十年高考试题分类汇编--第七章 复数

合集下载

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

复数高考题分类大全

复数高考题分类大全

复数高考题分类大全 Revised by BETTY on December 25,2020复数高考真题分类汇编题型一 复数的概念及分类1.(2015·天津卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a .2.(2016·江苏卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·上海卷)设i iz 23+=,其中i 为虚数单位,则其虚部为 .4.(2017·天津卷)已知R a ∈,i 为虚数单位,若i i a +-2为实数,则a 的值为 . 5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈; :2p 若复数满足R z ∈2,则R z ∈; :3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈; 其中真命题为( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p 题型二 与共轭复数、复数相等有关的问题1.(2013·山东卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·安徽卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --1 3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·天津卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·陕西卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·山东卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+ 9.(2014·江西卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -1 10.(2014·安徽卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设ii z +=310,则z 的共轭复数为( ) A .i 31+- B .i 31-- C .i 31+D .i 31-12.(2014·福建卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+ 13.(2015·广东卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23- 14.(2015·湖北卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1- 15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 2 16.(2015·山东卷)若复数满足i iz =-1,其中i 为虚数单位,则=z ( )A .i -1B .i +1C .i --1D .i +-1 17.(2016·山东卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 18.(2016·天津卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则b a 的值为______.19.(2017·山东卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·浙江卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模1.(2013·辽宁卷)复数11-=i z 的模为( )A .21B .22C .2D .22.(2013·江苏卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______.3.(2013·陕西卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·重庆卷)已知复数i iz 215+=(i 是虚数单位),则=z _____.5.(2015·全国卷)设复数z 满足i z z=-+11,则=z ( )A .1B .2C .3D .26.(2015·江苏卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____.7.(2015·重庆卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____.8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .2 9.(2017·江苏卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______.10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22C .2D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·浙江卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·广东卷)若复数满足i z i 42+=⋅,则在复平面内,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4( 4.(2014·北京卷)复数=-+2)11(ii ______. 5.(2014·江苏卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·四川卷)复数=+-ii 122______. 7.(2014·天津卷)i 是虚数单位,复数=++i i 437( ) A .i -1B .i +-1C .i 25312517+D .i 725717+- 8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1D .i --1 9.(2014·辽宁卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23- 10.(2014·湖北卷)i 为虚数单位,则=+-2)11(ii ( ) A .1- B .1 C .i -D .i11.(2014·湖南卷)满足i zi z =+(i 是虚数单位)的复数=z ( ) A .i 2121+ B .i 2121- C .i 2121+- D .i 2121-- 12.(2014·广东卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43- 13.(2015·北京卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 14.(2015·福建卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .15.(2015·湖南卷)已知i z i +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1D .i --1 16.(2015·四川卷)设i 是虚数单位,则复数=-i i 23( ) A .i - B .i 3- C .iD .i 3 17.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i ( ) A .1 B .1- C .iD .i - 18.(2016·四川卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii 13( ) A .i 21+ B .i 21-C .i +2D .i -2题型五 复数的几何意义 1.(2013·湖南卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面内的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --4 6.(2014·重庆卷)在复平面内表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·安徽卷)设i 是虚数单位,则复数ii -12在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.(2016·北京卷)设R a ∈,若复数))(1(i a i ++在复平面内对应的点位于实轴上,则=a ________. 9.(2017·北京卷)若复数))(1(i a i +-在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。

