能够通过试验,获得事件发生的频率,知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系.
5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.
知识点1:事件类型
○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
○2不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.
○3不确定事件:许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件).说明:(1)必然事件、不可能事件都称为确定性事件.
(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件,那么0<P(A)<1
知识点2:概率
1.定义:一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) .
(1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。
(2)概率指的是事件发生的可能性大小的的一个数值。
2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为
P(A) = m
n
.
(1)一般地,所有情况的总概率之和为1。
(2)在一次实验中,可能出现的结果有限多个.
(3)在一次实验中,各种结果发生的可能性相等.
(4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。
(5)一个事件的概率取值:0≤P(A)≤1
当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1
不可能事件的概率为0,即P(不可能事件)=0
随机事件的概率:如果A为随机事件,则0<P(A)<1
(6)可能性与概率的关系
事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.
2.求概率方法:
(1)列举法:通常在一次事件中可能发生的结果比较少时,我们可以把所有可能产生的结果全部列举出来,并且各种结果出现的可能性相等时使用。
等可能性事件的概率可以用列举法而求得。
但是我们可以通过用列表法和树形图法来辅助枚举法。
(2)列表法:当一次实验要涉及两个因素(例如掷两个骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果时使用。
(3)列树形图法:当一个实验要涉及3个或更多的因素(例如从3个口袋中取球)时,列表就不方便了,为不重不漏地列出所有可能的结果时使用。
知识点3:频率与概率
1、频数:在多次试验中,某个事件出现的次数叫频数
2、频率:某个事件出现的次数与试验总次数的比,叫做这个事件出现的频率
3、一般地,在大量重复试验中,如果事件A发生的频率m
n
会稳定在某
个常数p附近,那么,这个常数p就叫作事件A的概率,记为P(A)=P。
知识点4:概率的简单应用
概率与人们生活密切相关,能帮助我们对许多事件作出判断和决策。
【题型1:可能性大小】
【典例1】如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()
A.1号B.2号C.3号D.4号
【变式1-1】一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是()
A.摸出的是红球B.摸出的是黑球
C.摸出的是绿球D.摸出的是白球
【变式1-2】下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯
B.掷一枚图钉,落地后钉尖“朝上”和“朝下”
C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上
D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”
【变式1-3】下列成语或词语所反映的事件中,发生的可能性大小最小的是()A.守株待兔B.旭日东升C.瓜熟蒂落D.夕阳西下
【典例2】浙教版九年级上册课本第41页中的一道题如图所示,请你仔细阅读后认真解答.你的答案是()
笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?
A.12B.6C.5D.2
【变式2-1】如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B地到C地有3条陆路可供选择,走空中,从A地不经B地直接到C地,则从A地到C地可供选择的方案有()
A.20种B.8种C.5种D.13种
【变式2-2】甲、乙、丙、丁四位同学参加一次节日活动,很幸运的是他们都能得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁依次取得第2到第4件礼物,当然取法各种各样,那么他们共有种不同的取法.
【题型2:概率】
【典例3】一个不透明袋子中有3个红球,4个白球,2个黑球,它们除颜色外其余都相同.从中任意摸出一个球是白球的可能性是()
A.B.C.D.
【变式3-1】如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是()
A.B.C.D.
【变式3-2】一个游戏转盘如图,四个扇形的圆心角度数分别是36°,72°,108°,144°.则转盘自由转动停止后,指针落在圆心角为36°的扇形区域的概率为()
A.B.C.D.
【变式3-3】(2021春•垦利区期末)如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号1﹣5的小正方形中任意一个涂黑,则3个被涂黑的正方形组成的图案是一个轴对称图形的概率是()
A.1B.C.D.
【题型3:用列举法求概率】
【典例4】.广东省2021年的高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史,则她在“2”中选地理、生物的概率是()
A.B.C.D.
【变式4-1】在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()
A.B.C.D.
【变式4-2】随着“新冠”疫情防控进入常态化,为了做好个人防护,学校要求学生每天上、放学途中必须佩戴口罩.小明和小亮两人家里都购买了相同数量的淡蓝色和白色一次性医用防护口罩,并且两人每天都随机选择口罩颜色,则某天上学小明和小亮都选择佩戴白色口罩的概率是()
A.B.C.D.
【变式4-3】从1,2,3这3个数中随机抽取两个数相加,和为偶数的概率是()A.B.C.D.
【题型4:用频率估计概率】
【典例5】某小组做“用频率估计概率”的试验时,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()
A.一个质地均匀的正六面体骰子,向上的面点数是偶数
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.袋子中有除颜色外其余都相同的1个红球和2个黄球,从中任取一球是黄球
D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃
【变式5-1】掷一枚质地均匀的硬币.硬币落地后,会出现如图1的两种情况.
