2016数学中考分类汇总二次函数图像四

合集下载

二次函数综合专题分类解析

二次函数综合专题分类解析

二次函数综合专题分类解析
二次函数与各种几何问题的结合是代数几何综合的常见考察,每年中考都会有类似的题型出现。

数形结合在此类问题中大放光彩,成为一个必不可少的解题思想。

今天来盘点一下二次函数抛物线与几何结合在一起有哪些常见的题型。

一、二次函数与面积
1.纵割法(铅锤法)
2.等积变形
3.倍分面积问题
二、二次函数与角度
1.角度与等腰三角形
2.角度与全等三角形
③45°角度构造
三、二次函数与特殊图形
1.二次函数与等腰三角形
2.二次函数与直角三角形
3.二次函数与平行四边形
4.二次函数与正方形
四、二次函数与定点
1.与参系数无关
2.用几何条件求定点
3.对称点与定点
五、二次函数与定值
1.等长线段
2.线段之和
3.线段之差
4.线段之积
5.线段之比
六、二次函数与最值问题
1.配方法→建立二函数最值模型
2.化斜为直法
七、抛物线的平行弦问题
1.横坐标之差为定值
2.线段差为定值
3.面积差为定值
八、抛物线的切线问题
666。

2016年全国中考数学真题分类 二次函数概念、性质和图象(习题解析)

2016年全国中考数学真题分类 二次函数概念、性质和图象(习题解析)