复数十年高考题带详细解析

复数十年高考题带详细解析

复 数●试题类编※1.设复数z 1=-1+i ,z 2=2321+i ,则arg 21z z 等于( )A.-125πB.125π C.127πD.1213π 2.复数z =iim 212+-(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限※3.如果θ∈(2π,π),那么复数(1+i )(cos θ+i sin θ)的辐角的主值是( )A.θ+49π B.θ+4π C.θ4π- D.θ+47π 4.复数(2321+i )3的值是( ) A. -i B.i C.-1 D.1 5.如图12—1,及复平面中的阴影部分(含边界)对应的复数集合是( )※6.已知复数z=i 62+,则arg z1是( )A.6πB.611πC.3πD.35π※7.设复数z 1=-1-i 在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转65π后得到向量2OZ ,令2OZ 对应的复数z 2的辐角主值为θ,则tan θ等于( )A.2-3B.-2+3C.2+3D.-2-3※8.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转3π,所得向量对应的复数是( ) A.23 B.-23i C.3-3i D.3+3i※9.复数z =)5sin 5(cos 3ππi --(i 是虚数单位)的三角形式是( )A.3[cos (5π-)+i sin (5π-)] B.3(cos 5π+i sin 5π)C.3(cos54π+i sin 54π) D.3(cos56π+i sin 56π) 10.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限11.设复数z 1=2sin θ+i cos θ(4π<θ<2π)在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转43π后得到向量2OZ ,2OZ 对应的复数为z 2=r (cos ϕ+i sin ϕ),则tan ϕ等于( )A.1tan 2tan 2-θθB.1tan 21tan 2+-θθC.1tan 21+θD.1tan 21-θ※12.复数-i 的一个立方根是i ,它的另外两个立方根是( )A.i 2123±B.i 2123±-C.±i 2123+D.±i 2123- 13.复数54)31()22(i i -+等于( ) A.1+3i B.-1+3i C.1-3i D.-1-3i14.设复数z =-2321+i (i 为虚数单位),则满足等式z n =z 且大于1的正整数n 中最小的是( )A.3B.4C.6D.715.如果复数z 满足|z +i |+|z -i |=2,那么|z +i +1|的最小值是( )A.1B.2C.2D.5 二、填空题16.已知z 为复数,则z +z >2的一个充要条件是z 满足 . 17.对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算“⊙”为:z 1⊙z 2=x 1x 2+y 1y 2.设非零复数w 1、w 2在复平面内对应的点分别为P 1、P 2,点O 为坐标原点.如果w 1⊙w 2=0,那么在△P 1OP 2中,∠P 1OP 2的大小为 .18.若z ∈C ,且(3+z )i =1(i 为虚数单位),则z = . 19.若复数z 满足方程z i =i -1(i 是虚数单位),则z =_____. 20.已知a =ii213+--(i 是虚数单位),那么a 4=_____.21.复数z 满足(1+2i )z =4+3i ,那么z =_____. 三、解答题22.已知z 、w 为复数,(1+3i )z 为纯虚数,w =iz+2,且|w |=52,求w .23.已知复数z=1+i,求实数a,b使az+2b z=(a+2z)2.24.已知z7=1(z∈C且z≠1).(Ⅰ)证明1+z+z2+z3+z4+z5+z6=0;(Ⅱ)设z的辐角为α,求cosα+cos2α+cos4α的值.※25.已知复数zi(1-i)3.1=(Ⅰ)求arg z1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z-z1|的最大值.26.对任意一个非零复数z ,定义集合M z ={w |w =z 2n -1,n ∈N }. (Ⅰ)设α是方程x +21=x的一个根,试用列举法表示集合Mα;(Ⅱ)设复数ω∈M z ,求证:M ω⊆M z .27.对任意一个非零复数z ,定义集合M z ={w |w =z n ,n ∈N }. (Ⅰ)设z 是方程x +x1=0的一个根,试用列举法表示集合M z .若在M z 中任取两个数,求其和为零的概率P ;(Ⅱ)若集合M z 中只有3个元素,试写出满足条件的一个z 值,并说明理由.28.设复数z满足|z|=5,且(3+4i)z在复平面上对应的点在第二、四象限的角平分线上,|2z-m|=52(m∈R),求z和m的值.29.已知复数z0=1-mi(M>0),z=x+yi和ω=x′+y′i,其中x,y,x′,y′均为实数,i为虚数单位,且对于任意复数z,有ω=z·z,|ω|=2|z|.(Ⅰ)试求m的值,并分别写出x′和y′用x、y表示的关系式;(Ⅱ)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P 变到这一平面上的点Q .当点P 在直线y =x +1上移动时,试求点P 经该变换后得到的点Q 的轨迹方程;(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.※30.设复数z =3cos θ+i ·2sin θ.求函数y =θ-arg z (0<θ<2)的最大值以及对应的θ值.※31.已知方程x2+(4+i)x+4+ai=0(a∈R)有实数根b,且z=a+bi,求复数z(1-ci)(c>0)的辐角主值的取值范围.※32.设复数z满足4z+2z=33+i,ω=sinθ-i cosθ(θ∈R).求z的值和|z-ω|的取值范围.※33.已知复数z 1满足(z 1-2)i =1+i ,复数z 2的虚部为2,且z 1·z 2是实数,求复数z 2的模.※34.已知向量OZ 所表示的复数z 满足(z -2)i =1+i ,将OZ 绕原点O 按顺时针方向旋转4得1OZ ,设1OZ 所表示的复数为z ′,求复数z ′+2i 的辐角主值.※35.已知复数z =2321+i ,w =2222+i ,求复数zw +zw 3的模及辐角主值.36.已知复数z =2321+i ,ω=2222+i .复数z ω,z 2ω3在复数平面上所对应的点分别是P、Q.证明:△OPQ是等腰直角三角形(其中O为原点).37.设虚数z1,z2满足z12=z2.(1)若z1、z2是一个实系数一元二次方程的两个根,求z1、z2;※(2)若zmi(m>0,i为虚数单位),ω=z2-2,ω的辐角1=1+主值为θ,求θ的取值范围.38.设z 是虚数,w =z +z1是实数,且-1<ω<2. (Ⅰ)求|z |的值及z 的实部的取值范围; (Ⅱ)设u =zz+-11,求证:u 为纯虚数; (Ⅲ)求w -u 2的最小值.39.已知复数z 1、z 2满足|z 1|=|z 2|=1,且z 1+z 2=2321+i .求z 1、z 2的值.※40.设复数z=cosθ+i sinθ,θ∈(π,2π).求复数z2+z的模和辐角.※41.在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O是原点),已知Z2对应复数z2=1+3i,求Z1和Z3对应的复数.※42.已知z =1+i ,(Ⅰ)设w =z 2+3z -4,求w 的三角形式.(Ⅱ)如果122+-++z z bax z =1-i ,求实数a ,b 的值.43.设w 为复数,它的辐角主值为43π,且ωω4)(2-为实数,求复数w .答案解析1.答案:B解析一:通过复数及复平面上对应点的关系,分别求出z 1、z 2的辐角主值.arg z 1=43π,arg z 2=3π.所以arg πππ12534321=-=z z ∈[0,2π), ∴arg12521=z z π. 解析二:因为i i i i i z z )2123()2123()2321)(1(2321121++-=-+-=++-=. 在复平面的对应点在第一象限.故选B评述:本题主要考查复数的运算法则及几何意义、辐角主值等概念,同时考查了灵活运用知识解题的能力,体现了数形结合的思想方法.2.答案:A解析:由已知z =51)21)(21()21)(2(212=-+--=+-i i i i m i i m [(m -4)-2(m +1)i ]在复平面对应点如果在第一象限,则⎩⎨⎧<+>-0104m m 而此不等式组无解.即在复平面上对应的点不可能位于第一象限.3.答案:B解析:(1+i )(cos θ+i sin θ)=2(cos4π+i sin 4π)(cos θ+i sin θ)=2[cos (θ+4π)+i sin (θ+4π)]∵θ∈(2π,π) ∴θ+4π∈(43π,45π)∴该复数的辐角主值是θ+4π.4.答案:C 解法一:(2321+i )3=(cos60°+i sin60°)3=cos180°+i sin180°=-1解法二:i i 2321,2321+-=-=+ωω, ∴1)()()2321(333-=-=-=+ωωi 5.答案:D 6.答案:D 解法一:35arg 21arg ),3sin 3(cos 22)2321(22ππππ=-=+=+=z z i i z 解法二:)31(2i z += ∴22311iz -= ∴z 1,0223,0221<->应在第四象限,tan θ=3-,θ=arg z 1. ∴arg z1是35π. 7.答案:C解析:∵arg z 1=45π,arg z 2=125π ∴tan θ=tan125π=tan75°=tan (45°+30°)=323333+=-+.8.答案:B解析:根据复数乘法的几何意义,所求复数是i i i i i 32)2321)(33()]3sin()3)[cos(33(-=--=-+--ππ.9.答案:C解法一:采用观察排除法.复数)5sin 5(cos 3ππi z --=对应点在第二象限,而选项A 、B 中复数对应点在第一象限,所以可排除.而选项D 不是复数的三角形式,也可排除,所以选C.解法二:把复数)5sin 5(cos 3ππi z --=直接化为复数的三角形式,即).54sin 54(cos3)]5sin()5[cos(3)5sin5cos (3ππππππππi i i z +=-+-=+-=10.答案:D 解析:ππππ1223arg 47,47arg ,6arg 02121<⋅<=<<z z z z . 11.答案:A解析:设z 1=2sin θ+i cos θ=|z 1|(cos α+i sin α), 其中|z 1|=||sin 2cos ,cos sin 4122z θαθθ=+, sin α=||cos 1z θ(24πθπ<<). ∴z 2=|z 1|·[cos (α43π-)+i sin (α43π-)] =r (cos ϕ+i sin ϕ). ∴tan ϕ=1tan 21tan 2cos sin 2cos sin 2sin cos sin cos )43cos()43sin(cos sin -+=-+=-+=--=θθθθθθααααπαπαϕϕ12.答案:D解法一:∵-i =cos23π+i sin 23π ∴-i 的三个立方根是cos 3223sin 3223ππππk i k +++(k =0,1,2)当k =0时,i i i =+=+2sin 2cos 323sin 323cos ππππ;当k =1时,i i i 212367sin 67cos 3223sin 3223cos --=+=+++ππππππ;当k =2时,i i i 2123611sin 611cos 3423sin 3423cos -=+=+++ππππππ. 故选D.解法二:由复数开方的几何意义,i 及-i 的另外两个立方根表示的点均匀地分布在以原点为圆心,1为半径的圆上,于是另外两个立方根的虚部必为-21,排除A 、B 、C ,选D.评述:本题主要考查了复数开方的运算,既可用代数方法求解,也可用几何方法求解,但由题干中的提示,几何法解题较简捷.13.答案:B解法一:)4sin 4(cos 2222ππi i +=+,故(2+2i )4=26(cos π+i sin π)=-26,1-)3sin 3(cos 23ππi i -=,故35sin35cos 2)31(55ππi i +=-.于是i i i i i 31)2321(22)35sin 35(cos2)31()22(5654+=--=+-=-+ππ, 所以选B.解法二:原式=i i i i i 23212)2321()2(21)2321(2)1(1622554--=+--=+--+i i i314)31(4314+-=--=+-=∴应选B解法三:2+2i 的辐角主值是45°,则(2+2i )4的辐角是180°;1-3i 的一个辐角是-60°,则(1-3i )5的辐角是-300°,所以54)31()22(i i -+的一个辐角是480°,它在第二象限,从而排除A 、C 、D ,选B.评述:本题主要考查了复数的基本运算,有一定的深刻性,尤其是选择项的设计,隐藏着有益的提示作用,考查了考生观察问题、思考问题、分析问题的综合能力.14.答案:B 解析:z =-2321+i 是z 3=1的一个根,记z =ω,ω4=ω,故选B.15.答案:A解析:设复数z 在复平面的对应点为z ,因为|z +i |+|z -i |=2,所以点Z 的集合是y 轴上以Z 1(0,-1)、Z 2(0,1)为端点的线段.|z +1+λ|表示线段Z 1Z 2上的点到点(-1,-1)的距离.此距离的最小值为点Z 1(0,-1)到点(-1,-1)的距离,其距离为1.评述:本题主要考查两复数之差的模的几何意义,即复平面上两点间的距离.16.答案:Rez >1解析:设z =a +bi ,如果z +z >2,即2a >2∴a >1反之,如果a >1,则z +z =2a >2,故z +z >2的一个充要条件为Rez >1.评述:本题主要考查复数的基本概念、基本运算及充要条件的判断方法.17.答案:2π解析:设i y x z i y x z OP OP 221121,+=+=∵w 1⊙w 2=0 ∴由定义x 1x 2+y 1y 2=0∴OP 1⊥OP 2 ∴∠P 1OP 2=2π.18.答案:z =-3-i解析:∵(3+z )i =1 ∴3+z =-i ∴z =-3-i 19.答案:1-i解析:∵z i =i -1,∴ii z 1-==(i -1)(-i )=1+i ∴z =1-i . 20.答案:-4 解析:a 4=[(i i 213+--)2]2=[5)21)(3(i i ---]4=(555i +-)4=(-1+i )4=(-2i )2=-4 21.答案:2+i 解析:由已知i ii i i i z -=-++=+-+=++=25)83(6441)21)(34(2134,故z =2+i .22.解法一:设z =a +bi (a ,b ∈R ),则(1+3i )z =a -3b +(3a +b )i .由题意,得a =3b ≠0. ∵|ω|=25|2|=+iz, ∴|z |=10522=+b a .将a =3b 代入,解得a =±15,b =±15. 故ω=±ii++2515=±(7-i ). 解法二:由题意,设(1+3i )z =ki ,k ≠0且k ∈R , 则ω=)31)((i i k ki++.∵|ω|=52,∴k =±50. 故ω=±(7-i ). 23.解:∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i ,因为a ,b 都是实数,所以由az +2b z =(a +2z )2得⎩⎨⎧+=-+=+).2(42,422a b a a a b a 两式相加,整理得a 2+6a +8=0, 解得a 1=-2,a 2=-4, 对应得b 1=-1,b 2=2.所以,所求实数为a =-2,b =-1或a =-4,b =2.24.(Ⅰ)解法一:z ,z 2,z 3,…,z 7是一个等比数列.