云县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
2. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )
A .3
B .4
C .5
D .6
3. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
4. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
5. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )
A .﹣
B .﹣
C .
D .
6. 在平面直角坐标系中,直线y=
x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )
A .4
B .4
C .2
D .2
7. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,26
8. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα+
C. 3sin 1αα+ D .2sin cos 1αα-+ 9. 在下面程序框图中,输入44N =,则输出的S 的值是( )
A .251
B .253
C .255
D .260
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.
10.已知函数,函数,其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()
A.B.C.D.
11.设a∈R,且(a﹣i)•2i(i为虚数单位)为正实数,则a等于()
A.1 B.0 C.﹣1 D.0或﹣1
12.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()
A.a>b B.a<b
C.a=b D.a,b的大小与m,n的值有关
二、填空题
13.台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75°方向上的C点,这时观测站与台风中心的距离AC等于km.
14.若直线y﹣kx﹣1=0(k∈R)与椭圆恒有公共点,则m的取值范围是.
15.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.
16.设函数f(x)=则函数y=f(x)与y=的交点个数是.
17.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC 的面积为.
18.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()
A.B.C.D.
三、解答题
19.如图,在四棱柱中,底面,,,.
(Ⅰ)求证:平面;
(Ⅱ)求证:;
(Ⅲ)若,判断直线与平面是否垂直?并说明理由.
20.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且满足2bcosC=2a ﹣c . (Ⅰ)求B ; (Ⅱ)若△ABC 的面积为,b=2求a ,c 的值.
21.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.
22.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).
(Ⅰ)求k 的值;
(Ⅱ)求g (x )在[﹣1,2]上的最大值;
(Ⅲ
)当时,g (x )≤t 2
﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.
23.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40
59
A
B
C
D
P
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
24.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
云县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
2.【答案】B
【解析】解:模拟执行程序框图,可得
s=0,n=0
满足条件n<i,s=2,n=1
满足条件n<i,s=5,n=2
满足条件n<i,s=10,n=3
满足条件n<i,s=19,n=4
满足条件n<i,s=36,n=5
所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,
有n=4时,不满足条件n<i,退出循环,输出s的值为19.
故选:B.
【点评】本题主要考查了循环结构的程序框图,属于基础题.
3.【答案】C
【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.
因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为
.
因此可知:A,B,D皆有可能,而<1,故C不可能.
故选C.
【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.
4. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A.
5. 【答案】A
【解析】解:∵ =(1,2),=(1,1),
∴=+k =(1+k ,2+k )
∵
,∴ =0,
∴1+k+2+k=0,解得k=﹣
故选:A
【点评】本题考查数量积和向量的垂直关系,属基础题.
6. 【答案】A
【解析】解:圆x 2
+y 2﹣8x+4=0,即圆(x ﹣4)2+y 2
=12,圆心(4,0)、半径等于2
.
由于弦心距d==2,∴弦长为2=4
,
故选:A .
【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.
7. 【答案】C
【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .
8. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-112
2
1-=+=S ;利用三角形知识得出四个等
腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=
S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()
αcos 2-1122+,进而得到正方形的面积()
ααcos 22cos 2-11221-=+=S ,最后得到
答案.
9. 【答案】B
10.【答案】 D
【解析】解:∵g (x )=﹣f (2﹣x ),
∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),
由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,
设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,
则h (x )=f (x )+f (2﹣x )=2+x+x 2
,
若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,
则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2
﹣5x+8.
作出函数h (x )的图象如图:
当x ≤0时,h (x )=2+x+x 2=(x+)2
+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】B
【解析】解:∵(a﹣i)•2i=2ai+2为正实数,
∴2a=0,
解得a=0.
故选:B.
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
12.【答案】C
【解析】解:根据茎叶图中的数据,得;
甲得分的众数为a=85,
乙得分的中位数是b=85;
所以a=b.
故选:C.
二、填空题
13.【答案】25
【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,
由正弦定理可得AC==25km,
故答案为:25.
