Real-Time PCR Analysis of HIV-1 Replication Post-entry Events
real time PCR 数据分析
real time PCR 数据分析real-timepcr数据分析无论所使用的real-timepcr是何种型号,正确的数据分析对于获得有效的实验结果都是至关重要的。
这里介绍有关real-timepcr数据分析的知识。
在探讨基本分析过程之前,先了解如何设计一个不好的实验。
如果你就是自己设计的引物和探针,那有利于下一步的工作。
但是在有些情况下,人们采用出版发行文献上的序列可以更便利。
忘记,即便就是出版物提供更多的序列也无法确保可以获得优化的实验结果。
而且排印错误的可能性也须要考量在内。
所以步入实验室之前采用blast对全部序列展开核实保证他们就是恰当的。
下订单前先检察引物和探针的序列和tm值就是实验设计的基本建议。
标准曲线是判断实验质量的重要手段。
使用一个已知的模板,pcr产物,合成的寡核苷酸或转录的rna做个标准曲线能够确定pcr的效率,敏感性,动态范围和其他的参数。
建立标准曲线时使用od260的模板样本。
模板的总量以dna分子的数量来描述,把质量转化为dna含量的公式如下:(质量(克)*阿伏伽德罗常数)每个碱基的平均值质量*模板的长度。
例如,合成70-mer的单链dna,样本质量为0.8*10?-11gm。
代入公式得:(0.8*10?-11*6.023*10?23molecules/mole)330gm/mole/base*70base。
如果使用双链的模板,则碱基的平均质量为660gm/mole/base。
标准曲线采用的模板含量从1*10?7已经开始已连续吸收7次每次吸收10倍,最终获得10个模板拷贝。
这样的浓度有利于获得最低的δrn和最高的ct。
用excel画曲线时以模板数量的对数值为x,ct(cyclethreshold)值y轴。
标准曲线的计算公式如下:y=mx+b。
y就是ct,m是斜率,x=log10templateamount,b=y-intercept。
用斜率排序出来实验效率efficiency【10?(-1/斜率)】-1。
real-time pcr名词解释
real-time pcr名词解释
外文名【Real-time Quantitative polymerase chain reaction】
中文名【实时荧光定量多聚核苷酸链式反应】
中文简称【实时荧光定量PCR】
外文简称【RT PCR】
【实时荧光定量PCR技术】,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。
通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。
·
Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。
由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。
【技术原理】
将标记有荧光素的Taqman探针与模板DNA混合后,完成高温变性,低温复性,适温延伸的热循环,并遵守聚合酶链反应规律,与模板DNA互补配对的Taqman 探针被切断,荧光素游离于反应体系中,在特定光激发下发出荧光,随着循环次数的增加,被扩增的目的基因片段呈指数规律增长,通过实时检测与之对应的随扩增而变化荧光信号强度,求得Ct值,同时利用数个已知模板浓度的标准品作对照,即可得出待测标本目的基因的拷贝数。
两种仪器定量检测HIV-1病毒载量比较研究
两种仪器定量检测HIV-1病毒载量比较研究李丽华;余婷婷;丁彩梅;张润武;杨冬梅;王红英;白经;普冬【摘要】目的比较雅培m2000和罗氏AmpliPrep/TaqMan两种全自动分析系统定量检测人类免疫缺陷病毒(HIV)-1病毒载量的一致性,为临床选择高精度检测方法提供参考.方法对30例艾滋病患者血浆标本同时采用雅培m2000全自动分析系统和罗氏AmpliPrep/TaqMan全自动分析仪进行病毒载量测定,比较二者检出率、相关性和一致性.结果雅培m2000全自动分析系统和罗氏AmpliPrep/TaqMan全自动分析仪测得HIV-1病毒载量平均值分别为(2.990±0.284)log copy/mL和(3.100±0.244)log copy/mL,差异无统计学意义(t=1.446,P>0.05);两种检测系统检测出的病毒载量有明显相关性(r=0.968,P<0.001),且与患者的CD4+T细胞数及CD4+/CD8+呈明显直线负相关.结论雅培m2000全自动分析系统和罗氏AmpliPrep/TaqMan全自动分析仪检测HIV-1病毒载量具有较好的相关性和一致性,在实际工作中,均可作为高精度检测HIV-1的可靠方法.【期刊名称】《检验医学与临床》【年(卷),期】2018(015)024【总页数】4页(P3678-3681)【关键词】HIV病毒载量;雅培m2000全自动分析系统;罗氏AmpliPrep/TaqMan 全自动分析仪;高精度【作者】李丽华;余婷婷;丁彩梅;张润武;杨冬梅;王红英;白经;普冬【作者单位】云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041;云南省昆明市第三人民医院检验科 650041【正文语种】中文【中图分类】R33随着艾滋病(AIDS)防治工作的不断强化,AIDS实验室检测技术也在不断发展,根据《艾滋病资料手册》规定[1],接受治疗的AIDS患者必须定期检测病毒载量,人类免疫缺陷病毒(HIV)载量检测被认为是目前预示疾病演变、提示开始临床治疗和评估疗效的有效指征[2]。
人类免疫缺陷病毒I型HIVRNA核酸定量检测SOP
人类免疫缺陷病毒(I 型)核酸定量检测系统标准操作程序1. 目的:规范超敏PCR仪器配置系统及人类免疫缺陷病毒(HIV-I RNA )的检测过程,确保检测结果的准确性和重复性。
2. 检测方法和原理2.1 检测方法:TaqMan探针荧光定量PCR法。
2.2 检测原理:人类免疫缺陷病毒(I 型)核算定量检测试剂盒(PCR-荧光法)采用核酸扩增技术,定量检测人血浆中HIV-I RNA 。
该方法包括三个主要步骤:(1)样品制备以分离HIV-I RNA;(2)靶RNA的逆转录形成互补DN(A cDNA);(3)靶(cDNA)的PCR扩增以及裂解的、靶特异性的、双标记寡核苷酸探针的检测。
3. 标本要求3.1 标本类型:血浆(EDTA抗凝)。
3.2 标本的采集与处理3.2.1 标本采集量:采集患者静脉血 6 mL(EDTA抗凝真空采血管)。
3.2.2 标本处理:标本采集后应在2 小时内送至实验室,实验室收到标本后在 1 小时内处理标本。
“年月日6位数字+标本号 3 位数字”,例如2018年1月 1 日收到一个HIV-RNA标本即编号为:“”。
℃)最多存储 1 天;2-8 ℃最多存储 6 天;-20 ℃—-80 ℃℃冰箱。
已检血浆置-80oC 冰箱保存 2 个月,到期后按科室有关程序作废弃标本处理。
4. 仪器和试剂4.2 试剂:(配套封闭试剂)4.2.1 试剂盒(包含核酸提取试剂、质控品及阳性定量参考品组分、PCR 检测试剂组分)保存于2-8 ℃环境下,有效期22 个月℃条件下不超过30 天4.2.4 主要组成成份:5. 标准操作5.1 COBAS AmpliPrep_COBAS TaqMan 48 的配置如下:6.2. COBAS AmpliPrep_COBAS TaqMan 48 上使用试剂及耗材的保存及注意事项:1) . 所有试剂( HIV-I test 试剂) 2- 8℃保存,即拿即用;2) . 试剂启用后,可保存28 days (2- 8℃) ;3) . 试剂启用后,在Cobas Ampliprep 上累计使用时间最多64 hrs ;4) . CTM(-) 阴性质控、L(+) 弱阳性质控、H(+) 强阳性质控,使用后的废弃;5) . 洗液2- 30℃保存,打开后可使用28 days ;6) . 耗材( S-tube/ 样本条码/K-tip/K-tube/SPU )常温保存。
Real-time_PCR(从原理到实验方法及数据分析)
total RNA total RNA
cDNA
cDNA
cDNA
cDNA
相对定量:内对照 Endogenous Control
用以标准化样品操作
time t =0 t=12 t=24 t=48
total RNA total RNA
total RNA total RNA
cDNA
cDNA
cDNA
cDNA
线性图谱
对数图谱
基线
阈值
Ct值
[DNA]0
什么是阈值?
