宝鸡市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝鸡市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)“a<b”的反面是()
A.a≠b
B.a>b
C.a≥b
D.a=b
【答案】C
【考点】命题与定理
【解析】【解答】解:a<b的反面是a=b或a>b,即a≥b.
故答案为:C
【分析】a<b的反面是a=b或a>b,即a≥b.
2、(2分)据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t(℃)的变化范围是()
A.t>22
B.t≤22
C.11<t<22
D.11≤t≤22
【答案】D
【考点】不等式及其性质
【解析】【解答】解:气温最高是22℃,则t≤22;
气温最低是11℃,则t≥11.
故气温的变化范围11≤t≤22.
故答案为:D.
【分析】由最高气温是22℃,最低气温是18℃可得,气温变化范围是18≤t≤22,即可作出判断。
3、(2分)如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()
①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定与性质
【解析】【解答】解:∵DE∥BC
∴∠1=∠DCB,∠AED=∠ACB,因此②正确;
∵∠1=∠2
∴∠2=∠DCB
∴FG∥DC,因此①正确;
∴∠BFG=∠BDC,因此⑤正确;
∵∠1=∠2,
∠2+∠B不一定等于90°,因此④错误;
∠ACD不一定等于∠BCD,因此③错误
正确的有①②⑤
故答案为:C
【分析】根据已知DE∥BC可证得∠1=∠DCB,∠AED=∠ACB,可对②作出判断;再根据∠1=∠2,可对①作出判断;由∠2=∠DCB,可对⑤作出判断;③④不能证得,即可得出答案。
4、(2分)如图,不一定能推出a∥b的条件是()
A. ∠1=∠3
B. ∠2=∠4
C. ∠1=∠4
D. ∠2+∠3=180º【答案】C
【考点】平行线的判定
【解析】【解答】解:A、∵∠1=∠3,∴a∥b,故A不符合题意;
B、∵∠2=∠4,∴a∥b,故B不符合题意;
C、∵∠1=∠4,∴a不一定平行b,故C不符合题意;
D、∵∠2+∠3=180º,∴a∥b,故D不符合题意;
故答案为:C
【分析】根据平行线的判定方法,对各选项逐一判断即可。
5、(2分)等式组的解集在下列数轴上表示正确的是()。
A. B.
C. D.
【答案】B
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:不等式可化为:.
即-3<x≤2;
在数轴上表示为:
故答案为:B.
【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.
6、(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】移项并合并得,x≤-2,
故此不等式的解集为:x≤-2,
在数轴上表示为:
故答案为:D.
【分析】先求出此不等式的解集,再将解集再数轴上表示出来。
7、(2分)若m<0,则m的立方根是()
A.
B.-
C.±
D.
【答案】A
【考点】立方根及开立方
【解析】【解答】因为任何一个数都有一个立方根,所以无论m取何值,m的立方根都可以表示
故答案为:A
【分析】正数有一个正的立方根,零的立方根是零,负数有一个负的立方根,所以无论m为何值,m的立方根都可以表示为
8、(2分)6月8日我县最高气温是29℃,最低气温是19℃,则当天我县气温t(℃)的变化范围是()
A.19≤t≤29
B.t<19
C.t≤19
D.t≥29
【答案】A
【考点】不等式及其性质
【解析】【解答】解:因为最低气温是19℃,所以19≤t,最高气温是29℃,t≤29,
则今天气温t(℃)的范围是19≤t≤29.
故答案为:A.
【分析】由最高气温是19℃,最低气温是29℃可得,气温变化范围是19≤t≤29,即可作出判断。
9、(2分)已知是二元一次方程组的解,则2m﹣n的算术平方根是()
A.4
B.2
C.
D.±2
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:由题意得:,解得;
∴=
= =2;
故答案为:B.
【分析】将代入方程组,建立关于m、n的方程组,解方程组求出m、n的值,然后代入求出2m-n的算术平方根。
10、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
吻仔鱼养生粥番茄蛋
炒饭
凤梨蛋
炒饭
酥炸排
骨饭
和风烧
肉饭
蔬菜海
鲜面
香脆炸
鸡饭
清蒸鳕
鱼饭
香烤鲷
鱼饭
红烧牛
腩饭
橙汁鸡
丁饭
白酒蛤
蜊面
海鲜墨
鱼面
嫩烤猪
脚饭
60元70
元
70
元
80
元
80
元
90
元
90
元
100
元
100
元
110
元
120
元
120
元
140
元
150
元
A.5
B.7
C.9
D.11
【答案】C
【考点】一元一次不等式的特殊解,一元一次不等式的应用
【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102,
故前9种餐都可以选择.
故答案为:C.
【分析】设第二份餐的单价为x元,根据“ 两份餐点的总花费不超过200元”列不等式,求出解集,再根据表格可得答案.
11、(2分)如果关于的不等式的解集为,那么的取值范围是()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:根据题意中不等号的方向发生了改变,可知利用了不等式的性质3,不等式的两边同时
乘以或除以一个负数,不等号的方向改变,因此可知2a+1<0,解得.
故答案为:D
【分析】先根据不等式的性质②(注意不等式的符号)得出2a+1<0,然后解不等式即可得出答案。
12、(2分)若是方程组的解,则a、b值为()
A.
B.
C.
D.
【考点】二元一次方程组的解
【解析】【解答】解:把代入得,
,
.
故答案为:A.
【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
二、填空题
13、(1分)若方程组的解也是方程2x-ay=18的解,则a=________.
【答案】4
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:,
∵①×3﹣②得:8x=40,
解得:x=5,
把x=5代入①得:25+6y=13,
解得:y=﹣2,
∴方程组的解为:,
∵方程组的解是方程2x﹣ay=18的解,
∴代入得:10+2a=18,解得:a=4,
【分析】利用加减消元法求出方程组的解,再将方程组的解代入方程2x-ay=18,建立关于a的方程,求解即可。
14、(1分)写出一个比-1小的无理数________.
【答案】
【考点】实数大小的比较
【解析】【解答】解:比-1小的无理数为:
【分析】根据无理数的大小比较,写出一个比-1小的无理数即可。
此题答案不唯一。
15、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即
可。
16、(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
【答案】垂线段最短
【考点】垂线段最短
【解析】【解答】解:依题可得:
垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
17、(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
18、(1分)已知二元一次方程组则________
【答案】11
【考点】解二元一次方程组
【解析】【解答】解:
由得:2x+9y=11
故答案为:11
【分析】观察此二元一次方程的特点,将两方程相减,就可得出2x+9y的值。
三、解答题
19、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
20、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.
由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
21、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
22、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜、南县农业部门对2009年的油菜籽生产成本,市场价格,种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
110元130千克3元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)
【答案】(1)解:1﹣10%﹣35%﹣45%=10%,110×10%=11(元)
(2)解:130×3﹣110=280(元)
(3)解:280×500000=140000000=1.4×108(元).答:2009年南县全县农民冬种油菜的总获利1.4×108元.【考点】统计表,扇形统计图
【解析】【分析】(1)根据扇形统计图计算种子所占的百分比,然后乘以表格中的成本即可;
(2)根据每亩的产量乘以市场单价减去成本可得获取数据;
(3)根据(2)中每亩获利数据,然后乘以总面积可得总获利.
23、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
排球25
篮球50
乒乓球75
足球100
其他50
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
24、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
25、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。
26、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。