∴由等比数列求和公式可得:011171=--=--=--=zzz z z z z a q a a S n n ∴1+z +z 2+z 3+…+z 6=0解法二:S =1+z +z 2+…+z 6 ①zS =z +z 2+z 3+…+z 6+z 7 ②∴①-②得(1-z )S =1-z 7=0 ∴S =z-10=0 (Ⅱ)z 7=1,z =cos α+i sin α ∴z 7=cos7α+i sin7α=1,7α=2k πz +z 2+z 4=-1-z 3-z 5-z 6=-1-[cos (2k π-4α)+i sin (2k π-4α)+cos (2k π-2α)+i sin (2k π-2α)+cos (2k π-α)+i sin (2k π-α)]=-1-(cos4α-i sin4α+cos2α-i sin2α+cos α-i sinα)∴2(cos α+cos2α+cos4α)=-1, cos α+cos2α+cos4α=-21解法二:z 2·z 5=1,z 2=551-=z z同理z 3=4-z ,z =6-z∴z +z 2+z 4=-1-4-z -2-z -z∴z +z +2-z +z +4-z +z =-1 ∴cos2α+cos α+cos4α=21-25.(Ⅰ)解:z 1=i (1-i )3=i (-2i )(1-i )=2(1-i ) ∴|z 1|=222222=+,arg z 1=22(cos 47π+i sin 47π) ∴arg z 1=47π(Ⅱ)解法一:|z |=1,∴设z =cos θ+i sinθ|z -z 1|=|cos θ+i sin θ-2+2i |=)4sin(249)2(sin )2(cos 22πθθθ-+=++-当sin (θ4π-)=1时|z -z 1|2取得最大值9+42从而得到|z -z 1|的最大值22+1解法二:|z |=1可看成z 为半径为1,圆心为(0,0)的圆. 而z 1可看成在坐标系中的点(2,-2)∴|z -z 1|的最大值可以看成点(2,-2)到圆上的点距离最大.由图12—2可知:|z -z 1|max =22+126.(Ⅰ)解:∵α是方程x 2-2x +1=0的根 ∴α1=22(1+i )或α2=22(1-i ) 当α1=22(1+i )时,∵α12=i ,α12n -1=1121)(αααn n i = 图12—2∴)}1(22),1(22),1(22),1(22{}1,,1,{11111i i i i i i M -+---+=--=ααααα 当α2=22(1-i )时,∵α22=-i ∴12}1,,1,{2222ααααααM ii M =--=∴M α=)1(22),1(22),1(22),1(22{i i i i -+---+} (Ⅱ)证明:∵ω∈M z ,∴存在M ∈N ,使得ω=z 2m -1 于是对任意n ∈N ,ω2n -1=z (2m -1)(2n -1)由于(2m -1)(2n -1)是正奇数,ω2n -1∈M z ,∴M ω⊆M z . 27.解:(Ⅰ)∵z 是方程x 2+1=0的根, ∴z 1=i 或z 2=-i ,不论z 1=i 或z 2=-i ,M z ={i ,i 2,i 3,i 4}={i ,-1,-i ,1}于是P =31C 224=. (Ⅱ)取z =i 2321+-, 则z 2=2321--i 及z 3=1. 于是M z ={z ,z 2,z 3}或取z =2321--i .(说明:只需写出一个正确答案).28.解:设z =x +yi (x 、y ∈R ), ∵|z |=5,∴x 2+y 2=25,而(3+4i )z =(3+4i )(x +yi )=(3x -4y )+(4x +3y )i ,又∵(3+4i )z 在复平面上对应的点在第二、四象限的角平分线上,∴3x -4y +4x +3y =0,得y =7x ∴x =±22,y =±227 即z =±(22+227i );2z =±(1+7i ). 当2z =1+7i 时,有|1+7i -m |=52, 即(1-m )2+72=50, 得m =0,m =2.当2z =-(1+7i )时,同理可得m =0,m =-2. 29.解:(Ⅰ)由题设,|ω|=|0z ·z |=|z 0||z |=2|z |, ∴|z 0|=2,于是由1+m 2=4,且m >0,得m =3,因此由x ′+y ′i =)31(i -·i y x y x yi x )3(3)(-++=+,得关系式⎪⎩⎪⎨⎧-='+='yx y yx x 33(Ⅱ)设点P (x ,y )在直线y =x +1上,则其经变换后的点Q (x ′,y ′)满足⎪⎩⎪⎨⎧--='++='1)13(3)31(x y x x 消去x ,得y ′=(2-3)x ′-23+2, 故点Q 的轨迹方程为y =(2-3)x -23+2. (Ⅲ)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件, ∴所求直线可设为y =kx +b (k ≠0).解:∵该直线上的任一点P (x ,y ),其经变换后得到的点Q (x +3y ,3x -y )仍在该直线上,∴3x -y =k (x +3y )+b , 即-(3k +1)y =(k -3)x +b ,当b ≠0时,方程组⎪⎩⎪⎨⎧=-=+-kk k 31)13(无解,故这样的直线不存在. 当b =0,由kk k 31)13(-=+-, 得3k 2+2k 3-=0, 解得k =33或k =3-, 故这样的直线存在,其方程为y =33x 或y =3-x . 评述:本题考查了复数的有关概念,参数方程及普通方程的互化,变换及化归的思想方法,分类讨论的思想方法及待定系数法等.30.解:由0<θ<2π得tan θ>0.由z =3cos θ+i ·2sin θ,得0<arg z <2π及tan (arg z )=32cos 3sin 2=θθtan θ故tan y =tan (θ-arg z )=θθθθθtan 2tan 31tan 321tan 32tan 2+=+-∵θtan 3+2tan θ≥26 ∴θθtan 2tan 31+≤126 当且仅当θtan 3=2tan θ(0<θ<2π)时, 即tan θ=26时,上式取等号. 所以当θ=arctan26时,函数tan y 取最大值126 由y =θ-arg z 得y ∈(2,2ππ-).由于在(2,2ππ-)内正切函数是递增函数,函数y 也取最大值arctan126. 评述:本题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.明考复数实为三角.语言简练、情景新颖,对提高考生的数学素质要求是今后的命题方向.31.解:∵方程x 2+(4+i )x +4+ai =0(a ∈R )有实根b , ∴b 2+(4+i )b +4+ai =0, 得b 2+4b +4+(b +a )i =0,即有⎩⎨⎧=+=++00442a b b b∴⎩⎨⎧-==,22b a得z =a +bi =2-2i ,∴i c c ci i ci z )22(22)1)(22()1(-++=-+=-.当0≤c ≤1时,复数z (1-ci )的实部大于0,虚部不小于0, ∴复数z (1-ci )的辐角主值在[0,2π) 范围内,有arg [z (1-ci )]=arctan c c 2222+-=arctan (c+12-1),∵0<c ≤1,∴0≤c+12-1<1, 有0≤arctan (c +12-1)<4π, ∴0≤arg [z (1-ci )]<4π.当c >1时,复数z (1-ci )的实部大于0,虚部小于0, ∴复数z (1-ci )的辐角主值在(23π,2π) 范围内,有arg [z (1-ci )]=2π+arctan cc2222+-=2π+arctan(c+12-1). ∵c >1,∴-1<c+12-1<0,有4π-<arctan (c+12-1)<0, ∴47π<arg [z (1-ci )]<2π. 综上所得复数z (1-ci )(c >0)的辐角主值的取值范围为[0,4π)∪(47π,2π). 评述:本题主要考查复数的基本概念和考生的运算能力,强调了考生思维的严谨性.32.解:设z =a +bi (a ,b ∈R ),则z =a -bi ,代入4z +2z =33+i 得4(a +bi )+2(a -bi )=33+i .∴⎪⎪⎩⎪⎪⎨⎧==2123b a .∴z =2123+i . |z -ω|=|2123+i -(sin θ-i cos θ)| =)6sin(22cos sin 32)cos 21()sin 23(2πθθθθθ--=+-=-+- ∵-1≤sin (θ-6π)≤1,∴0≤2-2sin (θ-6π)≤4.∴0≤|z -ω|≤2.评述:本题考查了复数、共轭复数的概念,两复数相等的充要条件、复数的模、复数模的取值范围等基础知识以及综合运用知识的能力.33.解:由(z 1-2)i =1+i 得z 1=ii+1+2=(1+i )(-i )+2=3-i∵z 2的虚部为2.∴可设z 2=a +2i (a ∈R )z 1·z 2=(3-i )(a +2i )=(3a +2)+(6-a )i 为实数.∴6-a =0,即a =6因此z 2=6+2i ,|z 2|=1022622=+. 34.解:由(z -2)i =1+i 得z =ii+1+2=3-i ∴z ′=z [cos (-4π)+i sin (-4π)]=(3-i )(2222-i )=2-22iz ′+2i =2-2i =2(2222-i )=2(cos 47π+i sin 47π) ∴arg (z 1+2i )=47π评述:本题考查复数乘法的几何意义和复数辐角主值的概念. 35.解法一:zw +zw 3=zw (1+w 2)=(2321+i )(2222+i )(1+i ) =22(1+i )2(2321+i )=)2123(2)2321(222i i i +-=+⋅)65sin 65(cos2ππi += 故复数zw +zw 3的模为2,辐角主值为65π. 解法二:w =2222+i =cos 4π+i sin 4πzw +zw 3=z (w +w 3)=z [(cos 4π+i sin 4π)+(cos 4π+i sin 4π)3]=z [(cos 4π+i sin 4π)+(cos 43π+i sin 43π)]=z(i i 22222222+-+) =)2123(22)2321(i i i +-=⨯+)65sin 65(cos 2ππi += 故复数zw +zw 3的模为2,辐角主值为65π.评述:本题主要考查复数的有关概念及复数的基本运算能力. 36.证法一:)6sin()6cos(2123ππ-+-=-=i i z ω=4sin 4cos 2222ππi i +=+ 于是z ω=cos12π+i sin 12π,ωz =cos (-12π)+i sin (-12π). z 2ω3=[cos (-3π)+i sin (-3π)]×(cos 43π+i sin 43π)=cos 125π+i sin125π 因为OP 及OQ 的夹角为125π-(-12π)=2π.所以OP ⊥OQ又因为|OP |=|ωz |=1,|OQ |=|z 2ω3|=|z |2|ω|3=1 ∴|OP |=|OQ |.由此知△OPQ 为等腰直角三角形.证法二:∵z =cos (-6π)+i sin (-6π).∴z 3=-i又ω=4sin 4cos 2222ππi i +=+. ∴ω4=-1于是i z z z z z z z z ===2433232||ωωωωωωωω 由此得OP ⊥OQ ,|OP |=|OQ | 故△OPQ 为等腰直角三角形.37.解:(1)因为z 1、z 2是一个实系数一元二次方程的两个根,所以z 1、z 2是共轭复数.设z 1=a +bi (a ,b ∈R 且b ≠0),则z 2=a -bi于是(a +bi )2=(a -bi ),于是⎩⎨⎧-==-bab ab a 222解得⎪⎪⎩⎪⎪⎨⎧=-=2321b a 或⎪⎪⎩⎪⎪⎨⎧-=-=2321b a∴i z i z i z i z 2321,23212321,23212121+-=--=--=+-=或 (2)由z 1=1+mi (m >0),z 12=z 2得z 2=(1-m 2)+2mi ∴ω=-(1+m 2)+2mi tan θ=-mm m m 12122+-=+由m >0,知m +m1≥2,于是-1≤tan θ≤0 又 -(m 2+1)<0,2m >0,得43π≤θ<π因此所求θ的取值范围为[4π,π). 38.解:(Ⅰ)设z =a +bi ,a 、b ∈R ,b ≠0 则w =a +bi +i ba bb b a a a bi a )()(12222+-+++=+ 因为w 是实数,b ≠0,所以a 2+b 2=1, 即|z |=1.于是w =2a ,-1<w =2a <2,-21<a <1, 所以z 的实部的取值范围是(-21,1).(Ⅱ)i a bb a bi b a bi a bi a z z u 1)1(2111112222+=++---=++--=+-=. 因为a ∈(-21,1),b ≠0,所以u 为纯虚数.(Ⅲ)1212112)1(12)1(222222++-=+--=+-+=++=-a a a a a a a a a b a u w .3]11)1[(2-+++=a a . 因为a ∈(-21,1),所以a +1>0, 故w -u 2≥2·211)1(+⋅+a a -3=4-3=1. 当a +1=11+a ,即a =0时,w -u 2取得最小值1. 39.解:由|z 1+z 2|=1,得(z 1+z 2)(21z z +)=1,又|z 1|=|z 2|=1,故可得z 12z +1z z 2=-1,所以z 12z 的实部=1z z 2的实部=-21.又|1z z 2|=1,故1z z 2的虚部为±2, 1z z 2=-21±23i ,z 2=z 1)2321(i ±-. 于是z 1+z 1i i 2321)2321(+=±-, 所以z 1=1,z 2=i 2321+-或z 1=i 2321+-,z 2=1. 所以⎪⎩⎪⎨⎧+-==i z z 2321121,或⎪⎩⎪⎨⎧=+-=1232121z i z 40.解法一:z 2+z =(cos θ+i sin θ)2+cos θ+i sin θ=cos2θ+i sin2θ+cos θ+i sin θ=2cos 23θcos 2θ+i ·2sin 23θcos 2θ=2cos 2θ(cos 23θ+i sin 23θ)=-2cos 2θ[cos (π+23θ)+i sin (π+23θ)]∵θ∈(π,2π),∴2θ∈(2π,π),∴-2cos 2θ>0∴复数z 2+z 的模为-2cos 2θ,辐角为2k π+π+23θ(k ∈Z )解法二:z 2+z =z (1+z )=(cos θ+i sin θ)(1+cos θ+i sin θ)=(cos θ+i sin θ)(2cos 22θ+i ·2sin 2θcos 2θ)=2cos 2θ(cos θ+i sin θ)(cos 2θ+i sin 2θ)=2cos 2θ(cos 23θ+i sin23θ)以下同解法一.41.解法一:如图12—3,设Z 1、Z 3对应的复数分别为z 1、z 3,则由复数乘除法的几何意义有z 1=21z 2[cos (4π-)+i sin (4π-)]=i i i 213213)2222)(31(21-++=-+z 3=i i i i z 231231)2222)(31(21)4sin 4(cos 212++-=++=+ππ.注:求出z 1后,z 3=iz 1=i 231231++- 解法二:设Z 1、Z3对应的复数分别是z 1、z 3,根据复数加法和乘法的几何意义,依题意得⎩⎨⎧=-=+213231iz z z z z z∴z 1=21z 2(1-i )=21(1-3i )(1-i )=213231-++i z 3=z 2-z 1=(1+3i )-(213231-++i )=231231++-i 评述:本题主要考查复数的基本概念和几何意义,以及运算能力.此题以复平面上的简单几何图形为背景,借以考查复数的向量表示及复数运算的几何意义等基本知识,侧重概念、性质的理解及掌握,以及运算能力和转化的思想,对复数教学有良好的导向作用.42.解:(Ⅰ)由z =1+i ,有w =(1+i )2+3(1-i )-4=-1-i ,所以w 的三角形式是2(cos ππ45sin 45i +)(Ⅱ)由z =1+i ,有iia b a i i b i a i z z b az z )2()(1)1()1()1()1(12222+++=++-+++++=+-++=(a +2)-(a +b )i由题设条件知,(a +2)-(a +b )i =1-i . 根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a解得⎩⎨⎧=-=21b a所以实数a ,b 的值分别为-1,2.评述:本题考查了共轭复数、复数的三角形式等基础知识及运算能力.43.解:因为w 为复数,arg w =π43,所以设w =r (cos π43+i sin π43),则R,])4(4[22)4)(1(22)4)(2222(1]4)23sin 23(cos )[43sin 43(cos 14)(222222∈-++=-+=---=---=-i r r ri r i r i r i r i r i r w w ππππ,从而4-r 2=0,得r =2.因此w =2(cos )43sin 43ππi +=-2+2i .。