1. 基线(空白)信号的产生是由于测量的偶然误差引起的。 2. 偶然误差的结果满足对数分布。 3. 阈值 = 基线(背景)信号标准偏差 x 10。 4. 由于测量的偶然误差而导致测得的荧光信号大于阈值的概率小于10-5。 5. 当荧光信号大于阈值时,可以肯定是由于PCR的扩增使得荧光强度得以测量。
突变的存在形式
目标序列的有无
等位基因分型
• 定义:等位基因分型(AD)分析是一种多重(每个反应包括一个以上的 引物和探针对)、终点(在PCR过程的终点收集数据)分析实验,用 于检测某个核酸序列的变异。 每个反应中包括两个引物和探针对,允许在一个目标模板序列的单核 苷酸多态性(SNP)位点上出现两个可能的变异基因型。 目标序列的实际量不确定。
1. 2. 3. 4. 5. 6. Transcription Hairpin release in the nucleus Export to cytoplasm Dicer processing Strand selection by RISC Translational repression
*mature active strand
等位基因自动识别软件
全国艾滋病检测技术规范(2015年修订版)
附件1全国艾滋病检测技术规范National Guideline for Detection of HIV/AIDS(2015年修订版)中国疾病预防控制中心二○一五年十二月全国艾滋病检测技术规范National Guideline for Detection of HIV/AIDS(2015年修订版)中国疾病预防控制中心二○一五年十二月前言艾滋病在我国的流行已数十年,随着感染者和临床病人的不断增加、感染人群的变化,艾滋病检测工作量逐渐加大,对监测和检测的需求也不断增加,承担艾滋病检测的实验室已遍及全国各级医疗、疾病预防控制、采供血、妇幼保健机构,出入境检验检疫、军队等各个系统。
为了尽早发现HIV感染者和艾滋病病人,及早提供咨询、治疗,同时为适应基层艾滋病检测工作需求,在新的形势下,根据《关于艾滋病抗病毒治疗管理工作的意见》、《中国预防与控制艾滋病中长期规划(1998—2010年)》、《中国遏制与防治艾滋病十二五行动计划的通知(国办发[2012]4号)》、“四免一关怀”等国家艾滋病防治重要方针政策和十三五防治工作重点,在广泛征求各省、市疾病预防控制机构和医疗机构意见的基础上,在中华人民共和国卫生和计划生育委员会艾滋病专家及省级专家的参与下,中国疾病预防控制中心性病艾滋病预防控制中心对《全国艾滋病检测技术规范(2009年版)》进行修改、增补和完善,制定出《全国艾滋病检测技术规范(2015年版)》(以下简称《规范》),使其既能满足目前艾滋病检测工作的实际需求,又能体现检测技术的发展。
本次《规范》修订工作立足于我国目前检测状况,结合发达国家使用的指南,主要对以下几个方面内容进行了修改、增补和完善:(1)完善了不同的检测策略,并将其整合为独立的一章;(2)增加了HIV-1新发感染检测一章;(3)新增补充试验概念,其内容包括抗体确证试验(WB,RIBA/LIA等)和核酸试验(定性和定量试验);(4)增加了第4代试剂(抗原抗体联合检测试剂)的检测流程;(5)增加核酸检测流程;(6)完善了检测报告。
艾滋病病的PCR检测技术
艾滋病病的PCR检测技术PCR(Polymerase Chain Reaction)是一种常用的分子生物学技术,在艾滋病病毒的检测中起着重要作用。
本文将介绍艾滋病病毒的PCR检测技术以及其在诊断、病毒量测定和研究中的应用。
一、PCR检测技术简介PCR是由美国生物化学家基里尔·穆利斯(Kary Mullis)于1983年发明的一种体外扩增DNA的方法。
它通过模拟DNA在体内复制的过程,能够对少量DNA进行放大,从而便于检测和分析。
二、艾滋病病毒的PCR检测技术艾滋病病毒的PCR检测主要包括两个方面:一是检测病毒的核酸,在感染早期和晚期均可检测到;二是检测病毒的基因型,有助于了解病毒的分类和毒株差异。
1. 检测病毒核酸PCR技术可以通过特异性引物和酶来扩增病毒核酸,并通过凝胶电泳等方法进行检测。
该方法具有高度敏感性和特异性,可以检测到非常低浓度的艾滋病病毒。
2. 检测病毒基因型PCR技术可以通过特定的引物和扩增条件来扩增不同基因型的艾滋病病毒,例如HIV-1和HIV-2。
通过PCR扩增产物的序列分析,可以确定不同基因型的遗传特征和抗药性。
三、PCR技术在艾滋病病毒诊断中的应用PCR技术在艾滋病病毒的诊断中有以下几个方面的应用:1. 早期感染检测艾滋病病毒感染初期,体内的病毒数量较少,无法通过传统的抗体检测方法进行诊断。
而PCR技术则可以在感染后的数天内检测到病毒核酸,从而早期发现感染者。
2. 感染源追踪通过PCR技术检测病毒核酸,并进行基因型分析,可以追踪艾滋病病毒的感染源,了解传播途径和病毒变异情况,从而制定相应的预防和控制策略。
3. 抗病毒治疗监测艾滋病病毒的抗病毒治疗需要监测病毒的荷载量,即病毒在体内的含量。
PCR技术可以对病毒核酸进行定量检测,从而监测治疗效果,并调整治疗方案。
四、PCR技术在艾滋病病毒研究中的应用PCR技术在艾滋病病毒的研究中有以下几个方面的应用:1. 病毒变异研究通过PCR技术扩增不同基因型的艾滋病病毒,并进行序列分析,可以研究病毒的变异情况和进化规律,为疫苗研发和治疗策略提供理论支持。
HIV-1病毒载量实时荧光定量PCR检测特异性引物对、试剂盒[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010558549.8(22)申请日 2020.06.18(71)申请人 北京良芯生物科技发展有限公司地址 102600 北京市大兴区中关村科技园区大兴生物医药产业基地永大路38号6幢4层435室(72)发明人 于斌 姜淼 (74)专利代理机构 北京国昊天诚知识产权代理有限公司 11315代理人 李潇(51)Int.Cl.C12Q 1/70(2006.01)C12Q 1/6851(2018.01)C12N 15/11(2006.01)(54)发明名称HIV-1病毒载量实时荧光定量PCR检测特异性引物对、试剂盒(57)摘要本发明涉及生物分子检测领域,具体涉及HIV -1病毒载量实时荧光定量PCR检测特异性引物对、试剂盒。
本发明提供了精确、简便的用于人类免疫缺陷病毒Ⅰ型(HIV -1)RNA定量检测的特异性引物对。
利用一步法荧光定量RT -PCR技术检测HIV -1病毒载量。
该操作既确保了扩增结果的准确性,灵敏度,又缩短了时间、减少了污染,提高了荧光定量PCR检测方法的简便性,可用于HIV -1定量检测,并且作为临床对HIV -1感染的辅助诊断方法和临床治疗效果的监测手段。
权利要求书1页 说明书7页序列表4页 附图5页CN 111705164 A 2020.09.25C N 111705164A1.HIV -1病毒载量实时荧光定量PCR检测特异性引物对,其特征在于,所述引物对包括引物对1和引物对2,其中,引物对1包括以下引物:引物1:5’AGTGGGGGGACAYCARGCAGC3’,引物2:5’TACTAGTAGTTCCTGCTATRTCACTTCC3’;引物对2包括以下引物:引物3:5’GACAGCAGAGAYCCAMTTTGG3’引物4:5’TGCCCCTTCACCTTTCCA3’。
用PCR方法证实HIV-1感染性病毒颗粒携带有前病毒DNA
用PCR方法证实HIV-1感染性病毒颗粒携带有前病毒DNA董关木;Anton.,G【期刊名称】《中国病毒学》【年(卷),期】1994(9)3【摘要】用多聚酶链反应(PCR)为检测手段,证明了成熟的人免疫缺陷病毒1型(HIV-1)可携带前病毒DNA;用细胞病毒裂解液处理病毒样品或在病毒样品中只加磷酸盐缓冲液(PBS)代替细胞裂解液,结果发现只有病毒裂解液处理样品后才能检测到特异DNA.完整的病毒颗粒对DNA酶不敏感,而只有在病毒裂解以后才能对DNA酶敏感。
当靶细胞膜上的CD_4受体被特异的单克隆抗体覆盖后不能吸附病毒时,DNA也不能被检测到,而且DNA的数员和病毒滴度的高低相一致。
这些证据都提示这种和病毒相关的DNA存在于完整的有感染性的成熟病毒颗粒内部。
【总页数】7页(P206-212)【关键词】艾滋病毒;聚合酶链反应;DNA【作者】董关木;Anton.,G【作者单位】中国药品生物制品检定所【正文语种】中文【中图分类】R373.9【相关文献】1.用PCR方法证实HIV-1感染性病毒颗粒携带有前病毒DNA [J],2.SYBR Green I荧光定量PCR检测HIV-1前病毒方法的建立及应用 [J], 莫雪梅;闫莉;孙晗笑3.SYBR GreenⅠ实时荧光定量PCR法测定猴免疫缺陷病毒(SIV)前病毒DNA拷贝数方法的建立 [J], 丛喆;涂新明;李兆忠;许琰;蒋虹;佟巍;卢圣栋;魏强4.乙型肝炎病毒感染性病人及携带者的HBV DNA诊断研究 [J], 张亚富;何雅慧5.异嗜性小鼠白血病病毒感染性DNA转染COS-7细胞后形成病毒颗粒的电镜观察 [J], 王宇;陈小贝;凌虹;张凤民因版权原因,仅展示原文概要,查看原文内容请购买。
最新HIV(艾滋病毒)检测工具 (1)
最新HIV(艾滋病毒)检测工具重组酶聚合酶扩增RPA被称为是可以替代PCR的核酸检测技术。
RPA扩增的速度非常快,灵敏度高,对硬件设备要求低,而且不需要复杂的样本处理。
这样的技术特别适合于体外诊断、兽医、食品安全、生物防御、农业等领域。
在艾滋病诊治中,即时检测是非常重要的,对婴儿来说更是如此。
有案例显示,艾滋病毒(HIV)感染后立刻进行治疗就能控制住患者体内的病毒,让它们无法进行复制。
举例来说,生来就携带HIV的密西西比婴儿,在出生后立即得到了治疗。
后来这个孩子停药了两年多,病毒复制依然得到了控制。
目前婴儿艾滋病诊断的金标方法是DNA PCR,但许多地区并不具备这样的条件。
在这种条件下,RPA技术正好可以大展身手。
纸做的HIV DNA检测装置2012年九月,研究人员开发了一个由纸、玻璃纤维和塑料制成的装置,用来对HIV的DNA进行RPA扩增。
这个装置成本低、小巧轻便、而且易于使用,只需五步就能搞定HIV检测。
扩增结果可以通过侧流层析试纸来读取。
人们可以先从婴儿的干血斑样本中提取DNA,然后再进行RPA扩增。
研究显示,用这个装置进行RPA扩增反应,能在十五分钟内将10拷贝的HIV DNA扩增到可检出的水平。
可见,这是一个前景广阔的低成本即时检测装置。
(文献:A paper & plastic device to perform recombinase polymerase amplification of HIV DNA, Lab on a Chip)RPA检测HIV DNA的实战效果如果不能及时检测婴儿体内的HIV-1,就会延误治疗并影响治疗效果。
2013年的一项研究设计了靶标HIV-1基因组不同区域(长末端重复LTR和pol)的两种探针。
研究人员用这两个探针分别进行RPA扩增,然后进行荧光检测和侧流层析试纸检测。
研究表明,这样的方法能够可靠地检测到3拷贝的前病毒DNA。
研究人员在此基础上测试了多个HIV-1突变株,pol和LTR引物的扩增率分别为98.6%和93%。
Real-time PCR数据分析
由于Real-time qPCR 的众多优点,现在已是生命科学领域的一项常规技术。
越来越多的研究文章中涉及RT-PCR 的实验,也基本上被real-time qPCR 所代替。
由于real-time aPCR 输出的数据不同于常规的PCR 电泳检测,不少没有做过real-time qPCR 的研究者往往感到高深莫测,不知从何入手;甚至一些做过次实验的研究者也会对数据处理分析感到迷惑,不知所措。
本文就从real-time qPCR 的发展史说起,包括real-time qPCR 的原理,实验设计,实际操作,数据分析,常见问题解答五个方面,手把手教你从各个方面了解real-time qPCR,彻底的从菜鸟到高手!一、Real-time qPCR 发展史Real-time qPCR 就是在PCR 扩增过程中,通过荧光信号,对PCR 进程进行实时检测。
由于在PCR 扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。
由于常规的PCR 的缺点,real-time qPCR 由于其操作简便,灵敏度高,重复性好等优点发展非常迅速。