图2是计算机模拟抛掷一枚硬币试验的折线图下面判断正确的是()
A.当抛掷的次数为300次时,正面朝上的次数大于200次
B.当抛掷的次数为500次时,记录数据为0.48,所以随机掷一枚硬币“正面朝上”的概率为0.48
C.当抛掷的次数在2000次以上时,“正面朝上”的频率总在0.5附近摆动,显示出频率的稳定性,由此可估计随机掷一枚硬币“正面朝上”的概率为0.5
D.当抛掷次数大于3000次时,随机掷一枚硬币“正面朝上”的频率一定为0.5
【变式5-2】某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最优可能的是()
A.暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球
B.掷一枚硬币,正面朝上
C.掷一个质地均匀的正六面骰子,向上一面的点数是2
D.从一副扑克牌中任意抽取1张,这张牌是“红心”
【典例6】一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为()
A.35个B.60个C.70个D.130个
【变式6-1】一个不透明的袋子中有黄色和若干个白色的两种小球,这些球除颜色外其他完全相同,已知黄球有9个,每次摸球前先将袋子中的球摇匀,任意摸出一个球记下颜色后,放回袋中,再摇匀,再摸,通过大量重复摸球后发现,摸到黄球的频率稳定在30%,估计袋子中白球的个数是()
A.15B.18C.20D.21
【变式6-2】如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个面积为20cm2的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()
A.6cm2B.7cm2C.8 cm2D.9cm2
【变式6-3】在一个不透明的装子中有若干个除颜色外完全相同的小球,如果其中有6个红球,且摸出红球的概率是,则袋子中小球的总个数是()
A.25B.40C.60D.30
【题型5:概率的简单应用】
【典例7】小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.
【变式7-1】某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是()
A.3B.4C.1D.2
【变式7-2】在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()
A.三边中线的交点B.三边垂直平分线的交点
C.三条角平分线的交点D.三边上高的交点
【变式7-3】小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,
当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?
【典例8】为提高教育质量,落实立德树人的根本任务,中共中央办公厅、国务院办公厅颁布了“双减”政策.为了调查学生对“双减”政策的了解程度,某学校数学兴趣小组通过网上调查的方式在本校学生中做了一次抽样调查,调查结果共分为四个等级:
A.非常了解;B.比较了解;C.基本了解;D.不了解.
根据调查结果,绘制了如图的统计图,结合统计图,回答下列问题:
(1)若该校有学生2000人,请根据调查结果估计这些学生中“比较了解”“双减”政策的人数约为多少?
(2)根据调查结果,学校准备开展关于“双减”政策宣传工作,要从某班“非常了解”
的小明和小刚中选一个人参加,现设计了如下游戏来确定,具体规则是:在一个不透明的袋中装有2个红球和2个白球,它们除了颜色外无其他差别,从中随机摸出两个球,若摸出的两个球颜色相同,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
【变式8-1】(2021•南充)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生自选项目长跑掷实心球
小红959095
小强909595
①补全条形统计图.
②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),
分别计算小红和小强的体育中考成绩.
【变式8-2】4张相同的卡片分别写有数字1,2,3,4,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1,2,3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出一个球,将摸到的球的标号作为减数.
(1)用列表法或树状图求这两个数的差为负数的概率;
(2)规定:当抽到的两个数的差为非负数时,甲获胜;否则,乙获胜.这个规定公平吗?
如果不公平,请设计一个公平的规定.
【变式8-3】端午节是中国首个入选世界非遗的节日,民间有吃粽子,挂艾草,赛龙舟等习俗.端午前夕,亿品超市为了解市民对白味粽、蛋黄粽、鲜肉粽、八宝粽(分别用A、B、
C、D表示)这四种不同口味粽子的喜爱程度,以达到按需进货的目的,对某居民区的市
民进行了抽样调查,并根据调查结果绘制了两幅不完整的统计图.
(1)本次参加抽样调查的居民共有人;
(2)将两幅统计图补充完整;
(3)端午节这天,妈妈给小轩轩买了超市最畅销的白味粽和八宝粽各两个,请用“列表法”或“画树状图”的方法,求出小轩轩选出的两个粽子恰好是一个白味粽和一个八宝粽的概率.
1.(2023•广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”
“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()
A.B.C.D.2.(2023•河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()
A.(黑桃)B.(红心)C.(梅花)D.(方块)3.(2023•绍兴)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,
从中任意摸出1个球,则摸出的球为红球的概率是()
A.B.C.D.4.(2023•泸州)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()
A.B.C.D.5.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是()
A.B.C.D.6.(2023•深圳)小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》
四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为
.
7.(2023•扬州)某种绿豆在相同条件下发芽试验的结果如下:
每批粒
数n
2510501005001000150020003000
发芽的
频数m
2494492463928139618662794发芽的
频率
(精确
到
0.001)
1.0000.8000.9000.8800.9200.9260.9280.9310.9330.931
这种绿豆发芽的概率的估计值为(精确到0.01).
1.(2023•鹿城区校级三模)在一个不透明的袋中装有9个只有颜色不同的球,其中2个白球、3个黄球和4个红球.从袋中任意摸出一个球,是黄球的概率为()
A.B.C.D.