2016年全国中考数学真题分类 二次函数概念、性质和图象一、选择题1. (2016兰州,8,4分)二次函数y=x 2-2x+4化为y=a(x-h)2+k 的形式,下列正确的是( ) A. y=(x-1)2+2 B. y=(x-1)2+3 C. y=(x-2)2+2 D. y=(x-2)2+4 【答案】B2.(2016四川南充,5,3分)抛物线y=x 2+2x+3的对称轴是( )A .直线x=1B .直线x=﹣1C .直线x=﹣2D .直线x=2【答案】B3.(2016年湖北荆门,10,3分)若二次函数y =x 2+m x 的对称轴是x =3,则关于x 的方程x 2+m x =7的解为( )A .x 1=0,x 2=6B .x 1=0,x 2=6C .x 1=0,x 2=6D .x 1=0,x 2=6 [答案]D4.(2016·山西,8,3分)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y 答案:D5.(2016浙江衢州,7,3分)二次函数图像上部分点的坐标对应值列表如下:x ....-3 - 2 -1 0 1 ....y ....-3 -2 -3 -6 -11....则该函数图像的对称轴是( )A .直线x =- 3B .直线x =-2C .直线x =- 1D .直线x =0 【答案】B6.(2016浙江绍兴,9,4分)抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =O(l ≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .10【答案】A7.(2016湖北黄石,9,3分)以x 为自变量的二次函数()12222-+--=b x b x y 的图象不经过第三象限,则实数b 的取值范围是( ) A.45≥b B.1≥b 或 1-≤b C.2≥b D. 21≤≤b 【答案】A8.(2016湖北孝感,10,3分)如图是抛物线2y ax bx c =++(0a ≠)的部分图象,其顶点坐标为)1(n ,,且与x 轴的一个交点在点)0 3(,和)0 4(,之间.则下列结论: ①0>+-c b a ;②03=+b a ;③)(42n c a b -=;④一元二次方程12-=++n c bx ax 有两个不相等的实数根. 其中正确结论的个数是 A .1B .2C .3D .4【答案】C9.(2016湖南长沙,12,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx+c+2=0无实数根;③a ﹣b+c ≥0;④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个C .3个D .4个【答案】D10.(2016山东烟台,11,3分)二次函数y=ax 2+bx+c 的图象如图所示,下列结论: ①4ac <b 2;②a+c >b ;③2a+b >0. 其中正确的有( ))10(题第xy O)1(n ,1=x 342A .①②B .①③C .②③D .①②③[答案] B11.(2016广东广州,9,3分)对于二次函数y =-14x 2+x -4,下列说法正确的是( )A 、当x>0,y 随x 的增大而增大B 、当x=2时,y 有最大值-3C 、图像的顶点坐标为(-2,-7)D 、图像与x 轴有两个交点[答案] B12.(2016浙江宁波,11,4分)已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大 【解答】D .13. (2016兰州,13,4分)二次函数y=ax 2+bx+c 的图像如图所示,对称轴是直线 x=-1,有以下结论:①abc>0;②4ac<b 2;③2a+b=0;④a-b+c>2.其中正确的结论的个 数是( )A. 1B. 2C. 3D. 4 (第13题) 【答案】C14. (2016兰州,11,4分)点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=-x 2+2x+c的图像上,则y 1,y 2,y 3的大小关系是( )A. y 3 > y 2 >y 1B. y 3>y 1=y 2C. y 1>y 2>y 3D. y 1=y 2>y 3 【答案】D15.(2016四川自贡,10,4分)二次函数y=ax 2+bx+c 的图象如图,反比例函数y=与正比例函数y=bx 在同一坐标系内的大致图象是( )【答案】C .16.(2016湖南益阳,7,5分)关于抛物线221y x x =-+,下列说法错.误.的是 ( ) A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线1x =D .当1x >时,y 随x 的增大而减小【答案】D17.(2016湖南株洲,10,3分)已知二次函数2(0)y ax bx c a =++>的图象经过点A(-1,2),B (2,5)顶点坐标为(,)m n ,则下说法错误的是( )A 、3c <B 、12m ≤ C 、2n ≤ D 、1b <【答案】B18.(2016四川成都,9,3分)二次函数y=2x 2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线x=1D .抛物线与x 轴有两个交点【答案】D19.(2016福州,11,3分)已知点A (-1,m ),B (1,m ),C (2,m +1),在同一个函数图象上,这个函数图象可以是A .B .C .D . 【答案】C20.(2016四川广安,10,3分)已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根.下列结论:①b 2-4ac <0;②abc >0;③a -b +c <0;④m >-2.其中,正确的个数有( ) A .1 B .2 C .3 D .4【答案】B .21.(2016聊城,7,3分)二次函数c bx ax y ++=2的图像如图所示,则一次函数b ax y +=与反比例函数xcy =的图像可能是( )【答案】C22.(2016山东枣庄,12,3分)已知二次函数cbxaxy++=2(0≠a)的图象如图所示,给出以下四个结论:①0=abc;②0>++cba;③ba>;④042<-bac.其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】C23.(2016四川巴中,10,3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()A.1 B.2 C.3 D.4【答案】B24.(2016山东临沂, 13,3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:x…-5 -4 -3 -2 -1 0 …y… 4 0 -2 -2 0 4 …下列说法正确的是( )O23xy(第10题图)-x=第12题图A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是x =-52【答案】D25. (2016山东滨州,10,3分)抛物线y=22x 与坐标轴的交点个数是( ) A.0 B.1 C.2 D.3 答案:C.26. (2016山东滨州,11,3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=2x +5x+6,则原抛物线的解析式是( )A.y=-2511()24x --B.y=-2511()24x +-C.y=-251()24x --D.y=-251()24x ++答案:A. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 二、填空题1.(2016湖南益阳,10,5分)某学习小组为了探究函数2||y x x =-的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m = .