现在已经涉及到生命科学研究的各个领域,比如基因的差异表达分析,SNP 检测,等位基因的检测,药物开辟,临床诊断,转基因研究等。
在Real-time qPCR 技术的发展过程中,定量PCR 仪的发展起了至关重要的作用。
1995 年,美国PE 公司(已经并入Invitrogen 公司)成功研制了Taqman 技术,1996 年推出了首台荧光定量PCR 检测系统,通过检测每一个循环的荧光强度,通过Ct 值进行数据分析。
从而荧光定量PCR 获得广泛应用。
现在的定量PCR 仪有ABI7000、7300、7500,7700、7900HT、StepOnePlusTM、StepOneTM、PRISM@StepOneTM 系列;BIO-RAD 的CFX96、iCycler iQ5@、MyiQ@、MJ Research Chromo4TM Opticon 系列;Stratagene MxTM 系列;Roche LightCycler@ 系列;Eppendorf Masercycler@;Corbett Rotor-GeneTM;Cepheid SmartCycler@和BIOER 的LineGene 系列。
应用定量PCR技术检测HIV-1逆转录环节的方法的建立
激素 ( C H)及皮质酮 ( O T)浓度 ;H A T C R E染色观察胎 鼠肝、肺形态学改变 ;E le hr h法检 i 测胎 鼠肝 、肺 P s A 代谢物含量 ;并检测胎 鼠肝 、肺还原型谷胱甘肽 ( S G H)含量 ,胎鼠肝脏丙
mm l L o ・ 磷酸二氢钠) H:9 6 ,p . 。结果 :通过对 p H值 ,缓 冲溶液浓度 的优选 ,在该 系统条
件下 ,供试品中 l 种黄酮被很好分离并定量。结论 :该方法可以为野菊花药材的质量鉴定 ,为 O
黄酮类药物制剂 的分离测定提供依据。方法简便准确。
应 用定量 P R技术 检测 HⅣ 一1 C 逆转 录环节 的方法 的建立
氨酸 转氨 酶/ 门冬氨 酸 转 氨 酶 ( T/ T) 活 力 及 相 关 抗 氧 化 指 标 :谷 胱 甘 肽 巯 基 转 移 酶 天 AL AS ( T) GS 、谷胱 甘肽 过 氧 化 物 酶 ( x 、谷 胱 甘 肽 还原 酶 ( GP ) GR) 和超 氧化 物 歧 化 酶 ( OD) 活 S
性 ,以及丙二醛 ( A MD )含量 。结果 :小剂量 R t e 组胎 鼠体重和身长均较正常对照组降低 ( P
< O 0 ,P . 5 ,大剂 量 R t MC .1 <O 0 ) e和 T组 胎 鼠的 生长 发育 指标 也 有 降低 趋 势 ;R t e 处理 组 胎 血
皮质酮均高于正常,大剂量 R t e 暴露能显著升高胎血 A T 水平 ( <O 0 ) C H P .5 ;胎 鼠肝脏部分出
细 管 电泳法 系 统分 离黄 酮 。压 力 进 样 2 pi s 0 a,5 ;运 行 时 间 3mi,电压 1k ( 压 分 析 ) 5 n 5V 恒 ;柱 温 3℃ ;检测 波 长 :30 m 0 3n 运 行 缓 冲 液 为 硼 砂 一 磷 酸 二 氢 钠 系 统 (0 2mmo ・L 硼 砂 ,5 l 0
Abbott雅培RealTimeHIV-1病毒载量检测试剂
包2-病毒载量试剂(雅培)
Abbott雅培RealTi m e HIV-1病毒载量检测试剂技术规格
1.检测项目:HIV-1病毒载量检测
1.1检测亚型:HIV-1型M组(A-H)、O组、N组
1.2检测方法:应用RT-PCR和Real-time实时荧光定量检测技术HIV-1型各组
病毒载量
1.3 检测平台:m2000sp或m24sp自动核酸提取仪或手工核酸提取,m2000rt实
时荧光定量PCR仪
2.定量方式:外部标准品定量
3.技术要求
3.1检测灵敏度: 40 copies/ml(0.6ml、1.0ml样本体积)
3.2特异性:100% ( 95%CI 99.28-100% )
3.3检测范围: 40-10,000,000 copies/ml
3.4检测样本: 血浆(ACD-A、EDTA抗凝)、干血斑
3.5检测样本体积: 可选0.2ml、0.5ml、0.6ml和1.0ml
3.6检测报告单位: copies/ml、log copies/ml、IU/ml、log IU/ml
3.7检测方式: 96孔PCR板
3.8 检测批量:一次检测批量可选24,48,72和96
3.9 内测标准差(SD): ≤0.25 log copies/ml
3.10 内标:添加于裂解液中,与样本一起提取和扩增,质控整个实验流程
3.11 执行标准:VQA和WHO第一届国际HIV-1 RNA定量标准
3.12供货计划:按用户要求数量分批次供货,到货试剂有效期大于10个月。
REAL-TIME PCR POINT MUTATION ASSAYS FOR DETECTING
专利名称:REAL-TIME PCR POINT MUTATION ASSAYS FOR DETECTING HIV-1 RESISTANCE TOANTIVIRAL DRUGS发明人:JOHNSON, Jeffrey, A.,HENEINE, Walid,M.,LIPSCOMB, Jonathan, T.,WEI, Xierong申请号:US2014/040514申请日:20140602公开号:WO2014/194318A3公开日:20150129专利内容由知识产权出版社提供专利附图:摘要:Disclosed are compositions including primers and probes, which are capable ofinteracting with the disclosed nucleic acids, such as the nucleic acids encoding the reverse transcriptase, protease, or integrase of HIV as disclosed herein. Thus, provided is an oligonucleotide comprising any one of the nucleotide sequences set for in SEQ ID NOS: 1-89, 96-122, and 124-151. Also provided are the oligonucleotides consisting of the nucleotides as set forth in SEQ ID NOS: 1-89, 96-122, and 124-151. Each of the disclosed oligonucleotides is a probe or a primer. Also provided are mixtures of primers and probes and for use in RT-PCR and primary PCR reactions disclosed herein. Provided are methods for the specific detection of several mutations in HIV simultaneously or sequentially. Mutations in the reverse transcriptase, protease, or integrase of HIV can be detected using the methods described herein.申请人:THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY DEPARTMENT OF HEALTH AND HUMAN SERVICES地址:Centers For Disease Control And Prevention Technology Transfer Office 4770 Buford Highway MS K79 Atlanta, GA 30341 US国籍:US代理人:GOULD, Weston, R. et al.更多信息请下载全文后查看。
研究 HIV 核酸即时检测分子诊断技术在人类免疫缺陷病毒(HIV-1) 检测中的应用价值及对总精密度
研究 HIV 核酸即时检测分子诊断技术在人类免疫缺陷病毒(HIV-1)检测中的应用价值及对总精密度、检测限的影响摘要】目的:研究HIV核酸即时检测分子诊断技术在人类免疫缺陷病毒(HIV-1)检测中的应用价值及对总精密度、检测限的影响。
方法:取2019年1月~2020年1月期间检验科收集的临床检测样本60例,均采用传统PCR技术和Xpert HIV-1即时核酸检测,比较两种技术的应用价值。
结果:Xpert HIV-1即时核酸检测符合率更高,抗干扰能力更强,对总精密度、检测限的影响更小,差异有统计学意义(P<0.05)。
结论:人类免疫缺陷病毒(HIV-1)检测中应用HIV核酸即时检测分子诊断技术效果显著,可有效提高总精密度,值得临床推广。
【关键词】HIV核酸即时检测分子诊断技术;HIV-1检测;总精密度;检测限【Abstract 】 objective: to study the value of real-time detection of HIV NUCLEIC ACID in the detection of human immunodeficiency virus (HIV-1) and its effect on the total precision and detection limit. Methods: A total of 60 clinical samples were collected from Jan. 2019 to Jan. 2020. All samples were detected by PCR and Xpert,and the application value of the two techniques was compared. Results: XPERT had higher coincidence rate, stronger anti-interference ability, less influence on total precision and detection limit (p < 0.05) . CONCLUSION: immediate detection of HIV NUCLEIC ACID in human immunodeficiency virus (HIV-1) detection by molecular diagnostic technology is effective, can effectively improve the total precision, worthyof clinical promotion.