2.(2023春•巴东县期中)动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,那么,现年20岁的这种动物活到25岁的概率是()A.0B.1C.D.3.(2023•临沂一模)我市举办的“喜迎党的二十大,奋进新征程——乡村振兴成果展”吸引了众多市民前来参观,如图所示的是该展览馆出入口的示意图.小颖B入口进D出口的概率是()
A.B.C.D.4.(2023•鼓楼区校级模拟)某射击运动员在同一条件下射击,结果如表所示:根据频率的稳定性,这名运动员射击一次击中靶心的概率约是()
射击总次数n1020501002005001000击中靶心的次数m8174079158390780击中靶心的频率0.80.850.80.790.790.780.78 A.0.78B.0.79C.0.8D.0.85 5.(2023•集美区模拟)不透明的盒子里装有分别标记了数字1,2,3,4,5,6,7,8,9,10的10个小球,这10个小球除了标记的数字不同之外无其他差别.小华进行某种重复摸球试验,从不透明的盒子中随机摸出一个小球,记录小球上的数字后放回袋中,如图是小华记录的试验结果,根据以上信息,小华进行的摸球试验可能是()
A.摸出标记数字为偶数的小球
B.摸出标记数字为11的小球
C.摸出标记数字比6大的小球
D.摸出标记数字能被3整除的小球
6.(2023•武汉模拟)有三把不同的锁和四把钥匙,其中三把钥匙分别能打开三把锁,第四把钥匙不能打开这三把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是()A.B.C.D.7.(2023•鹿城区校级三模)投掷一枚质地均匀的骰子(各面数字分别为1到6),朝上的数字不小于4的概率是()
A.B.C.D.8.(2023•全椒县一模)如图,电路图有4只未闭合的开关,一个电源和一个小灯泡,已知电路图上的每个部分都能正常工作,任意闭合其中两只开关,使得小灯泡发光的概率为()
A.B.C.D.9.(2023•瑶海区校级一模)九年级同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()
A.抛一枚硬币,正面朝上的概率
B.掷一枚正方体的骰子,出现点数是3的倍数的概率
C.将一副新的扑克牌(54张)洗匀后,随机抽一张,抽出牌上的数字为“9”的概率D.从装有3个红球和1个白球(4个球除颜色外均相同)的不透明口袋中,任取一个球恰好是白球的概率
10.(2023春•天宁区校级期中)在一个不透明的盒子中装有红球和白球共30个,这些球除颜色外无其它差别,随机从盒子中摸出一个球,记下球的颜色后,放回并摇匀.通过大量的实验后发现摸出白球的频率稳定在0.4,则盒子中白球的个数可能是()A.4B.8C.12D.16 11.(2023•兰考县一模)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),开元同学想了解该图案的面积是多少,他采取了以下办法:用一个面积为200cm2的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()
A.50cm2B.55cm2C.60cm2D.110cm2 12.(2023•来安县二模)某学校为了解七年级学生每天的课外活动情况,从七年级学生中随机抽取若干名学生进行调查.按“课程延伸”“文娱活动”“体育训练”和“自主提升”四项绘制成如下统计图(图1、图2)请根据图中的信息解答下列问题:
(1)此次抽查的学生数是多少?并补全条形统计图;
(2)在扇形统计图中,“甲”部分所对的圆心角的度数是多少?
(3)平平每天的课外活动是“课程延伸”“文娱活动”或“体育训练”中的一项,强强每天的课外活动是“课程延伸”“体育训练”或“自主提升”中的一项,那么某天平平和强强选择的课外活动项目一样的概率是多少?
13.(2023春•天宁区校级期中)随着通讯技术迅猛发展,人与人之间的沟通方式更多样,更便捷.为此,李老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种).某校九年级(1)班同学利用周末对全校师生进行了随机访问,并将统计结果绘制成两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有人,在扇形统计图中,表示“微信”的扇形圆心角的度数为;
(2)将条形统计图补充完整;
(3)如果该校有6000人在使用手机:
①在该校师生中随机抽取一人,用频率估计概率,抽取的恰好使用“QQ”的概率是.
②请估计该校最喜欢用“微信”进行沟通的人数;
14.(2022秋•裕华区校级期末)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理
(得分用x表示):
A:70≤x<75,B:75≤x<80,C:80≤x<85,
D:85≤x<90,E:90≤x<95,F:95≤x≤100,
并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:
已知八年级测试成绩D组的全部数据如下:
86,85,87,86,85,89,88:
请根据以上信息,完成下列问题:
(1)n=,a=;
(2)八年级测试成绩的中位数是;
(3)若测试成绩不低于95分,则认定该学生对冬奥会关注程度高.从这几名对冬奥会关注程度非常高的学生中随机抽取两人去参加全市奥运会知识竞赛,求恰好抽中七、八年级各一名学生的概率.。