【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.
14.【答案】[1,5)∪(5,+∞).
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y2=5m
得到y2=m
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是
y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞)
故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.15.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
16.【答案】4.
【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,
由图知两函数y=f(x)与y=的交点个数是4.
故答案为:4.
17.【答案】.
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,
∴由余弦定理可得b2=a2+c2﹣2accosB,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S△ABC=bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
18.【答案】
【解析】解:法1:取A1C1的中点D,连接DM,
则DM∥C1B1,
在在直三棱柱中,∠ACB=90°,
∴DM⊥平面AA1C1C,
则∠MAD是AM与平面AA1C1C所的成角,
则DM=,AD===,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA
=,M为A1B1的中点,
1
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
三、解答题
19.【答案】
【解析】【知识点】垂直平行
【试题解析】(Ⅰ)证明:因为,平面,平面,
所以平面.
因为,平面,平面,
所以平面.
又因为,
所以平面平面.
又因为平面,
所以平面.
(Ⅱ)证明:因为底面,底面,
所以.
又因为,,
所以平面.
又因为底面,
所以.
(Ⅲ)结论:直线与平面不垂直.
证明:假设平面,
由平面,得.
由棱柱中,底面,
可得,,
又因为,
所以平面,
所以.
又因为,
所以平面,
所以.
这与四边形为矩形,且矛盾,
故直线与平面不垂直.
20.【答案】
【解析】解:(Ⅰ)已知等式2bcosC=2a﹣c,利用正弦定理化简得:
2sinBcosC=2sinA﹣sinC=2sin(B+C)﹣sinC=2sinBcosC+2cosBsinC﹣sinC,
整理得:2cosBsinC ﹣sinC=0, ∵sinC ≠0, ∴
cosB=, 则B=60°;
(Ⅱ)∵△ABC
的面积为
=
acsinB=
ac ,解得:ac=4,①
又∵b=2,由余弦定理可得:22=a 2+c 2﹣ac=(a+c )2﹣3ac=(a+c )2
﹣12,
∴解得:a+c=4,② ∴联立①②解得:a=c=2.
21.【答案】
【解析】解: (Ⅰ)当1
3PE PB =
时,//CE 平面PAD . 设F 为PA 上一点,且1
3PF PA =,连结EF 、DF 、EC ,
那么//EF AB ,1
3EF AB =.
∵//DC AB ,1
3
DC AB =,∴//EF DC ,EF DC =,∴//EC FD .
又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)
(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,
(1,2,0)C -
.由(6)(2PO ==-=知(0,0,2)P . (9分)
设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r
则00
n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.
设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3
sin |cos ,|2
||||AP n AP n AP n θ⋅=<>==
⋅, ∴3
π
θ=,∴直线PB 与平面PAD 所成角为3π. (13分)
22.【答案】
【解析】解:(Ⅰ)由f (﹣x )=﹣f (x )得 kx 2﹣2x=﹣kx 2
﹣2x ,
∴k=0.
(Ⅱ)∵g (x )=a f (x )﹣1=a 2x ﹣1=(a 2)x
﹣1
①当a 2>1,即a >1时,g (x )=(a 2)x ﹣1在[﹣1,2]上为增函数,∴g (x )最大值为g (2)=a 4﹣1.
②当a 2<1,即0<a <1时,∴g (x )=(a 2)x 在[﹣1,2]上为减函数, ∴g (x )最大值为
.
∴
(Ⅲ)由(Ⅱ)得g (x )在x ∈[﹣1,1]上的最大值为
,
∴1≤t 2﹣2mt+1即t 2
﹣2mt ≥0在[﹣1,1]上恒成立
令h (m )=﹣2mt+t 2
,∴
即 所以t ∈(﹣∞,﹣2]∪{0}∪[2,+∞). 【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分
析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(1)设抽取x 人,则,解得x=2,
即年龄在20:39岁之间应抽取2人.
(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,
随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,
年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,
则对应的概率P=.
【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.。