(完整版)02240自考《机械控制工程基础》专用习题集

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制工程控制基础》习题集
机电系“控制工程基础”教研小组编
二O 一五年一月
•第一部分:单选题 (1)
• 第二部分:多选题
(多选、少选、错选均不得分) (13)
•第三部分:简答题 (24)
•第四部分:建模题 (27)
•第五部分:稳定性分析题 (36)
•第六部分:结构图简化题 (37)
•第七部分:时域分析题 (41)
•第八部分:频域分析题 (44)
•第九部分:稳态分析题 (47)
•第十部分:校正分析题 (50)
第一部分:单选题
1. 自动控制系统的反馈环节中必须具有[b ]
a.给定元件 b .检测元件
c .放大元件
d .执行元件
2. 在直流电动机的电枢回路中,以电流为输出,电压为输入,两者之间的传递函数是[a ]
a .比例环节
b .积分环节
c .惯性环节
d .微分环节
3. 如果系统不稳定,则系统[a ]
a.不能工作b .可以工作,但稳态误差很大
c .可以工作,但过渡过程时间很长
d .可以正常工作
4. 在转速、电流双闭环调速系统中,速度调节器通常采用[B ]
调节器。

a .比例
b .比例积分
c .比例微分
d .比例积分微分
5. 单位阶跃函数1(t)的拉氏变换式L[1(t)]为[B ]:
11 2
a. S
b. —
c. -y
d. S
S S2
6. 在直流电动机的电枢回路中,以电流为输出,电压为输入,两者之间的传递函数是[A ]
A .比例环节
B .积分环节
C .惯性环节
D .微分环节
7. 如果系统不稳定,则系统[A ]
A. 不能工作B .可以工作,但稳态误差很大
C .可以工作,但过渡过程时间很长
D .可以正常工作
8. 已知串联校正网络(最小相位环节)的渐近对数幅频特性如下图所示。

试判断该环节的相位特性是[A ]:
A. 相位超前
B.相位滞后
C.相位滞后-超前
D.相位超前-滞后
I"
OdB/dec
-Zin
+20dB/dec 丨
• ■'H
H
= |i
------------------- 1----- - ---------- 1 ------------------- ■
I
I /

0dB/dec
9. 在转速、电流双闭环调速系统中,速度调节器通常采用[B ]
调节器。

A .比例
B .比例积分
C.比例微分 D .比例积分微分
10. 已知某环节的幅相频率特性曲线如下图所示,试判定它是何种环节[惯性环节]:
11. PI调节器是- -种(a )校正装置。

A. 相位超前
B. 相位滞后
C.相位滞后-超前
D. 相位超前-滞后
A. 不能工作B .可以工作,但稳态误差很大
12. 开环增益K增加,系统的稳定性(c ):
A. 变好
B. 变坏
C. 不变
D. 不一定
13.开环传递函数的积分环节v增加,系统的稳定性():
A.变好
B.变坏
C. 不变
D.不一定
14.已知f(t)=0.5t+1,其L[f(t)]=( c ):
A. S+0.5S2
B. 0.5S2
C. 1
2
1 D. 1
2S2S2S
15.自动控制系统的反馈

不节中必须具有(b
):
A.给定元件 B .检测元件
C.放大元件 D .执行元件
16. PD调节器是- -种(a )校正装置。

A.相位超前
B. 相位滞后
C.相位滞后-超前
D. 相位超前-滞后
17. 已知最小相位系统的开环对数幅频特性曲线的渐近线如下图所
示,试确定其开环增益K ( c )
18. 已知系统的特征方程为S3+S!+ T S+5=Q则系统稳定的T值范围为
T >Q; B. T <Q ; C. T >5 ; D. Q< T <5
19. 开环传递函数的积分环节v增加,系统的稳态性能():
A.变好
B. 变坏
C. 不变
D. 不一定
20. 在阶跃函数输入作用下,阻尼比( d )的二阶系统,其响应具有减
幅振荡特性。

A. Z = 0
B. Z >1
C. Z = 1
D. 0< Z <1
21. 振荡环节的传递函数为( a )。

2
A. 3 n /(S +2E® n S+1) (0< E <1);
B. 3 n /(S 2+2E3 n S+1) (E =1);
C. T 2/ ( T2S2+2E TS+1) (0<
E <1) ;
D. 1/[S ( TS+1) ]
22.函数b + ce -at (t > 0)的拉氏变换是(c) 。

A
bS + c/(S+1) ;