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。

10年高考题之复数锦集

10年高考题之复数锦集

总题数:22 题第1题(2010年普通高等学校夏季招生考试数学文史类(北京卷))题目在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2iC.2+4i D.4+i答案C 由题意知A(6,5),B(-2,3),故C(2,4),则点C对应的复数为2+4i.第2题(2010年普通高等学校夏季招生考试数学文史类(天津卷))题目i是虚数单位,复数=( )A.1+2i B.2+4i C.-1-2i D.2-i 答案A =1+2i.第3题(2010年普通高等学校夏季招生考试数学理工农医类(天津卷))题目i是虚数单位,复数=( )A.1+i B.5+5i C.-5-5i D.-1-i答案A=1+i.第4题(2010年普通高等学校夏季招生考试数学文史类(辽宁卷))题目设a,b为实数,若复数=1+i,则( )A.a=,b= B.a=3,b=1C.a=,b= D.a=1,b=3答案A 由题意a+b i==∴a=,b=,选A项.第5题(2010年普通高等学校夏季招生考试数学理工农医类学(辽宁卷)) 题目设a,b为实数,若复数=1+i,则( )A.a=,b= B.a=3,b=1C.a=,b= D.a=1,b=3答案A 由题意a+b i==∴a=,b=,选A项.第6题(2010年普通高等学校夏季招生考试数学文史类(浙江卷))题目设i为虚数单位,则=( )A.-2-3i B.-2+3i C.2-3i D.2+3i 答案C =2-3i.第7题(2010年普通高等学校夏季招生考试数学理工农医类(浙江卷))题目对任意复数z=x+y i(x,y∈R),i为虚数单位,则下列结论正确的是( )A.|z-|=2y B.z2=x2+y2C.|z-|≥2x D.|z|≤|x|+|y|答案D 对于A:|z-|=|2y i|=2|y|≠2y,对于B:z2=x2-y2+2xy i≠x2+y2,对于C:|z-|=2|y|≥2x 不一定成立,对于 D:|z|==|x|+|y|成立.第8题(2010年普通高等学校夏季招生考试数学文史类(湖南卷))题目复数等于( )A.1+i B.1-iC.-1+i D.-1-i答案A =1+i.第9题(2010年普通高等学校夏季招生考试数学理工农医类(广东卷))题目若复数z1=1+i,z2=3-i,则z1·z2=( )A.4+2i B.2+i C.2+2i D.3+i答案A z1·z2=(1+i)(3-i)=3-i2+2i=4+2i.第10题(2010年普通高等学校夏季招生考试数学文史类(安徽卷))题目已知i2=-1,则i(1-i)=( )A. -iB. +iC.--i D.-+i答案B i(1-i)=i-i2=+i.第11题(2010年普通高等学校夏季招生考试数学理工农医类(安徽卷))题目i是虚数单位,=( )A. B.C. D.答案B . 第12题(2010年普通高等学校夏季招生考试数学文史类(山东卷))题目已知=b+i(a,b∈R),其中i为虚数单位,则a+b等于 ( ) A.-1 B.1 C.2 D.3答案B ∵=b+i,∴a+2i=-1+b i.∴a=-1,b=2.∴a+b=1.第13题(2010年普通高等学校夏季招生考试数学理工农医类(山东卷))题目已知=b+i(a,b∈R),其中i为虚数单位,则a+b等于 ( ) A.-1 B.1 C.2 D.3答案B ∵=b+i,∴a+2i=-1+b i.∴a=-1,b=2.∴a+b=1.第14题(2010年普通高等学校夏季招生考试数学理工农医类(江西卷))题目已知(x+i)(1-i)=y,则实数x,y分别为( )A.x=-1,y=1 B.x=-1,y=2C.x=1,y=1 D.x=1,y=2答案D 由(x+i)(1-i)=y,得x+1+(1-x)i=y,∴∴x=1,y=2.第15题(2010年普通高等学校夏季招生考试数学文史类(陕西卷))题目复数z=在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案A =(1-i)=+,对应点坐标为(,),该点位于第一象限.第16题(2010年普通高等学校夏季招生考试数学理工农医类(陕西卷))题目复数z=在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案A =(1-i)=+,对应点坐标为(,),该点位于第一象限.第17题(2010年普通高等学校夏季招生考试数学文史类(福建卷))题目i是虚数单位,()4等于( )A.i B.-iC.1 D.-1答案C =i,∴()4=i4=1.故选C.第18题(2010年普通高等学校夏季招生考试数学理工农医类(福建卷))题目对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy∈S”,则当时,b+c+d等于( )A.1 B.-1 C.0 D.i答案B 因为集合中的元素是互异的,解方程组,得,∵x,y∈S,xy∈S,∴当c=i时,d=-i,b+c+d=-1;当c=-i时,d=i,b+c+d=-1,故b+c+d=-1.第19题(2010年普通高等学校夏季招生考试数学文史类(全国卷新课标))题目已知复数z=,则|z|等于( )A. B. C.1 D.2 答案B |z|====.第20题(2010年普通高等学校夏季招生考试数学理工农医类(全国卷新课标))题目已知复数z=,是z的共轭复数,则z·=( )A. B. C.1 D.2答案A z·=|z|2而|z|====,∴|z|2=,∴z·=.第21题(2009年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ卷)) 题目已知,则复数z=()A.-1+3iB.1-3iC.3+iD.3-i答案B解析:∵,∴=(2+i)(1+i)=2+3i+i2=1+3i.∴z=1-3i.第22题(2009年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ卷))题目=( )A.-2+4iB.-2-4iC.2+4iD.2-4i答案A解析:.故选A.总题数:22 题第23题(2009年普通高等学校夏季招生考试数学理工农医类(北京卷))题目在复平面内,复数z=i(1+2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案B解析:∵z=i(1+2i)=-2+i,∴其对应点为(-2,1).故选B.第24题(2009年普通高等学校夏季招生考试数学文史类(天津卷))题目i是虚数单位,等于( )A.1+2iB.-1-2iC.1-2iD.-1+2i 答案D解析:因为.第25题(2009年普通高等学校夏季招生考试数学理工农医类(天津卷))题目i是虚数单位,等于()A.1+2iB.-1-2iC.1-2iD.-1+2i答案D解析:因为.第26题(2009年普通高等学校夏季招生考试数学文史类(辽宁卷))题目已知复数z=1-2i,那么等于…( )A. B.C. D.答案C解析: .第27题(2009年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目已知复数z=1-2i,那么等于…( )A. B. C. D.答案D解析:=1+2i,∴.第28题(2009年普通高等学校夏季招生考试数学文史类(浙江卷))题目设z=1+i(i是虚数单位),则( )A.1+iB.-1+iC.1-iD.-1-i 答案A解析:z=1+i,则,z2=2i,故,故选A. 第29题(2009年普通高等学校夏季招生考试数学理工农医类(浙江卷)) 题目设z=1+i(i是虚数单位),则=( )A.-1-iB.-1+iC.1-iD.1+i答案D解析:z=1+i,则,z2=2i,故=1+i,故选D.第30题(2009年普通高等学校夏季招生考试数学文史类(安徽卷))题目i是虚数单位,i(1+i)等于…( )A.1+iB.-1-iC.1-iD.-1+i 答案D解析:i(1+i)=i+i2=-1+i.第31题(2009年普通高等学校夏季招生考试数学理工农医类(安徽卷)) 题目i是虚数单位,若(a,b∈R),则乘积ab的值是()A.-15 B.-3 C.3 D.15答案B解析:==,∴ab=-3.第32题(2009年普通高等学校夏季招生考试数学文史类(山东卷)) 题目复数等于( )A.1+2iB.1-2iC.2+iD.2-i答案C解析:.第33题(2009年普通高等学校夏季招生考试数学理工农医类(山东卷)) 题目复数等于( )A.1+2iB.1-2iC.2+ID.2-i 答案C解析:.第34题(2009年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为( )A.-1B.0C.1D.-1或1答案A解析:由题意知∴x=-1.第35题(2009年普通高等学校夏季招生考试数学理工农医类(四川卷))复数的值是( )A.-1B.1C.-iD.i答案A解析:.第36题(2009年普通高等学校夏季招生考试数学理工农医类(重庆卷)) 题目已知复数z的实部为-1,虚部为2,则=()A.2-iB.2+iC.-2-iD.-2+i答案A解析:.第37题(2009年普通高等学校夏季招生考试数学理工农医类(陕西卷)) 题目已知z是纯虚数,是实数,那么z等于( )A.2iB.iC.-iD.-2iD解析:设z=bi(b≠0),则∈R,则b+2=0,∴b=-2.故选D.第38题(2009年普通高等学校夏季招生考试数学文史类(海南、宁夏卷))题目复数等于( )A.1B.-1C.iD.-i答案C解析: .故选C.第39题(2009年普通高等学校夏季招生考试数学理工农医类(海南、宁夏卷)) 题目复数等于……( )A.0B.2C.-2iD.2iD解析:原式.故选D.第40题(2009年普通高等学校夏季招生考试数学文史类(广东卷))题目下列n的取值中,使i n=1(i是虚数单位)的是( )A.n=2B.n=3C.n=4D.n=5答案C解析:∵i4=1,故选C.第41题(2009年普通高等学校夏季招生考试数学理工农医类(广东卷))题目设z是复数,α(z)表示满足z n=1的最小正整数n,则对虚数单位i,α(i)等于… ( ) A.8 B.6 C.4 D.2答案C解析:∵i4=1,∴α(i)=4.第42题(2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ))题目设,且为正实数,则()A.2 B.1 C.0 D.答案D 解析: (a+i)2i=(a2-1+2ai)i=-2a+(a2-1)i.∵(a+i)2i为正实数,∴∴a=-1.第43题(2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ)) 题目设且,若复数是实数,则()A. B. C. D.答案A 解析: (a+bi)3=a3+3a2·bi+3a(bi)2+(bi)3=a3+3a2bi-3ab2-b3i=(a3-3ab2)+(3a2b-b3)i为实数3a2b-b3=0,又∵b≠0,∴3a2-b2=0.∴b2=3a2.选A.第44题(2008年普通高等学校夏季招生考试数学理工农医类(天津卷)) 题目i是虚数单位,等于( )A.-1B.1C.-iD.i答案答案:A解析:==-1,故选A.总题数:22 题第45题(2008年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目复数的虚部是( )A.iB.C.iD.答案答案:B解析:+=(-2-i)+(1+2i)=-+i,故虚部为.第46题(2008年普通高等学校夏季招生考试数学理工农医类(浙江卷))题目已知是实数,是纯虚数,则=(A)1 (B)-1 (C)(D)-答案A 解析:==,∴=0.∴a=1.第47题(2008年普通高等学校夏季招生考试数学理工农医类(福建卷)) 题目若复数(是纯虚数,则实数a的值为A.1 B.2 C.1或2 D.-1、答案B 解析:∵(a2-3a+2)+(a-1)i是纯虚数,因此解得a=2.第48题(2008年普通高等学校夏季招生考试数学理工农医类(湖南卷)) 题目复数(1+)3等于A.8B.-8C.8iD.-8i答案D解析:(i)3=()3===-8i.第49题(2008年普通高等学校夏季招生考试数学文史类(广东卷))题目已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是( )A.(1,5)B.(1,3)C.(1,)D.(1,)答案答案:C |z|=,∵0<a<2,∴1<<.|z|=,∵0<a<2,∴1<<.第50题(2008年普通高等学校夏季招生考试数学理工农医类(广东卷))题目已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是( )A.(1,5)B.(1,3)C.(1,)D.(1,) 答案答案:C解析:|z|=,∵0<a<2,∴1<<.第51题(2008年普通高等学校夏季招生考试数学理工农医类(安徽卷)) 题目复数()A.2 B.-2 C. D.答案A解析:i3(1+i)2=-i(2i)=-2i2=2.第52题(2008年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限答案D解析:∵<2<π,∴角的终边落在第二象限,则sin2>0,cos2<0, 故该复数对应点位于第四象限.第53题(2008年普通高等学校夏季招生考试数学理工农医类(四川卷)) 题目复数2i(1+ i)2=(A)-4 (B)4 (C)-4i (D)4i答案A解析:2i(1+i)2=2i·(1+2i-1)=2i·2i=-4.第54题(2008年普通高等学校夏季招生考试数学理工农医类(四川卷延考))题目已知复数,则(A)(B)(C)(D)答案答案:D解析:,. 第55题(2008年普通高等学校夏季招生考试数学理工农医类(重庆卷))题目复数1+等于( )A.1+2iB.1-2iC.-1D.3答案答案:A解析:1+=1=1+2i.第56题(2008年普通高等学校夏季招生考试数学文史类(山东卷))题目设z的共轭复数是,若z+=4,z·=8,则等于(A)i (B)-i (C) 1 (D) i 答案D设z=a+bi,则=a-bi(a,b∈R),∵z+=4,z·=8,∴a=2,a2+b2=8.∴b=±2.当b=2时,=i,当b=-2时,=-i.故选D.第57题(2008年普通高等学校夏季招生考试数学理工农医类(山东卷))题目设z的共轭复数是,或z+=4,z·=8,则等于(A)1 (B)-i (C)±1 (D) ±i答案D 解析:设z=a+bi,则=a-bi(a,b∈R),∵z+=4,z·=8,∴a=2,a2+b2=8.∴b=±2.当b=2时,=i,当b=-2时,=-i.故选D.第58题(2008年普通高等学校夏季招生考试数学文史类(海南、宁夏卷))题目已知复数,则()A. 2B. -2C. 2iD. -2i答案A=2.第59题(2008年普通高等学校夏季招生考试数学理工农医类(海南、宁夏卷)) 题目已知复数,则()A. 2 iB. -2 iC. 2D. -2答案B 解析:z=1-i得z2=-2i,代入=-2i.∴选B.第60题(2007年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ))题目2.设a是实数,且是实数,则A. B.1 C. D.2答案答案:B解析:∈R,∴=0.∴a=1.第61题(2007年普通高等学校夏季招生考试数学理工农医类(全国Ⅱ))题目3.设复数z满足=i,则z =(A) -2+i (B) -2-i (C) 2-i (D) 2+i 答案答案:C解析:z==2-.第62题(2007年普通高等学校夏季招生考试数学理工农医类(天津卷))题目1.是虚数单位,()A.B. C.D.答案C第63题(2007年普通高等学校夏季招生考试数学理工农医类(辽宁卷))题目5.若,则复数在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案答案:B解析:∵θ∈(,),∴cosθ<0,sinθ可正可负,且|cosθ|>|sinθ|.∴cosθ+sinθ<0.∴sinθ-cosθ>0.∴此复数在复平面内所对应的点在第二象限.第64题(2007年普通高等学校夏季招生考试数学理工农医类(福建卷))题目(1)复数等于A B - C i D -i答案答案:D解析: ==-i.第65题(2007年普通高等学校夏季招生考试数学理工农医类(湖南卷)) 题目1.复数等于()A. B. C. D.答案答案:C解析:()2==2i.第66题(2007年普通高等学校夏季招生考试数学文史类(广东卷新课标)) 题目2.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=A.-2B.C.D.2答案D解析:(1+b i)(2+i)=2+i+2b i-b=(2-b)+(1+2b)i.∵是纯虚数,∴2-b=0且1+2b≠0.∴b=2.总题数:22 题第67题(2007年普通高等学校夏季招生考试数学理工农医类(广东卷新课标))题目2.若复数是纯虚数(是虚数单位,是实数)则=A.2B.C.D.-2 答案答案:A解析:(1+b i)(2+i)=2+i+2b i-b=(2-b)+(1+2b)i.∵是纯虚数,∴2-b=0且1+2b≠0.∴b=2.第68题(2007年普通高等学校夏季招生考试数学理工农医类(安徽卷))题目4.若a为实数,=-i,则a等于(A)(B)-(C)2(D)-2答案答案:B解析:化简=-i,得=-i,=-i,∴∴a=-.第69题(2007年普通高等学校夏季招生考试数学理工农医类(江西卷)) 题目1.化简的结果是A.2+iB.-2+iC.2-iD.-2-i答案答案:C解析:=2-i.第70题(2007年普通高等学校夏季招生考试数学理工农医类(四川卷)) 题目(1)复数的值是(A)0 (B)1 (C)-1 (D)1答案答案:A解析:原式=+i3=i-i=0.第71题(2007年普通高等学校夏季招生考试数学文史类(山东卷新课标))题目1.复数的实部是(A)-2 (B)2 (C)3 (D)4 答案B解析: ====2-i,∴实部为2.第72题(2007年普通高等学校夏季招生考试数学理工农医类(山东卷新课标))题目(1)若z=cosθ+isinθ(i为虚数单位),则使z2= -1的θ值可能是A. B. C. D.答案答案:D解析:z2=cos2θ-sin2θ+i2sinθcosθ=cos2θ+isin2θ=-1,∴∴2θ=2kπ+π.∴θ=.第73题(2007年普通高等学校夏季招生考试数学理工农医类(陕西卷))题目1.在复平面内,复数z=对应的点位于( )(A)第一象限(B)第二象限(C)第三象限(D )第四象限答案答案:D解析:z=,故选D.第74题(2006年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅰ(新课程))题目(4)如果复数(m2+i)(1+mi)是实数,则实数(A)1 (B)-1 (C)(D)-答案B解析:(m2+i)(1+mi)=(m2-m)+(1+m3)i∵复数(m2+i)(1+mi)是实数∴1+m3=0∴m=-1第75题(2006年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程)) 题目(3)(A)(B)(C)(D)答案A解析:∴选A第76题(2006年普通高等学校夏季招生考试数学(理工农医类)北京卷(新课程)) 题目(1)在复平面内,复数对应的点位于(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限答案D解析:,虚部为负∴第四象限第77题(2006年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程))题目(1)i是虚数单位,=(A) (B) (C) (D)答案A解析:故选A.第78题(2006年普通高等学校夏季招生考试数学(理工农医类)浙江卷(新课程))题目(2)已知,其中m,n是实数,i是虚数单位,则m+ni=(A)1+2i (B)1-2i (C)2+i (D)2-i答案C解析:∵∴∴∴m+ni=2+i第79题(2006年普通高等学校夏季招生考试数学(理工农医类)福建卷(新课程)) 题目(1)设则复数为实数的充要条件是(A)(B)(C)(D)答案D∵(a+bi)(c+di)为实数∴虚部为0(a+bi)(c+di)=(ac-bd)+(ad+bc)i∴ad+bc=0第80题(2006年普通高等学校夏季招生考试数学(文理合卷)广东卷(新课程)) 题目2.若复数z满足方程z2+2=0,则z3=A. B. C.±2i D.+2答案C解析:设z=a+bi则 z2+2=0(a+bi)2+2=0a2+2abi-b2+2=0∴z=±i∴z3=(±i)3=±2i第81题(2006年普通高等学校夏季招生考试数学(理工农医类)安徽卷(新课程)) 题目(1)复数等于()(A)i (B)-i (C)(D)答案A解析:原式=第82题(2006年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程))题目2.已知复数z满足(+3i)z=3i,则z等于A.i B. i C. D.i 答案D解析:设z=a+bi,代入方程()(a+bi)=3i,化简,得(a-3b)+(3a+b)i=3i∴解得故选D另解:由题得z=第83题(2006年普通高等学校夏季招生考试数学(理工农医类)四川卷(新课程)) 题目(2)复数(1-i)3的虚部为(A)(B)(C)(D)答案D解析:(1-i)3=-2-2i∴虚部为-2.第84题(2006年普通高等学校夏季招生考试数学(理工农医类)陕西卷(新课程)) 题目2.复数等于(A)(B)(C)(D)答案D解析:原式=第85题(2005年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅰ(新课程)) 题目1.复数=(A)(B)(C)(D)答案A解法一:原式==== =i.解法二:原式====i.第86题(2005年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程)) 题目5.设a、b、c、d∈R,若为实例,则(A)bc+ad≠0 (B)bc-ad≠0(C)bc-ad=0 (D)bc+ad=0答案C解析:==∈R,∴bc-ad=0.第87题(2005年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程))题目若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.-2 B.4 C.-6 D.6 答案C解析:==+i是纯虚数,∴=0.∴a=-6.故选C. 第88题(2005年普通高等学校夏季招生考试数学(文理合卷)辽宁卷(新课程))题目复数在复平面内,z所对应的点在A.第一象限 B.第二象限C.第三象限 D.第四象限答案B解析:z=-1==-1+i ,∴z对应点为(-1 ,1),在第二象限.总题数:22 题第89题(2005年普通高等学校夏季招生考试数学(理工农医类)浙江卷(新课程))题目在复平面内,复数+(1+i)2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限答案B解析:+(1+i)3=+[-2()]3=-8=-+i.故对应的点位于第二象限.第90题(2005年普通高等学校夏季招生考试数学(理工农医类)福建卷(新课程))题目复数z=的共轭复数是A.B.C.D.答案B解析:z====+i,∴z的共轭复数为-i.第91题(2005年普通高等学校夏季招生考试数学(理工农医类)湖北卷(新课程)) 题目()A. B.C. D.答案C解析:===-i(1+2i)=2-i. 第92题(2005年普通高等学校夏季招生考试数学(理工农医类)湖南卷(新课程))题目复数z=i+i2+i3+i4的值是A、-1B、0C、1D、i答案B解析:z=i+i2+i3+i4=i-1-i+1=0.第93题(2005年普通高等学校夏季招生考试数学(文理合卷)广东卷(新课程))题目若,其中、,是虚数单位,则(A)0 (B)2 (C)(D)5答案D解析:(a-2i)i=b-i,即2+a i=b-i,∴故a2+b2=1+4=5.第94题(2005年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程))题目设复数:为实数,则x=()A.-2 B.-1 C.1 D.2 答案A解:z1·z2=(1+i)·(x+2i)=(x-2)+(2+x)i,z1·z2∈R.∴2+x=0,∴x=-2.第95题(2005年普通高等学校夏季招生考试数学(理工农医类)重庆卷(新课程))题目()A. B.-C. D.-答案A解析:()2 005=[]2 005=()2 005=i2 005=i.第96题(2005年普通高等学校夏季招生考试数学(理工农医类)山东卷(新课程)) 题目()(A);(B);(C)1;(D)答案D解析:+=+=---=-1.第97题(2005年普通高等学校春季招生考试数学(文史类)北京卷(新课程))题目-2+i的共轭复数是………………………………………………()A.2+iB.2-iC.-2+iD.-2-i答案D第98题(2005年普通高等学校春季招生考试数学(理工农医类)北京卷(新课程))题目i-2的共轭复数是…………………………………………………()A.2+iB.2-iC.-2+iD.-2-i答案D第99题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅱ(新课程))题目(1-i)2·i等于……………………………………………………………………………()A.2-2iB.2+2iC.-2D.2答案D第100题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅲ(新课程)) 题目设复数ω=-+i,则1+ω等于……………………………………()A.-ωB.ω2C.-D.答案C第101题(2004年普通高等学校夏季招生考试数学(理工农医类)全国卷Ⅳ(新课程)) 题目()2等于…………………………………………………………()A.+iB.--iC.-iD.-+i答案D第102题(2004年普通高等学校夏季招生考试数学(理工农医类)天津卷(新课程)) 题目i是虚数单位,等于…………………………………()A.1+iB.-1-iC.1+3iD.-1-3i答案D第103题(2004年普通高等学校夏季招生考试数学(文理合卷)辽宁卷(新课程)) 题目设复数z满足=i,则|1+z|等于……………………………()。