[ keywords ] HIV nucleic acid real-time detection molecular diagnostic technology; HIV-1 detection; Total Precision; detection limitHIV核酸检测是艾滋病检测的重要补充手段,在婴儿的早期诊断和辨别窗口期感染有着重要作用[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter5 Real-Time PCR Analysis of HIV-1ReplicationPost-entry EventsJean L.Mbisa∗,Krista A.Delviks-Frankenberry∗,James A.Thomas, Robert J.Gorelick,Vinay K.PathakAbstractThe reverse transcriptase enzyme plays an essential role in the HIV-1life cycle by converting a single-stranded viral RNA genome into a double-stranded viral DNA through a complex process known as reverse transcription.The resulting double-stranded DNA is integrated into the host chromosome to form a provirus.A small proportion of the viral DNAs form dead-end circular products,which never-theless can serve as useful surrogate markers for monitoring viral replication.Utilizing real-time PCR technology,it is possible to track and quantify different stages of the reverse transcription process,the proviruses,and the nonintegrated dead-end reverse transcription products.Key words:HIV-1,reverse transcription,real-time PCR,1-LTR circle,2-LTR circle,Alu-LTR real-time PCR.1.IntroductionReal-time PCR uses conventional PCR methods;however,theaddition of a quenched probe that becomesfluorescent uponeach PCR amplification step allows for direct quantificationof the number of DNA copies initially present in the sample(1–4).The probe that is added to the PCR reaction(com-monly referred to as the TaqMan probe),is an oligonucleotidethat contains a quencher dye at the3 end and afluorescentreporter dye at the5 end of the probe(4).Differentflu-orescent reporter dyes can be added to the5 end,such as∗These two authors contributed equally to this work.Vinayaka R.Prasad,Ganjam V.Kalpana(eds.),HIV Protocols:Second Edition,vol.485C 2009Humana Press,a part of Springer Science+Business MediaDOI10.1007/5556Mbisa et al.6-carboxy-fluorescein (FAM),hexachloro-6-carboxy-fluorescein,or tetrachloro-6-carboxy-fluorescein,each of which emit light atdifferent wavelengths.The quencher at the 3 end of the probe istypically 6-carboxy-tetramethyl-rhodamine (TAMRA).As shownin Fig.5.1,a typical reaction starts when the probe binds to thetarget template during the cool-down phase after the melting stepfollowed by binding of the forward and reverse primers (Step 1).At this stage,the quencher is in close proximity to the fluorescentreporter dye and therefore no fluorescence is emitted.The Taqpolymerase that catalyzes the PCR reaction not only has a 5 -3polymerase activity,but also a 5 -3 exonuclease activity (Step 2).Therefore,as the Taq polymerase synthesizes DNA,it cleaves anddisplaces the probe,releasing the quencher,and allowing fluo-rescence to be emitted (Step 3)before finishing each amplifi-cation cycle (Step 4).As a result,for each amplification cycle,the emitted fluorescence is recorded and the cycle number atwhich the fluorescence becomes detectable (cycle threshold;C t )is directly correlated to the number of templates in the reaction atthat cycle.This correlation only holds true during the exponen-tial phase of the PCR reaction.Utilizing a known copy numberof input templates as a standard,a standard curve can be gener-ated to determine the exact number of templates initially presentin any unknown sample.Therefore,this technology can moni-tor,in real time,the progress of any PCR reaction and determinethe exact DNA copy numbers per sample,with a high sensitivitythat allows detection of 10or fewer copies per sample (5).As an5'3'3'probe1.2.4.3.Fig.5.1.PCR amplification using TaqMan probe chemistry.After probe and primersbind to the template (Step 1),Taq polymerase initiates synthesis,displaces and cleavesthe probe (Step 2and 3),which allows fluorescence to be emitted.Polymerization iscompleted after one cycle of PCR amplification (Step 4).Analysis of HIV-1Post-entry Events57 alternative to the TaqMan system,one can use SYBR Green I dye which intercalates into double-stranded DNA as it accumulates during the PCR reaction thereby producing afluorescent signal that can be quantified(6–8).The benefits of the SYBR Green dye intercalation technique are that it is less expensive and can be uni-versally applied to all PCR reactions.However,TaqMan probe chemistry is generally preferred over SYBR Green I dye chem-istry because it provides a greater level of specificity.The Taq-Man probe is specific for a given sequence whereas SYBR Green I dye binds all double-stranded DNA,including any PCR artifacts (primer-dimers or nonspecific amplification products),and there-fore requires afinal dissociation curve analysis to verify that the reactions are optimized so that thefinal amplified signal is specific to the target sequence(6–8).The HIV-1genome is initially plus-stranded RNA that must be converted into double-stranded DNA for the virus to com-plete its life cycle(9).The unique process by which the HIV-1reverse transcriptase carries out DNA synthesis enables one to utilize specific primer and probe sets to track and quantify early, intermediate,and late events in reverse transcription(Fig.5.2) (10–19).Early reverse transcription products can be monitored by using a primer/probe set that specifically amplifies minus-strand strong-stop DNA(Fig.5.2A);minus-strand DNA trans-fer can be monitored by using a primer/probe set thatflanks the U3-R-U5junction(Fig. 5.2B);intermediate stages of reverse transcription during minus-strand DNA synthesis and elongation can be monitored with a primer/probe set specific to regions of the viral genome that are between the two LTRs,e.g.,gag (Fig. 5.2C).Finally,plus-strand DNA transfer and late reverse transcription products can be monitored by a primer/probe set specific to the U5and5 untranslated regions of the viral DNA(Fig. 5.2D).Quantifying thefinal number of integrated proviruses into