【答案】0.75;2.1.(2016山东泰安,21,3分)将抛物线y=22(1)x -+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为_________. 答案:y=22(2)x +-2.3. (2016兰州,16,4分)二次函数y=x 2+4x-3的最小值是_____________________. 【答案】-74.(2016山东青岛,12,3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.答案:.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.(2016,山东淄博,21,8分)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A 的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得y=kx+b,解得k=2,b=2,∴直线AB的解析式为y=2x+2.25.(2016四川南充,25,10分)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y 轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣5,0),B(3,0),∴可以假设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入得到a=﹣,∴抛物线的解析式为y=﹣x2﹣x+5.(2)作FG⊥AC于G,设点F坐标(m,0),则AF=m+5,AE=EM=m+6,FG=(m+5),FM==,∵sin∠AMF=,∴=,∴=,整理得到2m2+19m+44=0,∴(m+4)(2m+11)=0,∴m=﹣4或﹣5.5(舍弃),∴点Q坐标(﹣4,).(3)①当MN是对角线时,设点F(m,0).∵直线AC解析式为y=x+5,∴点N(m,m+5),点M(m+1,m+6),∵QN=PM,∴﹣m2﹣m+5﹣m﹣5=m+6﹣[﹣(m+1)2﹣(m+1)+5],解得m=﹣3±,∴点M坐标(﹣2+,3+)或(﹣2﹣,3﹣).②当MN为边时,MN=PQ=,设点Q(m,﹣ m2﹣m+5)则点P(m+1,﹣ m2﹣m+6),∴﹣m2﹣m+6=﹣(m+1)2﹣(m+1)+5,解得m=﹣3.∴点M坐标(﹣2,3),综上所述以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,3)或(﹣2+,3+)或(﹣2﹣,3﹣).2.(2016湖南益阳,21,12分)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.解:(1)∵抛物线顶点为(3,1)A ,设抛物线对应的二次函数的表达式为2(3)1y a x =-+, 将原点坐标(0,0)代入表达式,得13a =-. ∴抛物线对应的二次函数的表达式为:212333y x x =-+. (2)将0y = 代入212333y x x =-+中,得B 点坐标为:(23,0), 设直线OA 对应的一次函数的表达式为y kx =, 将(3,1)A 代入表达式y kx =中,得3k =, ∴直线OA 对应的一次函数的表达式为3y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为3y x b =+, 将B (23,0)代入3y x b =+中,得2b =- ,∴直线BD 对应的一次函数的表达式为32y x =-.由2321233y y x ⎧-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(3,3)-,将0x =代入32y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , 23OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆. ∴PO C O DQ C Q '=',253=,∴23PO ,∴ 点P 的坐标为23(.22.(2016浙江衢州,22,6分)已知二次函数y =x 2+x 的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x 2+x =1的根在图上近似地表示出来(描点), 并观察图象,写出方程x 2+x =1的根(精确到0.1). (2)在同一直角坐标中系中画出一次函数1322y x =+的图象,观察图象写出自变量x 取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在点P 上,写出平移后二次函数图象的函数表达式,并判断点P 是否在函数1322y x =+的图象上,请说明理由.(1)作图描点X 1 ≈ -1.6 , x 2 ≈ 0.6 (2)画直线x <-1.5或x >1 (3)平移方法不唯一如,先向上平移54个单位,再向作平移12个单位 平移后的顶点坐标P (-1,1)平移后表达式:y =(x +1)2+1或 y =x 2+2x +2 理由:把P 点坐标(-1,1)代入1322y x =+ 左边=右边,点P 在函数1322y x =+的图像上.3.(2016福州,27,13分) (13分)已知,抛物y =ax 2+bx +c (a ≠0)经过原点,顶点为A (h ,k ) (h ≠0).(1)当h =1,k =2时,求抛物线的解析式;(2)若抛物线y =tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式; (3)当点A 在抛物线y =x 2-x 上,且-2≤h <1时,求a 的取值范围.【答案】解:根据题意,设抛物线的解析式为y =a (x -h )2+k (a ≠0) (1)∵h =1,k =2. ∴y =a (x -1)2+2.∵抛物线经过原点,∴a+2=0,解得a=-2.∴y=+2(x-1)2+2.即y=-2x2+4x.(2)∵抛物线y=tx2 (t≠0)经过点A(h,k).∴k=th2,∴y=a(x-h)2+th2.∵抛物线经过原点,∴ah2+th2=0.∵k≠0,∴a=-t.点A在第一、二象限内的示意图如图所示.(3)∵点A (h,k) 在抛物线y=x2-x上.∴k=h2-h.∴y=a(x-h)2+h2-h,∵抛物线经过原点,∴ah2+h2-h=0.∵h≠0,∴a=1h=1,分两类讨论:①当-2≤h<0时,由反比例函数性质可知1h ≤-12.∴a≤-32;②当0≤h<1时,由反比例函数性质可知1h≥1.∴a>0.综上所述,a的取值范围是a≤-32或a>0.(2016,山东淄博,23,9分)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.解:(1)∵圆心O的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),∵O、Q、M在同一直线上,∴KOM =KOQ,∴=,∴m=,∵QO=QM,∴m2+()2=(m﹣t)2=(﹣t2)2,整理得到:﹣ t 2+t 4+t 2﹣2mt=0, ∴4t 4+3t 2﹣1=0, ∴(t 2+1)(4t 2﹣1)=0, ∴t 1=,t 2=﹣, 当t 1=时,m 1=, 当t 2=﹣时,m 2=﹣.∴M1(,),Q 1(,),M 2(﹣,),Q 2(﹣,). (3)设M (n ,n 2)(n >0), ∴N (n ,0),F (0,), ∴MF===n 2+,MN+OF=n 2+,∴MF=MN+OF .4.(2016聊城,25,12分)如图,已知抛物线y=ax 2+bx+c 经过点A (-3,0),B (9,0)和C (0,4)。