复数十年高考题(带详细解析)

复数十年高考题(带详细解析)

复数十年高考题(带详细解析)1.设复数 $z_1=-1+i$,$z_2=z_1^3i$,则$arg(z_1)+\frac{arg(z_2)}{2}$ 等于()。

A。

$-\frac{7\pi}{12}$ B。

$\pi$ C。

$\frac{\pi}{2}$ D。

$\frac{\pi}{4}$2.复数 $z=m-2i$($m\in R$,$i$ 为虚数单位)在复平面上对应的点不可能位于()。

A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限3.如果 $\theta\in(\frac{\pi}{2},\pi)$,那么复数$(1+i)(\cos\theta+i\sin\theta)$ 的辐角的主值是()。

A。

$\theta+\frac{9\pi}{4}$ B。

$\theta+\frac{\pi}{4}$ C。

$\theta-\frac{\pi}{4}$ D。

$\theta+\frac{7\pi}{4}$4.复数 $\frac{1}{3}+i$ 的值是()。

A。

$-\frac{1}{3}+i$ B。

$i$ C。

$-\frac{1}{2}$ D。

$-\frac{1}{3}-i$5.如图 12-1,与复平面中的阴影部分(含边界)对应的复数集合是()。

图略]6.已知复数 $z=\frac{1}{2}+6i$,则 $arg(z)$ 是()。

A。

$\frac{11\pi}{6}$ B。

$\frac{6\pi}{7}$ C。

$\frac{3\pi}{5}$ D。

$\frac{5\pi}{3}$7.设复数 $z_1=-1-i$ 在复平面上对应向量 $OZ_1$,将$OZ_1$ 按顺时针方向旋转 $\frac{5\pi}{6}$ 后得到向量$OZ_2$,令 $OZ_2$ 对应的复数 $z_2$ 的辐角主值为 $\theta$,则 $\tan\theta$ 等于()。

A。

$2+\sqrt{3}$ B。

$-2+\sqrt{3}$ C。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版): 复数

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版): 复数
1-
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
1
42.(2014·全国 1·文 T3)设 z=1+ +i,则|z|=( )
1
√2
√3
A.2
B. 2
C. 2
D.2
43.(2013·全国 1·理 T2)若复数 z 满足(3-4i)z=|4+3i|,则 z 的虚部为( )
A.-4
4
B.-5
4
C.4
D.√2
1+2i
8.(2018·全国 2·理 T1) =( )
1-2i
4
A.-5

3
5i
4
B.-5
+
3
5i
3
C.-5

4
5i
3
D.-5
+
4
5i
9.(2018·全国 2·文 T1)i(2+3i)=( )
A.3-2i
B.3+2i
1
C.-3-2i
D.-3+2i
10.(2018·全国 3·理 T2 文 T2)(1+i)(2-i)=( )
A.√3
B.√5
C.3
D.5
4.(2019·全国 2·文 T2)设 z=i(2+i),则 =( )
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
5.(2019·全国 1·理 T2)设复数 z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1
B.(x-1)2+y2=1