the host cell chromosome relies upon the pres-ence of natural Alu repeats found throughout all human chro-mosomal DNA(11,20,21).A U5specific forward primer and probe are used with a reverse primer that binds to the near-est Alu repeat,amplifying the integrated provirus(Fig.5.2G). Every reverse transcription reaction does not always result in an integration event as some viral DNAs remain linear or cir-cularize to form dead-end1-LTR-and2-LTR-circle products (Fig. 5.2E,F,respectively).The2-LTR circular products can be quantified using primer/probe sets specific to U5and U3,and the1-LTR circle products can also be quantified using a specific primer/probe set which binds gag and env during real-time PCR (11,22–25).The advent of real-time PCR has been instrumental to the field of retrovirology.Not only can real-time PCR be used for basic laboratory research,but it can also be used clinically to58Mbisa et al.R U5 PBS ΨPPT U3 Rviral RNA'integrationPCR integrated provirusesPCR minus strand transfer(A)(D)(G)(E)Fig.5.2.Schematic representation of the HIV-1reverse transcription and integration.Real-time PCR (shaded gray boxes containing arrows)can be used to analyze and quan-tify early,intermediate,and late reverse transcription products as well as integratedand unintegrated (1-and 2-LTR circles)HIV-1viral DNA (Stages A–G).Thin black lines,RNA;thick black lines,DNA;thick gray lines,chromosomal DNA;dashed lines,RNase Hdegradation;cloverleaf,tRNA.Analysis of HIV-1Post-entry Events59quantify HIV-1viral loads and mutation frequencies in patients(5,26–30).Real-time PCR can be used to quantify the efficiencyof reverse transcription and overall amount of viral DNA synthe-sis,quantify the levels of nonintegrated vs.integrated viral DNAfor any antiviral drug treatment,and determine the effects ofan HIV-1mutant or change in experimental conditions on viralDNA synthesis.Overall,real-time PCR technology has greatlyenhanced our basic knowledge of HIV-1post-entry events.2.Materials2.1.Cell Culture, Virus Production, Infections1.293T cells and/or a cell line transduced with an HIV-1-basedvector.For example,a293T cell line has been made that sta-bly expresses the plasmid pHDV-eGFP(31)(named293T-HIV-GFP cell line for remainder of text)(see Note1).2.An integration standard cell line generated by transducingcells with an HIV-1-based vector capable of a single round of replication(11,19)(see Note2).3.Dulbecco’s Modified Eagle’s Medium(DMEM)(Gibco/BRL,Bethesda,MD)supplemented with10% fetal bovine serum(FBS;Hyclone,Ogden,UT),penicillin (50U/mL;Gibco/BRL)and streptomycin(50μg/mL;Gibco/BRL).4.Plasmids:an HIV-1-based vector,e.g.,pHDV-eGFP(31);pHCMV-G,a vector expressing the G glycoprotein of vestic-ular stomatis virus(VSV-G)(32).5.CalPhos Mammalian Transfection Kit(Clontech,MountainView,CA).6.Phosphate-buffered saline(PBS)without Ca2+or Mg2+(Cambrex,Walkersville,MD).lex GS0.45-μm pore sizefilter(Nalgene,Rochester,NY).8.HIV-1p24ELISA Kit(Perkin Elmer,Wellesley,MA).9.DNase I(Roche,Indianapolis,IN).10.Heat block set at65◦C.11.Hexadimethrine bromide(Polybrene),1mg/mL stock(Sigma,St.Louis,MO).2.2.DNA Isolation 1.QIAamp DNA Blood Mini Kit(Qiagen,Germantown,MD).2.2mL Collection tubes(Qiagen,Germantown,MD).3.Dpn I restriction enzyme(NEB,Beverly,MA).2.3.Real-Time PCR 1.A dedicated set of pipettes andfilter tips for real-time PCRuse only.2.AmpliTaq Gold R DNA Polymerase,5U/μL(PE-AppliedBiosystems,Foster City,CA).3.100mM dNTP Set,PCR grade,4×25μmol(Invitrogen,Carlsbad,CA).60Mbisa et al.Table5.1Primer/probe sets for analysis of different stages of reverse transcription,1-and 2-LTR circle formation,integrated proviruses,and cellular genesStage of reverse transcription a TargetsequenceForwardprimerReverseprimer ProbeStandardtemplateA RU5hRU5-F2hRU5-R hRU5-P pHDV-eGFPB U3U5FST-F1SS-R4P-HUS-SS1pHDV-eGFPC Gag GagF1GagR1P-HUS-103pHDV-eGFPD U5 MH531MH532LRT-P pHDV-eGFP E1-LTR LA1LA151-LTR-P pCR-1LTRF2-LTR FJ SS-F4LTR-R5P-HUS-SS1pJB1041F2-LTR TOT SS-F4LTR-R3P-HUS-SS1pJB1041G Alu-LTR MH535SB704P-HUS-SS1Special b control PBGD nPBGD-For nPBGD-Rev nPBGD-Pr pJB1057 control CCR5CCR5-For CCR5-Rev P-CCR5-01pRB2569(19)a Stages labeled in Fig.5.2.b Standard for the Alu-LTR assay is the Integration Standard cell line,prepared as described in Section3.8.4.10X TaqMan R Buffer II(PE-Applied Biosystems).5.10X TaqMan R Buffer A(containing FAM-10-ROX internalreference)(PE-Applied Biosystems).6.25mM MgCl2(PE-Applied Biosystems).7.Forward and reverse primers(100μM stocks).8.Dual-labeled probe(100μM stocks).9.Plasmid DNA to be used as standard template as listed inTable5.1(see Note3).10.DNA from uninfected293T cells.11.PCR grade nuclease-free water(Ambion,Austin,TX).12.MicroAmp R Optical96-well Reaction Plates(PE-AppliedBiosystems).13.MicroAmp R Optical Caps for96-well Reaction Plates(PE-Applied Biosystems).14.Microfuge tubes(DNase/RNase free)15.ABI7900HT(PE-Applied Biosystems)or equivalent Real-time PCR instrument.3.MethodsThe protocol outlined here describes the analysis of HIV-1post-entry events during infection of cultured cells utilizing the Taq-Man probe chemistry.In addition,this protocol can be easilyAnalysis of HIV-1Post-entry Events61 modified to analyze other types of samples,for example clinical samples.To analyze post-entry steps during