九种类型二次函数

九种类型二次函数

九种类型二次函数二次函数是一种经常出现在数学问题中的函数形式,具有以下一般形式:f(x) = ax^2 + bx + c。

其中,a、b和c是常数,a不能为0,x为自变量,f(x)为因变量。

在此基础上,根据a的正负和二次函数的开口方式,我们可以将二次函数分为以下九种类型,分别是:顶点在上方,开口向上;顶点在上方,开口向下;顶点在下方,开口向上;顶点在下方,开口向下;从坐标原点出发,开口向上;从坐标原点出发,开口向下;两个相等的根;无根;两个不相等的根。

下面将对这九种类型进行详细解析。

类型一:顶点在上方,开口向上这种情况下,a的值为正,表示抛物线开口向上,形状类似于一个U 形。

顶点是函数的最低点,可以通过计算顶点的坐标来确认抛物线的位置。

类型二:顶点在上方,开口向下这种情况下,a的值仍然为正,表示抛物线开口向下,形状仍然类似于一个U形。

顶点是函数的最高点。

类型三:顶点在下方,开口向上这种情况下,a的值为负,表示抛物线开口向上,形状类似于一个倒过来的U形。

顶点是函数的最低点。

类型四:顶点在下方,开口向下这种情况下,a的值仍然为负,表示抛物线开口向下,形状类似于一个倒过来的U形。

顶点是函数的最高点。

类型五:从坐标原点出发,开口向上这种情况下,a的值为正,表示抛物线开口向上,形状类似于一个V 形。

抛物线通过坐标原点。

类型六:从坐标原点出发,开口向下这种情况下,a的值仍然为正,表示抛物线开口向下,形状类似于一个V形。

抛物线也通过坐标原点。

类型七:两个相等的根这种情况下,二次函数图像与x轴有一个交点,也就是只有一个解。

可以通过求解二次方程ax^2 + bx + c = 0来找到这个相等的根。

类型八:无根这种情况下,二次函数图像与x轴没有交点,也就是没有实根。

可以通过求解二次方程ax^2 + bx + c = 0来确认是否有实根。

类型九:两个不相等的根这种情况下,二次函数图像与x轴有两个交点,也就是有两个不相等的实根。

2016年全国中考数学真题分类 二次函数的图象与性质(习题解析)

2016年全国中考数学真题分类 二次函数的图象与性质(习题解析)

2016年全国中考数学真题分类二次函数概念、性质和图象一、选择题10.(2016内蒙古呼和浩特,10,3分)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0【考点】根与系数的关系;二次函数的最值.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m ﹣1)2+(n﹣1)2有最小值,代入即可得到结论.【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.10.(2分)(2016•沈阳,10,2分)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.9.(2016四川攀枝花,9,3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【考点】二次函数图象与系数的关系.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【答案】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.12.(2016广西南宁,12,3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.7.(2016湖南常德,7,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【答案】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.11.(2016四川眉山,11,3分)若抛物线不动,将平面直角坐标系xoy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.2(2)5=-+y x=-+B.2(2)3y xC.21=+y xy x=-D.2410.(2016陕西10,3分)已知抛物线322+--=x x y 与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为 【 D 】A.21B. 55 C. 552 D. 221.(2016台湾,21)坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x 轴相交于P 、Q 两点,且PQ=6.若此函数图形通过(1,a )、(3,b )、(﹣1,c )、(﹣3,d )四点,则a 、b 、c 、d 之值何者为正?( ) A .a B .b C .c D .d【考点】抛物线与x 轴的交点.【分析】根据抛物线顶点及对称轴可得抛物线与x 轴的交点,从而根据交点及顶点画出抛物线草图,根据图形易知a 、b 、c 、d 的大小. 【答案】解:∵二次函数图形的顶点为(2,﹣1), ∴对称轴为x=2, ∵×PQ=×6=3,∴图形与x 轴的交点为(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0), 已知图形通过(2,﹣1)、(﹣1,0)、(5,0)三点, 如图,由图形可知:a=b <0,c=0,d >0. 故选:D .二、填空题18.(2016湖北荆州,18,3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1 .【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.16.(2016辽宁大连,16,3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B (m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.(2016•大庆,18,3分)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).三、解答题25.(2016•广东茂名,25,8分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G 为顶点的四边形是正方形时,请求出点M的坐标.【思路分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【答案】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G 为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).26.(2016四川眉山,26,11分)已知如图,在平面直角坐标系xoy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xoy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在⑵的条件下,请求出当||PM AM-的最大值时点M的坐标,并直接写出||PM AM-的最大值.【答案】(1)解:设抛物线的解析式为2y ax bx c=++∵A(1,0)、B(0,3)、C(-4,0),∴31640 a b cca b c++=⎧⎪=⎨⎪-+=⎩解之34a=-,94b=-,3c=,∴经过A、B、C三点的抛物线的解析式为239344y x x=--+…3分(2)∵OB=3,OC=4,∴BC=AC=5.当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到轴的距离等于OB.∴点P的坐标为(5,3).当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,∴当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形…6分(3)设直线PA的解析式为(0)y kx b k=+≠225xy=-⎧⎨=-⎩.∴53k bk b+=⎧⎨+=⎩. 解之34k=,34b=-.∴直线PA的解析式为3344y x=-……7分当点M与点P、A不在同一直线上时,根据三角形的三边关系||PM AM PA-<,当点M与点P、A在同一直线上时,||PM AM PA-=,∴当点M与点P、A在同一直线上时,||PM AM-的值最大,即点M为直线PA 与抛物线的交点……8分解方程组2334439344y xy x x⎧=-⎪⎪⎨⎪=--+⎪⎩得111xy=⎧⎨=⎩、22592xy=-⎧⎪⎨=-⎪⎩.∴点M的坐标为(1,0)或(-5,-92)时,||PM AM-的值最大……10分此时||PM AM-的最大值为5.……11分24. (2016湖南张家界,24,10分)已知抛物线2-3 (a0) 的图象与y轴交于点A(0,),顶点为B. (1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由。