十年高考真题汇编(北京卷,含解析)之复数

十年高考真题汇编(北京卷,含解析)之复数

十年高考真题(2011-2020)(北京卷)专题02复数本专题考查的知识点为:复数,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:复数的几何意义,复数的四则混合运算,预测明年本考点题目会比较稳定,备考方向以复数的四则混合运算为重点较佳.1.【2020年北京卷02】在复平面内,复数z对应的点的坐标是(1,2),则i⋅z=().A.1+2i B.−2+i C.1−2i D.−2−i2.【2019年北京理科01】已知复数z=2+i,则z•z=()A.√3B.√5C.3D.53.【2018年北京理科02】在复平面内,复数11−i的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.【2017年北京理科02】若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)5.【2015年北京理科01】复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i6.【2013年北京理科02】在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.【2012年北京理科03】设a,b∈R.“a=0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.【2011年北京理科02】复数i−21+2i=()A.i B.﹣i C.−45−35i D.−45+35i9.【2016年北京理科09】设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.10.【2014年北京理科09】复数(1+i1−i)2=.1.在复平面内,复数1的共轭复数对应的点位于1−iA.第一象限B.第二象限C.第三象限D.第四象限2.【北京市人大附中2020届高三(6月份)高考数学考前热身】复数z=1+i的模为()1−iA.1B.2C.√2D.√223.3+i=()1+iA.1+2i B.1-2iC.2+i D.2-i4.【北京市东城汇文中学2017-2018学年高三上期中】若复数z=2,其中i为虚数单位,则z̅=1−iA.1+i B.1−i C.−1+i D.−1−i5.【2020届北京市第四中学高三第二学期数学统练】若复数z满足2z+z̅=3−i,其中i为虚数单位,则|z |=()A.2B.√3C.√2D.36.【北京五中2020届高三(4月份)高考数学模拟】已知复数z=a+i(a∈R),则下面结论正确的是()A.z̅=−a+iB.|z|≥1C.z一定不是纯虚数D.在复平面上,z对应的点可能在第三象限7.【2020届北京市西城区高三第一次模拟】若复数z=(3−i)(1+i),则|z|=()A.2√2B.2√5C.√10D.208.复数2+i的共轭复数是()A.2−i B.−2−i C.i−2D.i+29.【北京市中国人民大学附属中学2019届高三高考信息卷(一)】在复平面内与复数z=2i所对应的点关1+i于虚轴对称的点为A,则A对应的复数为()A.−1−i B.1−i C.1+i D.−1+i10.【2019届北京市清华大学附属中学高三第二学期入学检测】已知复数z满足(1+i)z=|√3+i|,i为虚数单位,则z等于()A.1−i B.1+i C.12−12i D.12+12i11.已知i为虚数单位,复数11−i的虚部是().A.12B.−12C.12iD.−12i12.【北京市第四中学2018届高三第一次模拟考试(一模)】已知复数z满足(1−i)z=2+i,则z的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限13.若复数z=(x2−1)+(x−1)i为纯虚数,则实数x的值为()A.1B.0C.−1D.−1或114.【北京市东城区2018-2019学年度第二学期(4月)高三综合练】在复平面内,复数(2−i)z对应的点位于第二象限,则复数z可取()A.2B.-1C.i D.2+i15.【北京市第四中学2019届高三高考调研卷(二)】在复平面内,复数z=1+2ii对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限16.在复平面内,复数2−ii对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限17.已知复数z在复平面上对应的点为(1,−1),则A.z+1是实数B.z+1是纯虚数C.z+i是实数D.z+i是纯虚数18.【北京市第四中学2019届高三高考调研】复数z=1−i1+i的虚部是()A.i B.1C.−i D.−119.复数3−i1−i等于()A .B.1−2i C.2+i D.2−i20.【2019届北京市中国人民人大附属中学高三(5月)模拟】已知复数z满足z(1−i)2=1+i(i为虚数单位),则z̅=( )A.−12+12i B.−12−12i C.12+12i D.12−12i21.【2020届北京市高三高考模拟】若复数z满足z=(1−2i)⋅i,则复平面内z̅对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限22.【北京师范大学附属中学2019届高三高考模拟(三)】已知复数z满足z(1+i)=|−1+√3i|,则复数z 的共轭复数为()A.−1+i B.−1−i C.1+i D.1−i23.【2020届北京市第八中学高三下学期自主测试(二)】在复平面内,复数i(i−1)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限24.【北京市丰台区2019届高三年级第二学期综合练习(二)】已知i是虚数单位,a∈R,则“a=1”是“(a+i)2为纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件25.【北京市海淀八模2019届高三理科数学模拟】已知复数z在复平面内对应点是(1,−2),i为虚数单位,则z+2z−1=()A.−1−i B.1+i C.1−32i D.1+32i26.【北京市丰台12中2017-2018学年高三上学期11月月考】复数1+2i2−i=().A.i B.1+i C.−i D.1−i27.【北京市门头沟区2019届高三3月综合练习】复数z满足z=2i1−i,那么|z|是() A.√2B.2√2C.2D.√328.【北京市2020届高考数学预测】设复数z满足1+3iz=z,则|z|=()A.√1010B.√55C.√5D.√1029.【北京市通州区2020届高考一模】已知复数z=i(2+i)(i是虚数单位),则|z|=()A.1B.2C.√5D.330.【北京市第五十中学2019—2020学年度高一第二学期期中】复数10i1−2i=()A.-4+2i B.4-2i C.2-4i D.2+4i1.【2020年北京卷02】在复平面内,复数z 对应的点的坐标是(1,2),则i ⋅z =(). A .1+2i B .−2+i C .1−2i D .−2−i【答案】B 【解析】由题意得z =1+2i ,∴iz =i −2. 故选:B.2.【2019年北京理科01】已知复数z =2+i ,则z •z =( ) A .√3 B .√5 C .3 D .5【答案】解:∵z =2+i , ∴z •z =|z|2=(√22+12)2=5. 故选:D .3.【2018年北京理科02】在复平面内,复数11−i 的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】解:复数11−i=1+i (1−i)(1+i)=12+12i ,共轭复数对应点的坐标(12,−12)在第四象限. 故选:D .4.【2017年北京理科02】若复数(1﹣i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(﹣∞,1)B .(﹣∞,﹣1)C .(1,+∞)D .(﹣1,+∞)【答案】解:复数(1﹣i )(a +i )=a +1+(1﹣a )i 在复平面内对应的点在第二象限, ∴{a +1<01−a >0,解得a <﹣1. 则实数a 的取值范围是(﹣∞,﹣1). 故选:B .5.【2015年北京理科01】复数i (2﹣i )=( ) A .1+2i B .1﹣2i C .﹣1+2iD .﹣1﹣2i【答案】解:原式=2i ﹣i 2=2i ﹣(﹣1)=1+2i ; 故选:A .6.【2013年北京理科02】在复平面内,复数(2﹣i )2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选:D.7.【2012年北京理科03】设a,b∈R.“a=0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】解:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选:B.8.【2011年北京理科02】复数i−21+2i=()A.i B.﹣i C.−45−35i D.−45+35i【答案】解:i−21+2i =(i−2)(1−2i)(1+2i)(1−2i)=i−2+2+4i5=i故选:A.9.【2016年北京理科09】设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.【答案】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣110.【2014年北京理科09】复数(1+i1−i)2=.【答案】解:(1+i1−i )2=[(1+i)2(1−i)(1+i)]2=(2i2)2=−1.故答案为:﹣1.1.在复平面内,复数11−i的共轭复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】1 1−i =1+i(1−i)(1+i)=12+12i的共轭复数为12−12i对应点为(12,−12),在第四象限,故选D.2.【北京市人大附中2020届高三(6月份)高考数学考前热身】复数z=1+i1−i的模为()A.1B.2C.√2D.√22【答案】A【解析】z=1+i1−i =(1+i)(1+i)(1−i)(1+i)=i.模长为1.故选:A3.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-i 【答案】D【解析】由题意3+i1+i =(3+i)(1−i)(1+i)(1−i)=4−2i2=2−i,故选:D.4.【北京市东城汇文中学2017-2018学年高三上期中】若复数z=21−i,其中i为虚数单位,则z̅= A.1+i B.1−i C.−1+i D.−1−i【答案】B【解析】z=21−i =2(1+i)(1−i)(1+i)=1+i,∴z̅=1−i,选B.5.【2020届北京市第四中学高三第二学期数学统练】若复数z满足2z+z̅=3−i,其中i为虚数单位,则|z |=()A.2B.√3C.√2D.3【答案】C【解析】设复数z=x+yi(x,y∈R),则2z+z̅=2x+2yi+x−yi=3x+yi=3−i,则x=1,y=−1,所以z=1−i,所以|z|=√2,故选C.6.【北京五中2020届高三(4月份)高考数学模拟】已知复数z=a+i(a∈R),则下面结论正确的是()A.z̅=−a+iB.|z|≥1C.z一定不是纯虚数D.在复平面上,z对应的点可能在第三象限【答案】B【解析】解:∵z=a+i(a∈R),∴z̅=a−i,故A错误;|z|=√a2+1⩾1,故B正确;当a=0时,z为纯虚数,故C错误;∵虚部为1大于0,∴在复平面上,z对应的点不可能在第三象限,故D错误.故选:B.7.【2020届北京市西城区高三第一次模拟】若复数z=(3−i)(1+i),则|z|=()A.2√2B.2√5C.√10D.20【答案】B【解析】z=(3−i)(1+i)=4+2i,故|z|=√20=2√5.故选:B.8.复数2+i的共轭复数是()A.2−i B.−2−i C.i−2D.i+2【答案】A【解析】根据共轭复数的定义可得复数2+i的共轭复数是2−i.故选A.9.【北京市中国人民大学附属中学2019届高三高考信息卷(一)】在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为()A.−1−i B.1−i C.1+i D.−1+i【答案】D【解析】由题z=2i1+i =2i(1−i)(1+i)(1−i)=2i+22=1+i,在复平面对应的点为(1,1),关于虚轴对称点为(-1,1),所以其对应的复数为−1+i.故选:D10.【2019届北京市清华大学附属中学高三第二学期入学检测】已知复数z满足(1+i)z=|√3+i|,i为虚数单位,则z等于()A.1−i B.1+i C.12−12i D.12+12i【答案】A 【解析】因为z=|√3+i|1+i =2(1−i)(1+i)(1−i)=1−i,所以应选答案A.11.已知i为虚数单位,复数11−i的虚部是().A.12B.−12C.12iD.−12i【答案】A 【解析】1 1−i =1+i(1−i)(1+i)=12+12i,则其虚部为12,本题选择A选项.12.【北京市第四中学2018届高三第一次模拟考试(一模)】已知复数z满足(1−i)z=2+i,则z的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵(1−i)z =2+i ,∴(1−i )(1+i )z =(2+i )(1+i ),2z =1+3i ,z =12+32i ,z̅=12−32i ,z 的共轭复数在复平面内对应点坐标为(12,−32),z 的共轭复数在复平面内对应的点在第四象限,故选D. 13.若复数z =(x 2−1)+(x −1)i 为纯虚数,则实数x 的值为() A .1 B .0 C .−1 D .−1或1【答案】C 【解析】解:因为z =(x 2−1)+(x −1)i ∴x 2−1=0且x-1≠0故有x=-1选C14.【北京市东城区2018-2019学年度第二学期(4月)高三综合练】在复平面内,复数(2−i)z 对应的点位于第二象限,则复数z 可取() A .2 B .-1 C .i D .2+i【答案】B 【解析】不妨设z =a +bi(a,b ∈R),则(2−i)z =(2−i)(a +bi)=(2a +b)+(2b −a)i , 结合题意可知:2a +b <0,2b −a >0,逐一考查所给的选项: 对于选项A :2a +b =4,2b −a =−2,不合题意; 对于选项B :2a +b =−2,2b −a =1,符合题意; 对于选项C :2a +b =1,2b −a =2,不合题意; 对于选项D :2a +b =5,2b −a =0,不合题意; 故选B .15.【北京市第四中学2019届高三高考调研卷(二)】在复平面内,复数z =1+2i i对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 由题意可得:z =1+2i i=i+2i 2i 2=i−2−1=2−i ,则复数z 对应的点为(2,−1),位于第四象限. 本题选择D 选项.16.在复平面内,复数2−ii对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】2−i i =(2−i)(−i)−i=−1−2i,2−ii对应点的坐标为(−1,−2),位于第三象限.故选:C.17.已知复数z在复平面上对应的点为(1,−1),则A.z+1是实数B.z+1是纯虚数C.z+i是实数D.z+i是纯虚数【答案】C【解析】由题意得复数z=1−i,所以z+1=2−i,不是实数,所以选项A错误;z+1也不是纯虚数,所以选项B错误;z+i=1是实数,所以选项C正确;z+i不是纯虚数,所以选项D错误.故选C.18.【北京市第四中学2019届高三高考调研】复数z=1−i1+i的虚部是()A.i B.1C.−i D.−1【答案】D【解析】∵复数z=1−i1+i =(1−i)21−i2=1−2i−11+1=﹣i,∴z的虚部是﹣1.故选D.19.复数3−i1−i等于()A .B.1−2i C.2+i D.2−i 【答案】C【解析】因为3−i1−i =(3−i)(1+i)(1−i)(1+i)=4+2i2=2+i,故选C.20.【2019届北京市中国人民人大附属中学高三(5月)模拟】已知复数z满足z(1−i)2=1+i(i为虚数单位),则z̅=( )A.−12+12i B.−12−12i C.12+12i D.12−12i【答案】B 【解析】由于z(1−i)2=1+i,因此z=1+i(1−i)2=1+i−2i=−1+i2,因此z̅=−12−12i,故选B.21.【2020届北京市高三高考模拟】若复数z满足z=(1−2i)⋅i,则复平面内z̅对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】解:z=(1−2i)⋅i=2+i,z̅=2﹣i在复平面内所对应的点(2,﹣1)位于第四象限.故选:D.22.【北京师范大学附属中学2019届高三高考模拟(三)】已知复数z满足z(1+i)=|−1+√3i|,则复数z 的共轭复数为()A.−1+i B.−1−i C.1+i D.1−i【答案】C【解析】由z(1+i)=|−1+√3i|=√(−1)2+(√3)2=2,得z=21+i =2(1−i)(1+i)(1−i)=1−i,∴z̅=1+i.故选C.23.【2020届北京市第八中学高三下学期自主测试(二)】在复平面内,复数i(i−1)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】试题分析:∵i(i−1)=i2−i=−1−i,在复平面内对应的点的坐标为(−1,−1),位于第三象限,故选C. 24.【北京市丰台区2019届高三年级第二学期综合练习(二)】已知i是虚数单位,a∈R,则“a=1”是“(a+i)2为纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为(a+i)2=a2−1+2ai,当a=1时,(a+i)2=2i,是纯虚数,当(a+i)2为纯虚数时,a=±1,故选A25.【北京市海淀八模2019届高三理科数学模拟】已知复数z在复平面内对应点是(1,−2),i为虚数单位,则z+2z−1=()A.−1−i B.1+i C.1−32i D.1+32i【答案】D 【解析】z+2 z−1=3−2i−2i=1+32i,选D.26.【北京市丰台12中2017-2018学年高三上学期11月月考】复数1+2i2−i=().A.i B.1+i C.−i D.1−i 【答案】A【解析】1+2i 2−i =(1+2i)(2+i)(2−i)(2+i)=2+i+4i−25=i,故选A.27.【北京市门头沟区2019届高三3月综合练习】复数z满足z=2i1−i,那么|z|是() A.√2B.2√2C.2D.√3【答案】A【解析】∵z=2i1−i =2i(1+i)(1−i)(1+i)=−1+i,∴|z|=√2.故选A.28.【北京市2020届高考数学预测】设复数z满足1+3iz=z,则|z|=()A.√1010B.√55C.√5D.√10【答案】A 【解析】1+3iz=z,z=11−3i =1+3i10=110+310i,|z|=√1010.故选:A.29.【北京市通州区2020届高考一模】已知复数z=i(2+i)(i是虚数单位),则|z|=()A.1B.2C.√5D.3【答案】C【解析】因为复数z=i(2+i)=−1+2i,所以|z|=√(−1)2+22=√5,故选:C.30.【北京市第五十中学2019—2020学年度高一第二学期期中】复数10i1−2i=()A.-4+2i B.4-2i C.2-4i D.2+4i【答案】A【解析】由已知得,10i1−2i =10i(1+2i)(1−2i)(1+2i)=−20+10i5=−4+2i.。

复数高考题分类总汇编

复数高考题分类总汇编

复数高考真题分类汇编题型一 复数的概念及分类1.(2015·卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a . 2.(2016·卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·卷)设iiz 23+=,其中i 为虚数单位,则其虚部为 . 4.(2017·卷)已知R a ∈,i 为虚数单位,若i ia +-2为实数,则a 的值为 .5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈;:2p 若复数满足R z ∈2,则R z ∈;:3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈;其中真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p题型二 与共轭复数、复数相等有关的问题1.(2013·卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --13.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+9.(2014·卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -110.(2014·卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设iiz +=310,则z 的共轭复数为( ) A .i 31+-B .i 31--C .i 31+D .i 31-12.(2014·卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+13.(2015·卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23-14.(2015·卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 216.(2015·卷)若复数满足i iz=-1,其中i 为虚数单位,则=z ( ) A .i -1B .i +1C .i --1D .i +-117.(2016·卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21--18.(2016·卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则ba的值为______.19.(2017·卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模 1.(2013·卷)复数11-=i z 的模为( ) A .21B .22 C .2 D .22.(2013·卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______. 3.(2013·卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·卷)已知复数iiz 215+=(i 是虚数单位),则=z _____. 5.(2015·全国卷)设复数z 满足i zz=-+11,则=z ( )A .1B .2C .3D .26.(2015·卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____. 7.(2015·卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____. 8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .29.(2017·卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______. 10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22 C .2 D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·卷)若复数满足i z i 42+=⋅,则在复平面,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4(4.(2014·卷)复数=-+2)11(ii ______. 5.(2014·卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·卷)复数=+-ii122______. 7.(2014·卷)i 是虚数单位,复数=++ii437( )A .i -1B .i +-1C .i 25312517+D .i 725717+-8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1 D .i --19.(2014·卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23-10.(2014·卷)i 为虚数单位,则=+-2)11(ii ( )A .1-B .1C .i -D .i11.(2014·卷)满足i ziz =+(i 是虚数单位)的复数=z ( ) A .i2121+B .i 2121-C .i 2121+-D .i 2121--12.(2014·卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43-13.(2015·卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21--14.(2015·卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .Ø15.(2015·卷)已知i zi +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1 D .i --116.(2015·卷)设i 是虚数单位,则复数=-ii 23( ) A .i -B .i 3-C .iD .i 317.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i( ) A .1B .1-C .iD .i -18.(2016·卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii13( ) A .i 21+B .i 21-C .i +2D .i -2题型五 复数的几何意义1.(2013·卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --46.(2014·卷)在复平面表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·卷)设i 是虚数单位,则复数ii-12在复平面所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.(2016·卷)设R a ∈,若复数))(1(i a i ++在复平面对应的点位于实轴上,则=a ________.9.(2017·卷)若复数))(1(i a i +-在复平面对应的点在第二象限,则实数a 的取值围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。