B
bS - c/(S+a);

b/S + c/(S+a) ;
C

b/S + c/(S-a)
D

23.反映控制系统稳态性能的指标为( b
):
A.C
B. t s
C. t r
D. e ss
24.在阶跃函数输入作用下,阻尼比( a)的二阶系统,其响应具
有等幅振荡性。

A.Z = 0
B. Z >1
C. Z = 1
D. 0< Z <1
25
如果自控系统微分方程的特征方程的根在复平面上的位置均在

右半平面,那么系统为( b )系统:
A.稳定
B. 不稳定
B.不变
C. 稳定边界
D. 不确定
B.不变
26.
在右图所示的波特图中,其开环增益
K =(
27. 某机械平移系统如图所示,则其传递函数的极点数 A. 3
; B. 4
; C.5
; D. 6
28.
典型二阶振荡系统的( )时间可由响应
曲线的包络线近似求
A 、峰值;
B 、延时;
C 、调整;
D 、上升 29. cos2t 的拉普拉斯变换式是 1 4
A. 丄
B. -4
S S 2 4 C.
D.厶
S 2 4
S 2
30. 控制系统的稳态误差反映了系统的
31.
对于典型二阶系统,在
A 、
3 J/ 3 1 3 2;
A.
快速性 C.
稳定性
B. 稳态性能 D. 动态性能
C 、3 2 3 c / 3 1;
D 、3 1 3 c / 3 2
2
m
欠阻尼状态下,如果增加阻尼比E的数值, 则其动态性能指标中的最大超调量将〔〕
A. 增加
C. 不一定
D. 减少
32. 开环增益K 增加,系统的稳态性能():
A.变好
B. 变坏
C. 不变
D. 不一定
33. 开环传递函数的积分环节v 增加,系统的稳态性能():
A.变好
B.变坏
C. 不变
D. 不一定
34. 已知系统的开环传递函数为:
G(S)H(S) = K(T S+1)/[(T I S+1)(T2S+1)(T2S2+2Z TS+1)],贝S它的对数幅频特性渐近线在3趋于无穷大处的斜率为(
)(单位均为dB/十倍频程)。

A、-20 ;B 、-40 ;C 、-60 ;D 、-80
35. 以下频域性能指标中根据开环系统来定义的是()。

截止频率3 b;B、谐振频率3 r与谐振峰值M ;C、频带宽度;D、相位裕量r与幅值裕量Kg
36. 开环增益K减小,系统的稳定性():
A.变好
B. 变坏
C. 不变
D. 不一定
37. 如果自控系统微分方程特征方程的根在复平面上的位置均在右
半平面,那么系统为()系统:
A.稳定
B. 不稳定
C. 稳定边界
D. 不确定
38. 以下性能指标中不能反映系统响应速度的指标为()
A. 上升时间tr B .调整时间ts
C .幅值穿越频率3 c
D .相位穿越频率3 g
39. 已知f(t)=0.5t+1 ,其L[f(t)]=():
2 2 11 1
A. S+0.5S
B. 0.5S
C. 厶丄
D. 丄
2S2S 2S
40. 系统的开环对数幅频特性的( )表征着系统的稳态性能。

A. 低频渐近线(或其延长线)在3 =1处的高度;
B. 中频段的斜率;
C. 中频段的宽度;
D.高频段的斜率
41. 对于典型二阶系统,当阻尼比不变时,如果增加无阻尼振荡频率
3 n的数值,贝康动态性能指标中的调整时间t s()。

A 、增加;B、减少;C、不变;D、不定
42. 对于典型二阶系统,当( )时,最大超调量c为0。

A 、Z = 0 ;B、Z = 1 ;C、0<Z< 1 ;D、Z< 0
43. 下列函数既可用初值定理求其初值又可用终值定理求其终值的为:
( )。

2 2
A. 5/ (S +25) ;
B.5/ (S+16);
C. 1/ (S-2 );
D.1/ (S+2)
44. 已知系统的频率特性为G (j 3) =K(1+j0.5 3 )/[(1+j0.3
B.不变
3 )(1+j0.8 3 )],其相频特性/ G(j 3)为( )。

A arctg0.5 3 - arctg0.3 3 - arctg0.8 3
-arctg0.5 3 - arctg0.3 3 - arctg0.8 3 -arctg0.5 3 + arctg0.3 3 + arctg0.8 3 arctg0.5 3 + arctg0.3 3 + arctg0.8 3
45. 根据下面的开环波德图,试判断闭环系统的稳定性( A 、稳定;B 、不稳定;C 、条件稳定;D 、临界稳定
46. 函数b + ce -at (t > 0)的拉氏变换是()。