初中干货-二次函数图像内容精讲汇总

初中干货-二次函数图像内容精讲汇总

九、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于 x 轴对称 y ax2 bx c 关于 x 轴对称后,得到的解析式是 y ax2 bx c ;
y a x h2 k 关于 x 轴对称后,得到的解析式是 y a x h2 k ;
第5页共6页
五、二次函数 y ax2 bx c 图象的画法
五点绘图法:利用配方法将二次函数 y ax2 bx c 化为顶点式 y a(x h)2 k ,确定其开口方向、对称 轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 y 轴的交点
0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、与 x 轴的交点 x1 ,0 , x2 ,0 (若与 x 轴没有交点,
第6页共6页
a 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物
线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物 线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后 再写出其对称抛物线的表达式.
2. 关于 y 轴对称 y ax2 bx c 关于 y 轴对称后,得到的解析式是 y ax2 bx c ;
2
2
y ax h
k 关于 y 轴对称后,得到的解析式是 y a x h
k ;
3. 关于原点对称 y ax2 bx c 关于原点对称后,得到的解析式是 y ax2 bx c ;
1. 一般式: y ax2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a(x h)2 k ( a , h , k 为常数, a 0 ); 3. 两根式: y a(x x1)(x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与 x 轴有交点,即 b2 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三 种形式可以互化.

二次函数的图像及性质ppt课件

二次函数的图像及性质ppt课件

同一数值时,这两个
7
函数的函数值之间有
6
什么关系?反映在图
象上,相应的两个点
5
之间的位置又有什么 4
关系?
3
y 2x2 1
(0,1)
2 y 2x2
1
24
函数y=2x2+1和y=2x2的图象有什么联系? 1、函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,
但顶点坐标不同,函数y= 2x2的图象的顶点坐标是(0,
6
y=2x²的图象有
5
什么关系?
4
y 2x2 1
3
(0,1)
2 y 2x2
1
23
x … –1.5 –1 –0.5 0 0.5 1 1.5 … y=2x2 … 4.5 2 0.5 0 0.5 2 4.5 … y=2x2+1 … 5.5 3 1.5 1 1.5 3 5.5 …
问题1:当自变量x取
y 1 (x 2)2 y 1 (x 2)2
2
2
观察三条抛物线的相互关系,并分别指
出它们的开口方向,对称轴及顶点.
6
y 1 x 22
2
5
4
y 1 x2 2
y 1 x 22
2
3
2
1
-8
-6
-4
-2 B
-1
2
4
6
37
在同一坐标系中作出下列二次函数:
y 1 x 2 y 1 (x 2)2
5
3、画函数图像的基本步骤是: 列表 、 描点 、 连线 。
6
7
1. y=ax2的函数图像
8
1、画函数y=x2的图像; 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:

二次函数图像与性质总结(含答案)

二次函数图像与性质总结(含答案)

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。

二次函数的图像

二次函数的图像
二次函数的图像
汇报人:
二次函数图像的形状 二次函数图像的平移 二次函数图像的对称变换 二次函数图像的翻折 二次函数图像的交点 二次函数图像的综合应用
二次函数图像的形状
开口方向
向上开口:二次项系数大于0
垂直于x轴:二次项系数等于0
添加标题
添加标题
向下开口:二次项系数小于0
添加标题
添加标题
水平线:一次项系数等于0
抛物线与坐标轴交点的应 用
抛物线在实际问题中的建 模应用
在数学竞赛中的应用
二次函数图像的综合应用可以解决数学竞赛中的代数问题。 通过分析二次函数图像,可以解决几何问题。 利用二次函数图像的性质,可以解决数列问题。 二次函数图像的综合应用在数学竞赛中具有广泛的应用价值。
在高中数学中的重要性
二次函数图像是高中数学的重要知识点,是理解和掌握函数性质的关键。 通过二次函数图像的综合应用,可以解决各种实际问题,提高数学应用能力。 二次函数图像在高中数学中占有重要地位,是高考数学的必考内容之一。 掌握二次函数图像的综合应用,有助于提高学生的数学素养和思维能力。
变化规律:顶点不变,开口方 向相反,对称轴不变
举例:y=x^2沿x轴翻折后为 y=-x^2
应用:理解次函 数图像在y轴两侧 对称翻转
效果:改变开口 方向和顶点位置
公式:将二次函 数的一般形式 y=ax^2+bx+c 中的a替换为-a, 得到新的二次函 数
上平移和下平移对函数值的影响:上平移会使函数值增大,下平移会使函数值减小。
上平移和下平移的代数表示:向上平移a个单位,函数解析式变为y=f(x+a);向下平移 a个单位,函数解析式变为y=f(x-a)。
上平移和下平移的实际应用:在解决实际问题时,可以通过平移二次函数的图像来调整 参数,从而得到最优解。