HIV-1infection of cultured cells by real-time PCR,virus is produced by transfection of293T cells with an HIV-1-based vector and an envelope pro-tein expression construct,target cells are infected,and DNA is isolated from the infected cells.3.1.Virus Production from Transfected Cell Lines 1.Plate293T target cells in DMEM at density of2.5×106cellsper100-mm-diameter dish(see Note1).2.Twenty four hours later,replace medium with fresh DMEM.Transfect with10μg of pHDV-eGFP and2μg of pHCMV-G using CalPhos transfection kit following manufacturer’sinstructions(see Note4).3.Incubate the plates in3%CO2incubator at37◦C for6h.4.Gently rinse the plates three times with10mL of PBS at roomtemperature supplemented with1%FBS(v/v)(see Note5).Add10mL of fresh DMEM media and incubate overnight in 5%CO2incubator at37◦C.5.Next morning,gently rinse the plates again three times with10mL PBS and add10mL of fresh DMEM media.Return to incubator.6.Gently rinse the plates again5–6h later once with10mL PBSand add10mL of fresh DMEM media.Incubate overnight.7.Harvest the virus containing supernatant the next morningand clarify the samples by centrifuging at400×g for4min at 4◦C.Pass the supernatant through Millex GS0.45μm pore sizefilter.8.Take an aliquot and perform p24ELISA analysis followingmanufacturer’s instructions.9.Store the remaining sample at−80◦C until ready to use forinfection of target cells.3.2.Virus Production from Stable Cell Lines 1.Plate293T-HIV-GFP cells at density of2.5×106cells per100-mm-diameter dish(see Note1).2.Twenty four hours later,replace medium with fresh DMEM.Transfect with2μg of pHCMV-G using CalPhos transfection kit following manufacturer’s instructions(see Note4).3.Incubate the plates in3%CO2incubator at37◦C for6h.4.Remove the media and add10mL of fresh DMEM media.5.Incubate the plates in5%CO2incubator at37◦C for36–48h.6.Harvest the virus containing supernatant and clarify the sam-ples by centrifuging at400×g for4min at4◦C.Pass the supernatant through Millex GS0.45-μm pore sizefilter.7.Take an aliquot and perform p24ELISA analysis followingmanufacturer’s instructions.8.Store the remaining sample at−80◦C until ready to use forinfection of target cells.62Mbisa et al.3.3.Infection 1.Plate293T target cells at a density of1×105cells per60-mm-diameter dish(see Note1).2.Twenty four hours later,infect target cells with p24-normalized virus as determined by HIV-1p24ELISA(seeNote6).Before infection,treat the virus with10U/mL ofDNase I plus4mM MgCl2at37◦C for1h to reduce trans-fected plasmid DNA carryover,which can contribute to thesignal during real-time PCR.3.For each virus,prepare in parallel a heat-inactivated controlsample by incubating the virus at65◦C for an hour to be usedfor determining carryover contamination from plasmid DNA.4.Make the inoculum,for both live and heat-inactivated virus,bydiluting so that p24values are comparable,adjustfinal volumeto2mL per plate with DMEM,and add5μg/mL of Poly-brene.5.Infect for3h with gentle rocking every30–60min.6.Remove inoculum,gently rinse twice with PBS plus1%FBSand add4mL of fresh DMEM.7.Harvest total cellular DNA from both live virus-and heat-inactivated virus-infected cells at desired time points by remov-ing the media and adding1mL of PBS.Scrape the plates orpipet vigorously to dislodge cells,and transfer cell suspensionto1.5mL centrifuge tubes and spin at1000×g for4minat4◦C.8.Discard supernatant and proceed to isolate DNA(see Section3.4)or store cell pellets at−80◦C until ready to isolate DNA.3.4.DNA Isolation 1.Resuspend cell pellets in200μL of PBS.2.Proceed to extract the total cellular DNA following the proto-col as stated in the Qiagen QIAamp DNA Blood Mini Kit.3.Elute the DNA in200μL of elution buffer EB provided in thekit or nuclease-free water.4.Digest DNA sample with Dpn I restriction enzyme,whichdigests only plasmid DNA and therefore helps further toreduce plasmid DNA detection during real-time e0.1U/μL in NEB Buffer2for2–4h at37◦C.3.5.Real-Time PCR Analysis of Postentry Reverse Transcription Steps 1.Analysis of the different stages of reverse transcription is nor-mally carried out by completing a time course from0to6or 0to12h,and subsequently comparing the different levels of reverse transcription products as time progresses.For example, collect and process samples at0,0.5,1,3,6and12h postin-fection.2.If possible,use a UV-decontaminated hood when setting upall PCR reactions to avoid any cross contamination.Only use pipettes,RNase and DNase-free Eppendorf tubes and sterileAnalysis of HIV-1Post-entry Events63 PCR racks that are dedicated for real-time PCR use.All pre-pared reaction mixtures should be kept on ice.3.Select the primer/probe set to use from the list in Table5.1depending on the stage of reverse transcription to be analyzed,i.e.,RU5for initiation of reverse transcription or early RTproducts,U3U5products for minus-strand DNA transfer,gag for late minus-strand DNA synthesis,and U5 for plus-strand DNA transfer and late RT products(see Note7).PBGD or CCR5primer/probe sets target cellular genes and are run for each sample to normalize for DNA recovery and the number of cells loaded in each reaction.The sequences of the primers and probes are listed in Table5.2.4.Prepare a standard curve from the appropriate standard