A 、bS + c/(S+1) ; B 、bS - c/(S+a) ; C 、b/S + c/(S+a)
;
D 、b/S + c/(S-a)
47. 系统的开环对数幅频特性的( )表征着系统的稳态性能。

A 频渐近线(或其延长线)在3 =1处的高度;B.中频段的斜率; C.中
频段的宽度;D.高频段的斜率
48. 对于典型二阶系统,当阻尼比不变时,如果增加无阻尼振荡频率
3 n 的数值,贝康动态性能指标中的调整时间 t s ()。

A 、增加;
B 、减少;
C 、不变;
D 、不定 49. 振荡环节的传递函数为(
)。

A. 3 n /(S 2+2E3 n S+1) (0< E <1) ;
B. 3 n /(S '+2 三3 n S+1) (E =1);
-180
C. T 2/ (T2S2+2E TS+1) (0< E <1) ;
D.1/[S (TS+1)]
50. 对于典型二阶系统,当( )时,最大超调量c为0。

A、Z = 0 ;
B、Z = 1 ;
C、0<Z< 1 ;
D、Z< 0
51. 下列函数既可用初值定理求其初值又可用终值定理求其终值的为:( )。

A. 5/ (W+25);
B. 5/ (总+16);
C. 1/ (S-2);
D.1/
(S+2)
52.
典型二阶系统在无阻尼情况下的阻尼比E 等于 〔 〕
A.
E =0
C. 0< E < 1
56.
对于典型I 型系统,在工程设计中,其阻尼比E=( )时称
为“二阶最佳”系统 〔〕
A.
E =0
B. E= 0.707
C. E= 1
D. E =0.5
57. 已知某单位负反馈控制系统在单位加速度信号作用下,其稳态误
A.
自整角机
B. 差动变压器
C. 热电偶
D. 交流测速发电机
54. 某环节的传递函数为
2(2S S(5S
则此系统的相频特性〔

A. —+ tg -1
2 3

-tg -153
B. -1 -1
-3 + tg 23 - tg 53
C. - —tg 2 3 - 2 3
-tg -153
D. tg -1 -1
2 3 - tg 5 3
55.
在右图所示的伯德图中3 C =
〔 〕
A. K
B.
1 K
L(
i Q )
L
C. v'K
D. K 2
-’


-40dB/dec
3 c
53.下列元件中属于线位移测量元件的有 D. E =1
差等于不为0的常数,则此系统为()系统
D. 皿型
58. 2sin 2t 的拉普拉斯变换式是
〔 〕

A. 增加
B.
减少
C. 可能增加也可能减少
D.不变
60. 控制系统的调整时间 t s 反映了系统的


A.
C. 1 S S
S 2~~4
B.
D. 4
S 2 4 丄
S 2
59. 如果增加相位稳定裕量Y ,
则动态性能指标中的最大超调量。

A.快速性
B.稳态性能
C.稳定性
D
.
准确性
61.某二阶系统的传递函数①(S)=23,此系统的阻尼比E等
25S25S 1


: 〕
A. 1
B.0.5
C.1
D
.
1
255
62.—「般来说,如果开环系统增加积分环节,则其闭环系统稳定性〔〕
A.变好
B.变坏
C.可能变好也可能变坏
D.不变
63.某系统的开环传递函数为K!鳥则此系统的开环增益为〔
A. 3
B. 2
C. 1
D. 5
特性的相位角为〔 〕
A.
- 270°
C. -90 66.设 是前向通道传递函数G(s)的一个参数,
则G(s)对参数 的灵 敏度定义为S G ,对于具有正反馈环节H(s)的闭环系统的闭环传递函 数对参数的灵敏度为
n
G ( s ) =10/(s +2s+10),系统输入 x(t)=2cos0.5t ,则该系统的稳态输出为( )
A 1.54cos(0.5t-0.302)
B 2.04cos(0.5t-0.102)
C 1.04cos(0.5t-0.302)
D 2.54cos(0.5t-0.202) 68.下列说法哪些是对的(
c
=〔 〕 A.
K 2 B. 1
K
C. ■ K
D. K
65.已知系统的开环传递函数为 10
,则在时,它的频率
S(4S 1)
B. - 180°
D. 90 c 、
1
G(s)H (s) S G
1 G(s)H (s)
S G
G(s)
S
G
D 、
坐1 s G ;
67.已知系统的传递函数为
64.
在右图所示的伯德图中3
A、传递函数的概念不适合于非线性系统;
B、传递函数中各项系数值和相应微分方程中各项系数对应相等,完
全取决于系统的结构参数。