函数分类汇总

函数分类汇总

函数分类汇总函数一共有7种,分别是一次函数、二次函数、正比例函数、反比例函数、三角函数、指数函数和对数函数。

1、一次函数一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。

特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。

一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

2、二次函数二次函数的基本表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y 轴平行或重合于y轴的抛物线。

如果令y值等于零,则可得一个二次方程。

该方程的解称为方程的根或函数的零点。

3、正比例函数一般地,两个变量x、y之间的关系式可以表示成形如y=kx 的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。

正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。

4、反比例函数一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k 为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图像中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

5、三角函数三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

6、指数函数指数函数是重要的基本初等函数之一。

一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。

注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

7、对数函数一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

2016数学中考分类汇总二次函数图像(3)

2016数学中考分类汇总二次函数图像(3)

二次函数图像61--90一.填空题(共30小题)1.已知a+b=2,b≤2,y﹣a2﹣2a+2=0.则y的取值范围是.2.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x﹣(a﹣b)的最小值为﹣,则∠A=度.3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列五条结论:①abc<0;②4ac﹣b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠﹣1)其中正确的结论是(把所有正确的结论的序号都填写在横线上)(3)(5)(11)4.对于三个数a,b,c用max{a,b,c}这三个数中最大的数,例如:max{﹣1,2,}=2,若直线y=一x+k与函数y=max{x+1,3﹣x,﹣x2+2x+3}的图象有且只有2个交点,则k的取值条件为.5.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.如图,当点A的横坐标为﹣时,则点B的坐标为.6.当0≤x≤3时,二次函数y=3x2﹣12x+5的最大值是,最小值是.7.如果抛物线y=(m+1)x2的最低点是原点,那么实数m的取值范围是.8.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是.9.当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是.10.若点(m,n)在函数y=2x﹣4的图象上,则m2+n2的最小值是.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过点B(3,0),C(4,3),将抛物线y=ax2+bx+3向上平移,使顶点E落在平移,使顶点E落在x轴上的点F处,则由两条抛物线、线段EF和y轴围成的图形(图中阴影部分)面积S=.12.如图,抛物线y1=﹣x2+2向右平移1个单位得到的抛物线y2.回答下列问题:(1)抛物线y2的解析式是,顶点坐标为;(2)阴影部分的面积;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式为,开口方向,顶点坐标为.(12)(13)13.如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为(面积单位).14.如图,将二次函数y=x2﹣3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象,当直线y=x+b与此图象有两个公共点时,求b的取值范围.(14)(16)15.已知抛物线y1=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”.16.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.17.如图,抛物线y=x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=x2交于点C,连接AC,则图中阴影部分的面积为.18.如图,点M是抛物线y=﹣(x﹣1)2+4上在第一象限内的点,MN∥x轴交抛物线于点N,M在N的右边,P是x轴上一点,当△MNP是以MN为底的等腰直角三角形时,则点M的坐标是.(18)(19)19.如图所示,在平面直角坐标系中,点A是x轴上一动点,过A作AC⊥x轴交抛物线y=x2+2x+2于点C,以AC为边作等边△ABC,高AD的最小值为.20.已知点M(1,4)在抛物线y=ax2﹣4ax+1上,如果点N和点M关于该抛物线的对称轴对称,那么点N的坐标是.21.若A(1,2),B(3,2),C(0,5),D(m,5)是抛物线y=ax2+bx+c图象上的四点,则m=.22.已知抛物线y=ax(x+4),经过点A(5,9)和点B(m,9),那么m=.23.如图,点A在二次函数y=ax2(a>O)第一象限的图象上,AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则的值为.(23)(25)(27)24.点A(1,a)是抛物线y=x2上的点,以点A为一个顶点作边长为2的等边△ABC,使点B、C中至少有一个点在这条抛物线上,这样的△ABC共有个.25.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是.26.已知A(4,y1)、B(﹣4,y2)是抛物线y=(x+3)2﹣2的图象上两点,则y1y2.27.如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣x2﹣2于点B,则A、B两点间的距离为.28.抛物线y=2(x﹣1)2﹣1与y轴的交点坐标是.29.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为.2m n二次函数图像61--90参考答案一.填空题(共30小题)1.y≥-2;2.55;3.②④⑤;4.k<;5.(2,4);6.5;-7;7.m>-1;8.m<1;9.-或-;10.;11.2;12.y2=-(x-1)2+2;(1,2);2;y3=(x+1)2-2;向上;(-1,-2);13.9;14.b>或-<b<;15.y=-4x2-6x+7;16.-3<m<-;17.-12;18.(3,2);19.;20.(3,4);21.4;22.-9;23.;24.5;25.2;26.>;27.7;28.(0,1);29.(0,10);30.>;。