tem-plate listed in Table5.1to be used to compute the copy num-bers in each sample.Make a stock of109DNA copies/μL and dilute the working stock solution to108copies/μL.Prepare 11dilutions for the standard curve:thefirst dilution should be made at afinal concentration of107copies per10μL.Start-ing with thefirst dilution,make10additional threefold serial dilutions down to169copies per10μL.5.In a nuclease-free tube on ice,prepare a PCR master mix withall of the PCR reagents except the DNA as outlined in Table5.3(see Note8).The reaction setup shown in Table5.3is fora50-μL reaction,but prepare enough PCR master mix for all the samples and standards in the experiment as well as a“no template”control(NTC).Include a5%overage to compen-sate for pipetting error.Mix well and centrifuge briefly.It is recommended that all samples should be run in duplicate or triplicate to increase the accuracy of results.6.Dispense40μL of PCR master mix into each well of aMicroAmp R Optical96-well Reaction Plate and add10μL of DNA isolated from step3.4(100–500ng),or10μL of the serial dilution of standard DNA template or10μL of water for the NTC.You may also run a blank containing50μL of water.Securely cover all the wells(including unused ones)with the MicroAmp R Optical Caps for96-well Reaction Plates.Mix well and centrifuge briefly to ensure that the entire sample is at the bottom of the well.7.Run the PCR reaction using the thermocycling parametersoutlined in Table5.4for analysis of different stages of reverse transcription or for the cellular gene controls,using an ABI Prism7900HT sequence detection system(see Note9).8.After the reaction is complete,analyze the results accord-ing to the manufacturer’s instructions,especially paying great attention to the baseline and threshold settings (see /cms/groups/mcb-marketing/documents/generaldocuments/cms-042502.pdf and https:///support/apptech/64Mbisa et al.Table5.2Sequences of oligonucleotide primers and probesSequenceName ofoligonucleotide ahRU5-F2b5 -GCCTCAATAAAGCTTGCCTTGA-3hRU5-R b5 -TGACTAAAAGGGTCTGAGGGATCT-3hRU5-P b5 -FAM-AGAGTCACACAACAGACGGGCACACACTA-TAMRA-3 FST-F1b5 -GAGCCCTCAGATGCTGCATAT-3SS-R4b5 -CCACACTGACTAAAAGGGTCTGAG-3P-HUS-SS1b5 -FAM-TAGTGTGTGCCCGTCTGTTGTGTGAC-TAMRA-3 GagF1b5 -CTAGAACGATTCGCAGTTAATCCT-3GagR1b5 -CTATCCTTTGATGCACACAATAGAG-3P-HUS-103b5 -FAM-CATCAGAAGGCTGTAGACAAATACTGGGA-TAMRA-3 MH531b5 -TGTGTGCCCGTCTGTTGTGT-3MH532b5 -GAGTCCTGCGTCGAGAGATC-3LRT-P b5 -FAM-CAGTGGCGCCCGAACAGGGA-TAMRA-3SS-F4b5 -TGGTTAGACCAGATCTGAGCCT-3LTR-R3b5 -AGGTAGCCTTGTGTGTGGTAGATCC-3LTR-R5b5 -GTGAATTAGCCCTTCCAGTACTGC-3LA1b5 -GCGCTTCAGCAAGCCGAGTCCT-3LA15b5 -CACACCTCAGGTACCTTTAAGA-31-LTR-P b5 -FAM-AGTGGCGAGCCCTCAGATGCTGC-TAMRA-3MH535b5 -AACTAGGGAACCCACTGCTTAAG-3SB704c5 -TGCTGGGATTACAGGCGTGAG-3nPBGD-For c5 -AGGGATTCACTCAGGCTCTTTCT-3nPBGD-Rev c5 -GCATGTTCAAGCTCCTTGGTAA-3nPBGD-Pr c5 -FAM-TCCGGCAGATTGGAGAGAAAAGCCTG-TAMRA-3CCR5-For c5 -CCAGAAGAGCTGAGACATCCG-3CCR5-Rev c5 -GCCAAGCAGCTGAGAGGTTACT-3P-CCR5-01c5 -FAM-TCCCCTACAAGAAACTCTCCCCGG-TAMRA-3a See Table5.1for the target sequence detected by each primer/probe set.b Primer sequences were designed to amplify NL4-3viral DNA,or vectors containing these sequences.Because of sequence variation between HIV-1isolates,it may be necessary to modify or redesign the sequences.c Primer sequences are designed for human genes.The use of cells from other species will require modification or redesign of these sequences.Setup of real-time PCR reactionsAmount Component Final concentration 3μL10X Buffer A2μL10X PCR Buffer II1X8μL MgCl2(25mM)4mM0.4μL dNTPs(25mM)0.2mM each0.3μL a,b Forward primer(100μM)600nM a,b0.3μL a,b Reverse primer(100μM)600nM a,b0.04μL a,b Probe(100μM)80nM a,b0.25μL AmpliTaq Gold R (5U/μL) 1.25U10μL DNA(100to500ng)to50μL PCR Grade Nuclease-free Watera For the reaction to analyze1-LTR circle formation,the forward and reverse primers are used at400nM,the probe is used at200nM(25).b For Alu-LTR reactions,the forward primer is used at50nM,the reverse primer is used at900nM,the probe is used at100nM(see(19),Bushman website, /).#rt pcr).The blank and NTC samples should not give any signal.The viral standard curve will be used to calculate the copy number for each unknown sample.A graph plot showing a typical standard curve with values from live and heat-inactivated virus samples is presented in Fig.5.3.The cellular gene copy numbers can be used to normalize for the number of the cells loaded in each reaction.A good standard curve should have a y-intercept of approximately39–41cycles and a slope between−3.321and−3.5,which corresponds to an efficiency of100–93%,respectively.3.6.Real-Time PCR Analysis of2-LTR-Circle Formation 1.Analysis of2-LTR-circle formation is normally done usingDNA collected24h after infection.2.Select a primer/probe set from the list in Table5.1depend-ing on whether you want to analyze the total number of 2-LTR circles(2-LTR TOT)or2-LTR circles with com-plete junctions only(2LTR FJ).Also run a duplicate plate with PBGD or CCR5primer/probe set for each sam-ple to normalize for the number of cells loaded in each reaction.3.Prepare a standard curve from the appropriate standard tem-plate listed in Table5.1,to be used to compute the copy num-bers in each sample as described in point3of Section3.5.Thermocycling parameters