2010年高考数学试题分类汇编——复数填空

2010年高考数学试题分类汇编——复数填空

2010年高考数学试题分类汇编——复数(2010上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= i 26- 。

解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-(2010重庆理数)(11)已知复数z=1+I ,则2z z -=____________. 解析:i i i i i 211112-=---=--+(2010北京理数)(9)在复平面内,复数21i i -对应的点的坐标为 。

答案:(-1,1)(2010江苏卷)2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.[解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

(2010湖北理数)1.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1zi +的点是A .E B.F C.G D.H1.【答案】D【解析】观察图形可知3z i =+,则3211z i i i i +==-++,即对应点H (2,-1),故D 正确.二、填空题(2010上海文数)4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。

解析:考查复数基本运算z z z ⋅+=i i i i 2621)21)(21(-=-++-(2010重庆理数)(11)已知复数z=1+I ,则2z z -=____________.解析:i i i i i 211112-=---=--+(2010北京理数)(9)在复平面内,复数21ii -对应的点的坐标为 。

答案:(-1,1)(2010江苏卷)2、设复数z 满足z(2-3i )=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)

2010—2019“十年高考”数学真题分类汇总 复数部分  理数(附参考答案)

17.(2016 年全国 I)设 (1 i)x 1 yi ,其中 x, y 是实数,则 x yi =
A.1
B. 2
C. 3
D.2
【答案】B. 18.(2016 年全国 II)已知 z (m 3) (m 1)i 在复平面内对应的点在第四象限,则实数 m
的取值范围是
A. 3,1
B.第二象限
C.第三象限
D.第四象限
【答案】B.
23.(2015
山东)若复数
z
z
满足
1i

i
,其中 i
为虚数单位,则
z
=
A.1 i
B.1 i
C. 1 i
D. 1 i
【答案】A.
24.(2015 四川)设 i 是虚数单位,则复数 i3 2 = i
A. i
B. 3i
C. i
D. 3i
57.(2011 山东)复数 z = 2 i ( i 为虚数单位)在复平面内对应的点所在象限为 2i
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D.
58.(2011 安徽)设 i 是虚数单位,复数 ai 为纯虚数,则实数 a 为 i
A.2
B. 2
C.


D.
B. 1,3
C. 1 , +
D. - , 3
【答案】A.
19.(2016 年全国 III)若 z 1 2i ,则 4i zz 1
A.1
B. 1
C.i
D. i
【答案】C.
20.(2015
新课标
1)设复数
z
1
满足

专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题02复数考点十年考情(2015-2024)命题趋势考点1求复数的实部与虚部(10年4考)2020·全国卷、2020·江苏卷、2018·江苏卷、2016·天津卷、2016·江苏卷、2016·全国卷、2015·重庆卷、2015·北京卷1.理解、掌握复数的代数形式,能够掌握数集分类及复数分类,需要关注复数的实部、虚部、及纯虚数2.能正确计算复数的四则运算及模长等问题,理解并掌握共轭复数3.熟练掌握复数的几何意义即复数与复平面上点的对应关系本节内容是新高考卷的必考内容,一般考查复数的四则运算、共轭复数、模长运算、几何意义,题型较为简单。

考点2复数相等(10年7考)2023·全国甲卷、2022·浙江卷、2022·全国乙卷、2022·全国乙卷、2021·全国乙卷、2017·浙江卷、2016·天津卷、2015·全国卷、2015·全国卷、2015·上海卷考点3复数的分类(10年2考)2017·全国卷、2017·全国卷、2017·天津卷、2015·天津卷考点4共轭复数(10年10考)2024·全国甲卷、2024·全国甲卷、2023·北京卷、2023·全国乙卷、2023·全国新Ⅰ卷、2022·全国甲卷、2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷、2021·新Ⅰ卷全国考点5复数的模(10年9考)2024·全国新Ⅱ卷、2023·全国乙卷、2022·全国甲卷、2022·北京卷、2020·全国卷、2020·全国卷、2020·全国卷、2019·全国卷、2019·天津卷、2019·浙江卷考点6复数的几何意义(10年8考)2023·全国新Ⅱ卷、2023·北京卷、2021·全国新Ⅱ卷、2020·北京卷、2019·全国卷、2019·全国卷、2018·北京卷、2017·全国卷、2017·北京卷、2016·全国卷考点01求复数的实部与虚部1.(2020·全国·高考真题)复数113i-的虚部是()A .310-B .110-C .110D .3102.(2020·江苏·高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是.3.(2018·江苏·高考真题)若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的实部为.4.(2016·天津·高考真题)i 是虚数单位,复数z 满足(1)2i z +=,则z 的实部为.5.(2016·江苏·高考真题)复数(12)(3),z i i =+-其中i 为虚数单位,则z 的实部是.6.(2016·全国·高考真题)设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .37.(2015·重庆·高考真题)复数()12i i +的实部为.8.(2015·北京·高考真题)复数()1i i +的实部为.考点02复数相等1.(2023·全国甲卷·高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ()A .-1B .0·C .1D .22.(2022·浙江·高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则()A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022·全国乙卷·高考真题)设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022·全国乙卷·高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021·全国乙卷·高考真题)设()()2346i z z z z ++-=+,则z =()A .12i-B .12i+C .1i+D .1i-6.(2017·浙江·高考真题)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab =.7.(2016·天津·高考真题)已知,a b R ∈,i 是虚数单位,若(1+i )(1-bi )=a ,则ab的值为.8.(2015·全国·高考真题)若a 为实数,且2i3i 1ia +=++,则=a A .4-B .3-C .3D .49.(2015·全国·高考真题)若a 为实数且()()2i 2i 4i a a +-=-,则=a A .1-B .0C .1D .210.(2015·上海·高考真题)若复数满足,其中是虚数单位,则.考点03复数的分类1.(2017·全国·高考真题)下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)2.(2017·全国·高考真题)设有下面四个命题1p :若复数z 满足1R z∈,则R z ∈;2p :若复数z 满足2R z ∈,则R z ∈;3p :若复数12,z z 满足12R z z ∈,则12z z =;4p :若复数z R ∈,则R z ∈.其中的真命题为A .13,p p B .14,p p C .23,p p D .24,p p 3.(2017·天津·高考真题)已知a R ∈,i 为虚数单位,若2a ii-+为实数,则a 的值为.4.(2015·天津·高考真题)i 是虚数单位,若复数()()12i i a -+是纯虚数,则实数a 的值为.考点04共轭复数1.(2024·全国甲卷·高考真题)设z,则z z ⋅=()A .2-B C .D .22.(2024·全国甲卷·高考真题)若5i z =+,则()i z z +=()A .10iB .2iC .10D .23.(2023·北京·高考真题)在复平面内,复数z对应的点的坐标是(-,则z 的共轭复数z =()A .1B .1C .1-D .1-4.(2023·全国乙卷·高考真题)设252i1i i z +=++,则z =()A .12i-B .12i+C .2i-D .2i +5.(2023·全国新Ⅰ卷·高考真题)已知1i22iz -=+,则z z -=()A .i-B .iC .0D .16.(2022·全国甲卷·高考真题)若1i z =+.则|i 3|z z +=()A .B .C .D .7.(2022·全国甲卷·高考真题)若1z =-,则1zzz =-()A .1-B .1-C .1i33-+D .1i33--8.(2022·全国新Ⅰ卷·高考真题)若i(1)1z -=,则z z +=()A .2-B .1-C .1D .29.(2021·全国乙卷·高考真题)设()()2346i z z z z ++-=+,则z =()A .12i-B .12i+C .1i+D .1i -10.(2021·全国新Ⅰ卷·高考真题)已知2i z =-,则()i z z +=()A .62i-B .42i-C .62i+D .42i+考点05复数的模1.(2024·全国新Ⅱ卷·高考真题)已知1i z =--,则z =()A .0B .1C D .22.(2023·全国乙卷·高考真题)232i 2i ++=()A .1B .2CD .53.(2022·全国甲卷·高考真题)若1i z =+.则|i 3|z z +=()A .B .C .D .4.(2022·北京·高考真题)若复数z 满足i 34i z ⋅=-,则z =()A .1B .5C .7D .255.(2020·全国·高考真题)若312i i z =++,则||=z ()A .0B .1CD .26.(2020·全国·高考真题)若z=1+i ,则|z 2–2z |=()A .0B .1C D .27.(2020·全国·高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +,则12||z z -=.8.(2019·全国·高考真题)设3i12iz -=+,则z =A .2BC D .19.(2019·天津·高考真题)i 是虚数单位,则51ii-+的值为.10.(2019·浙江·高考真题)复数11iz =+(i 为虚数单位),则||z =.考点06复数的几何意义1.(2023·全国新Ⅱ卷·高考真题)在复平面内,()()13i 3i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限2.(2023·北京·高考真题)在复平面内,复数z对应的点的坐标是(-,则z 的共轭复数z =()A .1B .1C .1-D .1-3.(2021·全国新Ⅱ卷·高考真题)复数2i13i--在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限4.(2020·北京·高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A .12i+B .2i-+C .12i-D .2i--5.(2019·全国·高考真题)设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·全国·高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=7.(2018·北京·高考真题)在复平面内,复数11i-的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限8.(2017·全国·高考真题)复平面内表示复数z=i(–2+i)的点位于A .第一象限B .第二象限C .第三象限D .第四象限9.(2017·北京·高考真题)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A .(–∞,1)B .(–∞,–1)C .(1,+∞)D .(–1,+∞)10.(2016·全国·高考真题)已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A .(31)-,B .(13)-,C .(1,)+∞D .(3)-∞-,。