(初三)04二次函数概念及图像

(初三)04二次函数概念及图像

分析:
(2)抛物线解析式: 顶点坐标: (3) (4) 对称轴: 轴
求交点, 联立方程
图象
函数图象画法
描点法: 列表 描点 连线
<列表>
x

-3
-2
-1
0
1
2
3

y=x2

9
4
1
0
1
4
9

(1)你能描述图象的形状吗? 抛物线 y 10
8
6 4 2
-4
-3
-2
-1
0 -2
1
2
3
4
x
(2)图象是轴对称图形吗?如果是,它的对称轴是什么? y轴
y 10
8 6
4 2
-4
-3
-2
-1
0 -2
2
x
y = 100∙x2 y = 25∙x y = x2 y = 6∙x2
2
x
x
A
B
C
D
二次函数与直线的交点问题
例5.函数 的图象与直线 交于 ,求: (1) 和 的值; (2)求抛物线 的解析式,并求顶点坐标和对称轴; (3) 取何值时,二次函数 中的 随 的增大而增大; (4)求抛物线与直线 的两交点及顶点所构成的三角形面积.
二次函数概念及图象
一次函数 变 量 之 间 的 关 系
正比例函数
函数 反比例函数
二次函数
二次函数定义
形如 简称二次函数.
的函数叫做一元二次函数,
例题解析
例1.下列函数中,哪些是二次函数,如果是,题号后画“√”.
√ √ √
例题解析
例2.已知函数

二次函数的图象-初中数学知识点

二次函数的图象-初中数学知识点

1 / 1 二次函数的图象
1.二次函数的图象
(1)二次函数2(0)y ax a =≠ 的图象的画法:
①列表:先取原点()0,0 ,然后以原点为中心对称地选取x 值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线()20y ax a =≠ 的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数()2+0y ax bx c a =+≠的图象
二次函数()2+0y ax bx c a =+≠的图象看作由二次函数2y ax =的图象向右或向左平移2b a
个单位,再向上或向下平移2
44ac b a
-个单位得到的.。

2.2.4 二次函数图象性质(新4)

2.2.4  二次函数图象性质(新4)

随着x的增大而增大.
随着x的增大而减小.
最值
当x b 时,最小值为4ac b2 当x b 时,最大值为 4ac b2
2a
4a
2a
4a
例 1 求抛物线 y 2x2 8x 7 的开口方向、
对称轴及顶点坐标
方法一(配方法):
解:y 2x2 8x 7
-( 2 x2 4x) 7
第二章 二次函数
2.2.4 二次函数的图象及性质(四)
根据图形填表:
抛物线
顶点坐标
对称轴
y=ax2 (a>0)
(0,0)
y轴
y= ax2 (a<0)
(0,0)
y轴
位置 在x轴的上方(除顶点外) 在x轴的下方( 除顶点外)
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小.
在对称轴的右侧, y随着x的增大而增大
y 3x 12 2.
∵a=3>0,∴开口向上; 对称轴:直线x=1; 顶点坐标:(1,2).
二次函数y=ax²+bx+c的顶点式?
一般地,对于二次函数y=ax² +bx+c,我们可以利
用配方法推导出它的对称轴和顶点坐标.
例.求二次函数y=ax² +bx+c的对称轴和
顶点坐标.
求y=ax²+bx+c的对称轴和顶点坐标.
抛物线
开口方向 对称轴 顶点坐标
y ax2 k
直线X=0
a>0开口向上
y a(x h)2
直线X=h
y a(x h)2 k a<0开口向下 直线X=h
(0,k) (h,0) (h,k)

九年级数学二次函数的图象和性质4

九年级数学二次函数的图象和性质4

y=-x2-2x+1
例:已知一抛物线与x轴的交点A(-2,0),B(1,0)且经 过点C(2,8) (1)求该抛物线的解析式 (2)求该抛物线的顶点坐标 由已知,抛物线过点(-2,0),B(1,0),C(2,8)三点, 得 解:设这个抛物线的表达式为Y=ax2+bx+c a=2 4a-2b+c=0 b=2 解这个方程组得, a+b+c=0 C=-4 4a+2b+c=8 所以该抛物线的表达式为y=2x2+2x-4 (2)y=2x2+2x-4=2(x2+x-2)=2(x+1/2)2-9/2 所以该抛物线的顶点坐标为(-1/2,-9/2)
?
X=1
作出函数y=2x2-12x+13的图象.
(3,-5) X=3