for real-time PCR reactionsCycling parametersTarget of amplification Step Temperature Duration RU5,gag or U5 Denature a95◦C10min45PCR cyclesDenature95◦C15sAnneal and extend60◦C1min PBGD or CCR5Denature95◦C10min45PCR cyclesDenature95◦C15sAnneal55◦C30sExtend60◦C30sAlu-LTR Denature95◦C10min45PCR cyclesDenature95◦C15sAnneal60◦C1minExtend72◦C1min2-LTR circles Denature95◦C10min45PCR cyclesDenature95◦C15sAnneal and extend66◦C1min1-LTR circles Denature95◦C10min45PCR cyclesDenature95◦C30sAnneal60◦C30sExtend72◦C1minFinal extension72◦C5mina AmpliTaq Gold(ABI)is acetylated to prevent DNA synthesis;10min at95◦C acti-vates the polymerase.Platinum Taq(Invitrogen)is bound to an antibody to prevent DNA synthesis;2min at95◦C is enough to activate the polymerase.4.Prepare the PCR master mix as described in point4ofSection 3.5.5.Dispense the PCR master mix and DNA into each well of aMicroAmp R Optical96-well Reaction Plate as described in point5of Section3.5.0510********3502468T h r e s h o l d C y c l e (C t )Copy Number (log)Fig.5.3.Typical real-time PCR standard curve with values from live and heat-inactivated virus samples.6.Run the PCR reaction using the thermocycling parameters outlined in Table 5.4for analysis of 2-LTR circles or for the cellular gene controls,using an ABI Prism 7900HT sequence detection system (see Note 9).7.Analyze the data as described in point 8of Section 3.5.The number of 2-LTR circles formed is normally expressed as a percentage of late RT products at 6h after infection in a paral-lel infection.On average,during wild-type virus infection,1–5%of late RT products at 6h ultimately form 2-LTR circles,depending on the infection target cell line (11,19).3.7.Real-Time PCR Analysis of 1-LTR-Circle Formation1.Analysis of 1-LTR-circle formation is normally done using DNA collected 24h after infection.2.Prepare a standard curve from the appropriate standard tem-plate listed in Table 5.1,to be used to compute the copy num-bers in each sample as stated in point 3of Section3.5.3.Prepare the PCR master mix as described in point 4of Section 3.5using the 1-LTR primer/probe set (Table 5.1).Note the difference in the 1-LTR primer and probe concentrations.Also run a duplicate plate with PBGD or CCR5primer/probe set to normalize for the number of cells loaded for each reaction.4.Dispense the PCR master mix and DNA into each well of aMicroAmp ROptical 96-well Reaction Plate as described in point 5of Section 3.5.5.Run the PCR reaction using the thermocycling parameters outlined in Table 5.4for analysis of 1-LTR circle-formation or for the cellular gene controls,using an ABI Prism 7900HT sequence detection system (see Note 9).6.Analyze the data as described in point 8of Section 3.5.The number of 1-LTR circles formed is normally expressed as a per-centage of late RT product at 6h after infection determinedfrom a parallel infection.On average,the proportion of1-LTR:2-LTR circles formed during wild-type virus infection is 9:1(11).3.8.Alu-LTR Real-Time PCR Analysis of Viral Integration 1.Analysis of integrated proviruses is normally done using DNAcollected24–48h after infection.2.Prepare integration standard DNA from a293T cell line trans-duced with an HIV-1-based vector as previously described (11,19)(see Note2).3.Determine the equivalent provirus copy number by corre-lating the Alu-LTR signal with late RT product using U5 primer/probe set as previously described(11,20,21)(see Note10).It is important to make this determination in the presenceof the amount of cell-extract that will be present when measur-ing the unknowns(see Note11).Make single use aliquots of 105–106provirus/μL and keep at−80◦C until needed.Keep the cellular DNA as concentrated as is practical.4.Measure the quantities of either PBGD or CCR5to deter-mine the number of cells present in each reaction,and dilute if necessary to insure that100–500ng of DNA is present when quantifying provirus.Otherwise,the signal obtained cannot be equated with quantities on the standard curve.5.Prepare dilutions for the standard curve:thefirst dilutionshould be made at afinal concentration of approximately106 copies per10μL.Starting with this dilution,prepare threefold serial dilutions down to approximately1,000copies per10μL.Each dilution should also contain100–500ng of DNA from uninfected293T cells per10μL,as a control for cellular DNA in the sample(see Note11).6.Prepare the PCR master mix as described in point4of Sec-tion3.5using the Alu-LTR primer/probe set(Table5.1).Note the difference in the Alu-LTR primer and probe concen-trations.7.Dispense the PCR master mix and DNA into each well of aMicroAmp R Optical96-well Reaction Plate as described in point5of Section3.5.8.Run the PCR reaction using the thermocycling parametersoutlined in Table5.4for analysis of integrated proviruses or for the cellular gene controls,using an ABI Prism7900HT sequence detection system(see Note9).9.Analyze the data as described in point8of Section3.5.Thenumber of integrated proviruses is normally expressed as a per-centage of late RT product at6h after infection determined from a parallel infection.On average,during wild-type virus infection,5–20%of late RT products at6h eventually inte-grate into the host genome,depending on the infection target cell line(11).。