C、传递函数是在零初始条件下,系统输出量的拉氏变换和引起该
输出的输入量的拉氏变换之比。

D控制系统的稳定性是指在去掉作用于系统上的外界扰动之后,
系统的输出能以足够的精度恢复到原来的平衡状态位置,它是由系统本身的结构所决定的而与输入信号的形式无关。

69. 4. 已知函数F(s) s 1 ,则f(t)的终值f()
s(s a)
A. 零
B. 无穷大
C. a
D. 1/a
70. 5.某系统的传递函数G(s) 2100,则n等于
s 12s 100
A. 0.01rad/s
B. 0.1rad/s
C. 1rad/s
D.10rad/s
71. 设单位反馈系统开环传递函数为G(s),试求使系统的谐振峰值
M=1.5的剪切频率及K值。

(1) G(s)=—
s(s K
0.2s)
⑵ G(s)= K(1 5 s)
2
s (1 0.5s)(1 0.8s)
(s)
2
s(1 0.02s 0.01s ) (4) G(s)= K
s(1 5
s)
6. 改善反馈系统稳态性能的方法有 A.
在前向通道中增加积分环节
B .在前向通道中增加微分环节
第二部分:多选题
1. 开环传递函数为( 的闭环系统是稳定的。

A . G(S)= 100
S(S 1) B. G(S)二
150
C. G(S)=
500(S S 2(0.1S 1) 1)
D. G(S)=
500 S 2(S 1)
2. 开环传递函数为(
的闭环系统是稳定的。

A . G(S)=
40
- S(S 1)
B. G(S)= 50
C. G(S)=
5°0(S
S (0.1S 1) 1)
D. G(S)=
500 S 2(S 1)
3. 测量转速的元件有 A.测速发电机 B 光电增量编码盘 C.光电测速计
D
自整角机
4. 在直流调速系统中,限制电流过大的保护环节,可以采用 A .电流截止负反馈 B ,电流正反馈 C .过电流继电器 D .电压负反馈
5.对开环传递函数G (s ) K S(TS
1)的典型二阶系统’当增大增益
K
时,
将使系统的 A .量大超调量增加 .快速性有所改善 C.
稳态性能改善
.相位稳定裕量增大
C .在前向通道中增加增益K> 1的比例环节
D .增加输出量的微分负反馈环节
7. 改善随动系统性能可以采取的措施有
A .采用PID串联校正
B .增设转速负反馈
C. 增设给定顺馈补偿 D .增设转速微分负反馈
8. 测量角位移的元件有
A. 伺服电位器
B. 自整角机
C. 测速发电机
D. 光电编码盘
9. 比例积分(P1)校正装置(设x=1)对系统性能的影响是
A. 改善稳态性能
B. 降低系统稳定性
C. 改善动态性能
D. 提高抗高频干扰能力
10. 位置跟随系统增设转速负反馈环节后,将使系统的
A. 位置最大超调量减小
B. 调整时间减小
C. 位置稳态误差为零
D. 加速度恒为零
11. 在直流调速系统中,可以使速度波动减小的环节有
A 电流截止负反馈
第21页共53页
B. 电流负反馈
C. 电流正反馈
D转速负反馈
12. 对典型二阶系统,当增益K增加时,则系统的
A. 上升时间t r较长
B. 稳定性较差
C. 稳态性能较好
D. 最大超调量较大
13. 开环传递函数为( )的闭环系统是稳定的.
A.G(S)
40 S(S 1)
B.G(S)50
S2
C.G(S)
500(S 1)
2
S (0.1S
1 )
D.G(S)500
S2(S 1)
14. 若某系统的输入为等加速信号r(t) *t2时,其稳态误差®=x, 则此系统可能为
A. 0型系统
B. I型系统
C. H型系统
D. 皿型系统
15. 增大开环增益K将对系统频率特性曲线的影响是
第22 页共53 页
A. 使对数幅频特性曲线向上平移
B. 使对数幅频特性曲线低频段的斜率改变
C. 使相频特性曲线产生平移
D. 对相频特性曲线不产生任何影响
16. 当被测炉温为1000C时,可选用()为测温元件
A. 钢电阻
B. 镍铬一镍硅热电偶
C. 热敏电阻
D. 红外测温计
17.系统的传递函数与()有关。