高考文科数学试题分类汇编复数精品

高考文科数学试题分类汇编复数精品

2009-20年高考文科数学试题分类汇编——复数一、选择题1.(20年广东卷文)下列n的取值中,使=1(i是虚数单位)的是()(A)n=2 (B)n=3 (C)n=4 (D)n=52.(2009浙江卷文)设z=1+i(i是虚数单位),则+z2=()(A)1+i(B)-1+i (C) 1-i (D)-1-i3.(2009山东卷文)复数等于()(A)1+2i(B)1-2i(C)2+i(D)2-i4. (2009安徽卷文)i是虚数单位,i(1+i)等于()(A)1+i (B)-1-i (C)1-i (D)-1+i5.(2009天津卷文)i是虚数单位,=()(A)1+2i (B)-1-2i (C)1-2i (D)-1+2i6. (2009宁夏海南卷文)复数=()(A)1 (B)-1 (C)i (D)-i7. (2009辽宁卷文)已知复数z=1-2i,则=()(A)+i(B)-i(C)+i(D)-i8.(2010湖南文数1)复数等于()(A) 1+i(B) 1-i (C)-1+i (D)-1-i9.(2010浙江理数)对随意复数z=x+(x R,y R),i为虚数单位,则下列结论正确的是()(A)-|=2y(B)z2=x2+y2(C)-|≥2x(D)≤+10.(2010全国卷2理数)复数()2=()(A)-3-4i(B)-3+4i(C)3-4i(D)3+4i11.(2010陕西文数)复数z=在复平面上对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限12.(2010辽宁理数(2))设a,b为实数,若复数=1+i,则()(A)a=,b=(B)a=3,b=1(C)a=,b=(D)a=1,b=313.(2010江西理数)已知(x+i)(1-i)=y,则实数x,y分别为()(A)x=-1,y=1 (B)x=-1,y=2(C)x=1,y=1 (D)x=1,y=214.(2010安徽文数(2))已知i2=-1,则i(1-i)=()(A)-i(B)+i (C)--i (D)-+i15.(2010浙江文数)设i为虚数单位,则=()(A)-2-3i (B)-2+3i(C)2-3i (D)2+3i16.(2010山东文数)已知=b+i(a,b R),其中i为虚数单位,则a+b=()(A)-1(B) 1 (C)2 (D) 317.(2010北京文数(2))在复平面内,复数6+5i,-2+3i 对应的点分别为A,B,若C为线段的中点,则点C对应的复数是()(A)4+8i (B)8+2i (C)2+4i (D)4+i18.(2010四川理数(1))i是虚数单位,计算i+i2+i3=()(A)-1 (B)1 (C)-i(D)i19.(2010天津文数)i是虚数单位,复数=()(A)1+2i (B)2+4i (C)-1-2i (D)2-i20.(2010天津理数)i 是虚数单位,复数=()(A)1+i (B)5+5i (C)-5-5i (D)-1-i21.(2010广东理数)若复数z1=1+i,z2=3-i,则z1·z2=()(A)4+2 i (B) 2+ i (C) 2+2 i (D)322.(2010福建文数)i是虚数单位,()4等于()(A)i (B)-i (C)1 (D)-123.(2010全国卷1理数(1))复数=()(A)i (B)-i(C)12-13i(D) 12+13i24.(2010山东理)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()(A)-1 (B)1 (C)2 (D)325.(2010安徽理数1)i是虚数单位,+3i) =()(A)-,12) I(B)+,12) i(C)+,6) i(D)-,6) i26. (20年北京理)复数=()(A)i (B)-i (C)--i (D)-+i27.(20年福建理)i是虚数单位,若集合S={-1,0,1},则()(A)i S(B)i2S(C)i3S(D)S28.(2010湖北理数)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()(A)E(B)F(C)G(D)H29.(20年安徽理(1))设i是虚数单位,复数为纯虚数,则实数a为()(A)2 (B)-2 (C)-(D)30.(20年福建文)i是虚数单位,1+i3等于()(A)i (B)-i (C)1+i (D)1-i31.(20年广东理1)设复数z满意(1+i)z=2,其中i为虚数单位,则Z=()(A)1+i (B)1-i (C)2+2i (D)2-2i 32.(20年广东文1)设复数z满意=1,其中i为虚数单位,则z=()(A)-i(B)i(C)-1(D)133.(20年湖北理1)i为虚数单位,则()2011=()(A)-i(B)-1(C)i(D)134.(20年湖南理1)若a,b R,i为虚数单位,且(a+i)i=b+i,则()(A)a=1,b=1(B)a=-1,b=1(C)a=-1,b=-1(D)a=1,b=-135.(20年江西理1)设z=i) ,则复数=()(A)-2-i(B)-2+i(C)2-i(D)2+i36.(20年江西文1)若(x-i)i=y+2i,x,y R,则复数x+=()(A)-2+i (B) 2+i (C)1-2i(D)1+2i37.(20年辽宁理1)a为正实数,i为虚数单位,||=2,则a=()(A)2 (B)(C)(D)138.(20年辽宁文2)i为虚数单位,+++=()(A)0 (B)2i(C)-2i(D)4i39.(20年全国Ⅰ理(1))复数的共轭复数是()(A)-i(B)i(C)-i(D)i40.(20年全国Ⅰ文(3))已知复数z=+i,(1-i)2) ,则=()(A)(B)(C)1 (D)241.(20年全国Ⅱ理(1))复数z=1+i,为z的共轭复数,则z-z-1=()(A)-2i(B)-i(C)i(D)2i42.(20年山东理)复数z=(i为虚数单位)在复平面内对应的点所在象限为()(A)第一象限(B)其次象限(C)第三象限(D)第四象限43.(20年四川理2)复数-i+=()(A)-2i(B)i(C)0 (D)2i44.(20年天津理1)i是虚数单位,复数=()(A)1+i(B)5+5i(C)-5-5i(D)-1-i45.(20年天津文1)i是虚数单位,复数()(A)1+2i(B)2+4i(C)-1-2i(D)2-i46.(20年浙江文)若复数z=1+i,i为虚数单位,则(1+i)z=()(A)1+3i(B)3+3i(C)3-i(D)347.(20年重庆理(1))复数=()(A)--i (B)-+i (C)-i(D)+i48.【2012安徽文1】复数z满意(z-i)i=2+i,则z=()(A)-1-i(B)1-I(C)-1+3i(D)1-2i49.【2012新课标文2】复数z=的共轭复数是()(A)2+i (B)2-i (C)-1+i (D)-1-i50.【2012山东文1】若复数z满意z(2-i)=11+7i(i为虚数单位),则为()(A)3+5i (B)3-5i (C)-3+5i(D)-3-5i51.【2012浙江文2】已知i是虚数单位,则=()(A)1-2i (B)2-i (C)2+i (D)1+2i52.【2012上海文】若1+i是关于x的实系数方程x2++c=0的一个复数根,则()(A)b=2,c=3(B)b=2,c=-1(C)b=-2,c=-1(D)b=-2,c=353.【2012辽宁文3】复数=()(A)-i (B)+i(C)1-i(D)1+i54.【2012江西文1】若复数z=1+i(i为虚数单位)是z的共轭复数,则z2+2的虚部为()(A)0 (B)-1 (C)1 (D)-255.【2012湖南文2】复数z=i(i+1)(i为虚数单位)的共轭复数是()(A)-1-i (B)-1+i (C)1-i (D)1+i56.【2012广东文1】设i为虚数单位,则复数=()(A)-4-3i(B)-4+3i(C)4+3i(D)4-3i57.【2102福建文1】复数(2+i)2等于()(A)3+4i (B)5+4i (C)3+2i (D)5+2i58.【2102北京文2】在复平面内,复数对应的点的坐标为()(A)(1 ,3)(B)(3,1)(C)(-1,3)(D)(3 ,-1)59.【2012天津文科1】i是虚数单位,复数i)=(A)1-i (B)-1+i(C)1+i(D)-1-i60.(20年辽宁卷(文))复数的z=i-1)模为()(A)(B),2)(C)(D)261.(20年课标Ⅱ卷(文))||=()(A)2(B)2 (C)(D)162.(20年北京卷(文))在复平面内,复数i(2-i)对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限63.(20年山东卷(文))复数z=(i为虚数单位),则=()(A)25 (B)(C)5 (D)64.(20年课标Ⅰ卷(文))=()(A)-1-i (B)-1+i(C)1+i (D)1-i65.(20年福建卷)复数z=-1-2i (i为虚数单位)在复平面内对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限66.(20年广东卷(文))若i(x+)=3+4i,x,y R,则复数x+的模是()(A)2 (B)3 (C)4 (D)567.(20年江西卷)复数z=i(-2-i)(i为虚数单位)在复平面内所对应的点在()(A)第一象限(B)其次象限(C)第三象限(D)第四象限68.(20年四川卷(文))如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()(A)A (B)B(C)C(D)D69.(20年浙江卷(文))已知i是虚数单位,则(2+i)(3+i)=()(A)5-5i (B)7-5i (C)5+5i (D)7+5i70.(20年安徽)设i是虚数单位,若复数a-(a R)是纯虚数,则a的值为()(A)-3 (B)-1 (C)1 (D)3二、填空题71.(2009江苏卷)若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为.72.(2009福建卷文)复数i2(1+i)的实部是.73.(20年江苏3)设复数i满意i(z+1)=-3+2i(i是虚数单位),则z 的实部是74.(20年浙江理2)已知复数z=,其中i是虚数单位,则=.75.【2012湖北文12】若=a+(a,b为实数,i为虚数单位),则a+b=.76.【2012江苏3】设a,b为实数,a+=(i为虚数单位),则a+b的值为.77.【2012上海文1】计算:=(i为虚数单位)78.(20年湖南)复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于.79.(20年天津卷(文))i是虚数单位. 复数(3+i)(1-2i)= .80.(20年重庆卷(文))已知复数z=1+2i (i是虚数单位),则=.81.(20年上海卷(文科))设m R,m2+m-2(m2-1)i,是纯虚数,其中i 是虚数单位,则m=.82.(20年湖北卷(文))i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=.三、解答题83.(20年上海理19)已知复数z1满意(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.。

第7章 复数-2023年高考数学基础知识汇总(人教A版2019)(必修第二册)

第7章 复数-2023年高考数学基础知识汇总(人教A版2019)(必修第二册)

第7章 复数§7.1复数的概念1.复数:形式如(,)z a bi a b R =+∈的数叫复数,其中i 叫虚数单位,21i =-.a 叫复数的实部,b 叫复数的虚部.2.复数的分类复数(),z a bi a b R =+∈(0)(0,0)(0)(0,0)b a b b a b =⎧⎪=≠⎧⎨≠⎨⎪≠≠⎩⎩实数纯虚数虚数非纯虚数 3.复数的几何意义复平面:用来表示复数的直角坐标系,其中x 轴叫做实轴,y 轴叫做虚轴.z a bi =+←−−−→一一对应复数复平面内的点(),Z a bz a bi OZ =+←−−−→一一对应复数平面向量4.复数的模向量OZ 的模叫复数(),z a bia b R =+∈的模或绝对值,即22b a bi a z +=+=. 5.共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z 的共轭复数用z 表示,z a bi =-.§7.2复数的四则运算1.复数的加、减运算及其几何意义(1)复数加减法:()()()()i d b c a di c bi a ±+±=+±+;(2)复数加法的几何意义:复数的加法可以按照向量的加法来进行:12,OZ OZ 分别对应复数,a bi c di ++,即()()12,,,OZ a b OZ c d ==,则()12,OZ OZ a c b d +=++对应复数()()a c b d i +++.2.复数的乘、除运算(1)复数的乘法:()()()()a bi c di ac bd bc ad i++=-++;(2)复数的除法()()()()2222a bi c dia bi ac bd bc adic di c di c di cd c d+-++-==+++-++.3.常见的运算规律(1);z z=2222(2);z z z z a b⋅===+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 复数
考试内容:
数的概念的发展。

复数的有关概念。

复数的向量表示。

复数的加法与减法。

复数的乘法与除法。

复数的三角形式。

复数三角形式的乘法、乘方、除法、开方。

考试要求:
(1)理解复数及其有关的概念。

掌握复数的代数、几何、三角表示及其转换。

(2)掌握复数的运算法则。

能正确地进行复数的运算,并理解复数运算的几何意义。

(3)掌握在复数集中解一元二次方程和二项方程的方法。

一、选择题
1. 在下列各数中,已表示成三角形式的复数是( )(86年(1)3分)
(A)2(cos 4
π
-isin 4
π
) (B)2(cos
4
π
+isin
4
π
)
(C)2(sin
4
π
+icos
4
π
)
(D)-2(sin 4
π
-icos 4
π
)
2. 2
11⎪

⎫ ⎝⎛+-i i =( )(88年(1)3分)
(A)1 (B)-1 (C)i (D)-i
3. 复平面内,若复数z 满足|z +1|=|z -i|,则z 所对应的点Z 的集合构成的图形是( )(88年
(12)3分) (A)圆 (B)直线 (C)椭圆 (D)双曲线 4. 设复数z 满足关系式z +|z|=2+i,那么z 等于( )(89年(7)3分)
(A)-
4
3+i (B)
4
3-i (C)-
4
3-i (D)
4
3+i
5. 把复数1+i 对应的向量按顺时针方向旋转
3
2π,所得到的向量对应的复数是( )(90年(2)3
分)
i
D i C i B i A 2
3
12
3
1)
(2
3
12
3
1)
(23
1231)
(231231)
(-
-+
--+
+
--
-++
-+
-+-
6. 已知复数z 的模为2,则|z -i|的最大值为( )(92年(15)3分)
(A)1 (B)2 (C)5 (D)3
7. 当z =-
2
1i -时,z 100+z 50+1的值等于( )(93年(4)3分)
(A)1 (B)-1 (C)i (D)-i
8. 如果复数z 满足|z +i|+|z -i|=2,,那么|z +i +1|的最小值为( )(94年(9)4分)
(A)1 (B)
2
(C)2 (D)5
9. 复数
5
4)
31()22(i i -
+=( )(96年(4)4分)
(A)1+3i (B)-1+3i (C)1-3i (D)-1-3i 10. 复数-i 的一个立方根是i,它的另外两个立方根是( )(98年(8)4分)
(A)
i
D i
C i
B i
2123)(2123)(2123)(2123-±

±-
±
二、填空题
1.已知复数ω=
231i
-
-,则ω2+ω+1的值是___________.(86年(12)4分)
2.复数3-i 的模是________,幅角主值是___________.(88年(20)4分)
三、解答题
(1)设O 为复平面的原点,Z 1和Z 2为复平面内两个动点, ①Z 1和Z 2对应的复数的幅角分别为定值θ和-θ(0<θ ②△OZ 1Z 2的面积为定值求△OZ 1Z 2的重心Z 所对应的复数的模的最小值.(85年(2)设复数Z 1和Z 2满足关系式:Z 2!21Z A Z A Z ++=0,证明:(Ⅰ)|Z1+A||Z2+A|=|A|2 (Ⅱ)
A
Z A Z A
Z A Z 2121++=++(87年(19)12分)
(3)设a ≥0,在复数集C 中解方程z +2|z|=a.(90年(24)12分) (4)已知复数z =1+i,求复数
1
632
++-z z z
的模和幅角的主值.(91年(22)8分)
(5)已知z ∈C,解方程z i z z 3-=1+3i.(92年(24)9分) (6)设复数z =cos θ+isin θ(0<θ<π),ω=4
411z
z +-,已知|ω|=
3
3,arg ω<
2
π
,求θ.(93
年(28)12分)
(7)已知z =1+i,
Ⅰ.设ω=z 2+3z -4,求ω的三角形式; Ⅱ.如果
1
z z b az z 22
+-++=1-i,求实数a,b 的值.(94年(21)11分)
(8)在复平面上,一个正方形的四个顶点按照逆时针方向依次为z 1,z 2,z 3,O(O 为原点),已知z 2对应复数z 2=1+3i,求z 1和z 3对应的复数.(95年(21)7分) (9)已知复数z =
i
i 2222,2123+
=
-ω,复数z ω,z 2ω3
在复数平面上所对应的点分别为P,Q,证
明△OPQ 是等腰直角三角形(其中O 是原点).(97年(20)10分) (10)设复数z =3cos θ+i2sin θ,求函数y =θ-argz(0<θ<
2
π)的最大值以及对应的θ值(99
年(20)12分)。

相关文档
最新文档