2 b 4 ac b y a x . 2a 4a
2
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax² +bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标.
例.求次函数 y=ax² +bx+c的对 称轴和顶点坐标.
所求的二次函数是 y 2x 2 3x 5
例:根据下列条件,分别求出对应的二次函数解析式
(1)已知抛物线的顶点是(1,2)且过点(2,3) 已知顶点坐标设顶点式y=a(x-h)2+k ∵顶点是(1,2) ∴设y=a(x-1)2+2,又过点(2,3) ∴a(2-1)2+2=3,∴a=1 ∴ y=(x-1)2+2,即y=x2-2x+3 (2)已知抛物线与x轴两交点横坐标为1,3且图像过(0,-3) 已知与x轴两交点横坐标,设交点式y=a(x-x1)(x-x2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像91-120
一.填空题(共30小题)
1.若二次函数y=x2﹣6x+c的图象经过A(﹣1,y1)、B(2,y2)、C(,y3)三点,则关于y1、y2、y3大小关系正确的是.
2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(,0),有下列结论:
①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是(填写序号)
(2)(3)(4)
3.二次函数y=ax2+bx+c的图象如图所示,下列结论:
①(a+c)2<b2;②3a+c<0;③2c+b>0;④如果一元二次方程ax2+bx+c=﹣3有两个实根x1、x2,那么x1+x2=1.其中结论错误的是.(只填写序号)
4.已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有.
5.在二次函数y=ax2+bx+c的图象如图所示,下列说法中:①b2﹣4ac<0;②>0;
③abc>0;④a﹣b﹣c>0,说法正确的是(填序号).
(5)(6)(7)6.如图,已知二次函数y=ax2+bx+c(a≠0)的图形经过点(1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc<0;②a<b<﹣2a;③b2+8a <4ac;④﹣1<a<0.其中正确结论的序号是.
7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1);⑤设A(100,y1),B(﹣100,y2)在该抛物线上,则y1>y2.
其中正确的结论有.(写出所有正确结论的序号)
8.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),对称轴为x=1,给出四个结论:①b2﹣4ac>0;②2a+b=0;③a+b+c=0;④当x=﹣1或x=3时,函数y的值都等于0.把正确结论的序号填在横线上.
(8)(9)(10)9.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为
直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有(填序号)
10.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有.
11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是.
(11)(12)(14)
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有.(填序号)
13.已知二次函数的图象经过(0,3)、(4,3)两点,则该二次函数的图象对称轴为直线.14.已知函数y=ax2+bx+c的图象的一部分如图所示.该图象过点(﹣1,0)和(0,1),且顶点在笫一象限,则a+b+c的取值范围是.
15.如图是二次函数y=ax2+bx﹣1图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),则(a+b+1)(2﹣a﹣b)=.
(15)
16.如图,在平面直角坐标系中,过抛物线y=a(x+1)2﹣2(x≤0,a为常数)的顶点A
作AB⊥x轴于点B,过抛物线y=﹣a(x﹣1)2+2(x≥0,a为常数)的顶点C作CD⊥x轴于点D,连结AD、BC.则四边形ABCD的面积为.
(16)(17)
17.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),
过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是(填写正确结论的序号).
18.若抛物线y=(x﹣2)2+(m+1)的顶点在第一象限,则m的取值范围为.
19.直线y=x+b与函数y=x2+|2x2﹣1|的图象有且只有三个交点,则b的值为.
20.已知抛物线y=﹣x2+bx+c经过点A(﹣4,1),B(2,1),若函数y随x的增大而减小,则x的取值范围是.
21.已知Rt△ABC的顶点坐标为A(1,2),B(2,2),C(2,1),若抛物线y=ax2与该直角三角形无公共点,则a的取值范围是.
(21)(23)(24)
22.二次函数y=(x﹣1)2+1,当2≤y<5时,相应x的取值范围为.
23.如图,在平面直角坐标系中,正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y=﹣x2+3bx+2b+经过B、C两点,则正方形OABC的周长为.
24.如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为.
25.在平面直角坐标系xOy中,若抛物线y=ax2+bx+c的顶点为M,且经过A(0,4),B(4,4)两点,若M到线段
AB的距离为4,则a=.
26.如图,在平面直角坐标系中,点C是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且BC∥x轴,以CB为边向上作等边三角形ABC,BC边上的高AD交抛物线于点E,则阴影部分图形的面积为.
(26)(28)
27.有下列函数:①y=﹣3x;②y=x﹣1;③(x<0);④y=x2+2x+1.其中当x在
各自的自变量取值范围内取值时,y随着x的增大而增大的函数有.(填序号)
28.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD 的边长为4,则正方形EFGH的边长为.
29.已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.30.如果抛物线y=ax2+2a2x﹣1的对称轴是直线x=﹣1,那么实数a=.
二次函数图像91-120
参考答案
一.填空题(共30小题)
1.y1>y3>y2;2.①③;3.④;4.①②④⑤;5.②③④;6.①②;7.①②④⑤;8.①②④;9.①③;10.①③④;11.①④;12.③④;13.x=2;14.0<a+b+c
<2;15.2;16.4;17.①③④;18.m>-1;19.或;20.x>-1;21.a<0或
a>2或0<a<;22.-1<x≤0或2≤x<3;23.8;24.(1,);25.1或-1;26.;27.②③;28.2-2;29.22;30.1;。

相关文档
最新文档