A. 输入量的大小
B. 输入量的作用点
C. 所选输出量
D. 系统的结构和参数
18. 减小位置跟随稳态误差的途径通常有()等。

A .在前向通路上增设含有积分环节的调节器
B 。

增大惯性环节时间常数
C ,增大开环增益
D .减小开环增益
19. 在典I系统中,适当增大开环增益K将会使系统的
A. 稳定性变好
第23页共53页
B. 快速性变好
C. 超调量减小
第24 页共53 页
D. 稳态误差变小
20. 位置跟随系统如下图所示,调试时发现超调量过大,建议可选取的
改进方法有
A .增大a
B. 减少a
C. 增大K1
D. 减少K1
21 一个位置随动系统可能的扰动量有
A. 机械负载的变化
B. 电网电压的波动
C. 温度变化引起的系统参数变化
D. 输人信号的变化
E. 摩擦阻力的变化
22. 单位负反馈系统的开环传递函数为舞无,且T1>T2,由此可知此闭环系统为
A. 三阶系统
B. 二阶无静差系统
C. 稳定系统
D .不稳定系统
第25页共53页
E. 典型H型系统
23. 系统的开环对数幅频特性的()表征着系统的稳态性能。

A. 低频渐近线的斜率
第26 页共53 页
B. 低频渐近线(或其延长线)在3 =1处的高度
C. 中频段的宽度
D .中频段的斜率
E. 高频段的斜率
24. 在转速,电流双闭环赶流调速系统中,若将速度调节器分调节器)中的反馈电容C短接则对系统产生的影响为
A. 变为转速有静差系统
B. 相对稳定性改善
C. 使电动机启动电流减少
D. 超调量增加
E. 使启动过程加快
25. 在调速系统中,转速与输入量之间的传递函数只与(
A.输入量大小
B.系统内部结构
C.系统参数
D.电压波动
E.负载变化
26. 在Nyquist图上,当3 e V® g时,系统的
A. 增益稳定裕量大于0 分贝
B. 增益稳定裕量小于0 分贝
C. 相位稳定裕量为正值
D. 相位稳定裕量为负值(比例积)有关
第27页共53页
E. 相位稳定裕量为0
27. 对典型二阶系统,当( )时,最大超调量6为零
A. E =0
B. 0VEV 1
C. E =1
D. EV 0
E. E> 1
28. 如果在恒值输入情况下,某反馈控制系统的稳态误差不为零,若欲使其为零,则应选择( )串联校正。

A. P(比例)
B. D(微分)
C. Pl(比例积分)
D. PD(比例微分)
E. PID(比例积分微分)
29. 系统的传递函数取决于
A、系统结构
B、固有参数
C、输入量
D输出量
30. 巳知某控制系统微分方程为T'dc①C(t) r(t)则此系统满足
dt
A、当c(t)| t=0=0微分方程的拉氏变换为TsC(s)+C(s)二R(S)
第28 页共53 页
B、当凹| t=0=0微分方程的拉氏变换为TsC(s)+C(s)=R(S)
dt
第29页共53页
C、当r(t)=u(t) 时,c(t)=l-e -t/T
D 、当r(t)=t 时,c(t)=l-e -t/T
31. 开环传递函数为G(S) = K的某控制系统,相位稳
S(T1S 1)(T2S 1)
定裕量过小,若增大它的相位稳定裕量,可采取的措施有
A、减小开环放大倍数K
B、增大开环放大倍数K
C、减小时间常数T1
D减小时间常数T2
32. 控制系统的稳态误差与()有关
A、开环增益
B、系统的无静差度
C、输入量的变化规律
D输入量的大小
33. 若某系统的输入为等加速信号r(t)= -t2时,其稳态误差e ss =
2
乂,则此系统可能为:
A. “0”型系统
B. “I”型系统
C. “H”型系统
D. “皿”型系统
34. 增大开环增益K将对系统频率特性曲线的影响是( ):
A.使对数幅频特性曲线向上平移
B.使对数幅频特性曲线低频段的斜率改变
第30页共53页
C.使相频特性曲线产生平移
D.对相频特性曲线不产生任何影响
A. 系统传递函数的极点均在S平面左半平面
B. 系统开环传递函数的所有极点和零点均在S平面左半平面
C. 系统闭环传递函数的所有极点和零点均在S平面右半平面
D. 系统开环传递函数的所有极点和零点均在S平面右半平面
36. —闭环系统的开环传递函数为
G(S)二8(S 3),则该系统
S(2S 3)(S 2)
为( ):
A. “0”型系统,开环增益为8;
B. “I”型系统,开环增益为8;
C. “I ”型系统,开环增益为4;
D. “0”型系统,开环增益为4。

37. 若某系统的输入为等速度信号r(t)=t时,其稳态误差为乂,则此系统可能为:
A. “0”型系统
B. “I”型系统
C. “H”型系统
D. “皿”型系统
38. 减小开环增益K将对系统频率特性曲线的影响是( ):
A.使对数幅频特性曲线向下平移
B.使对数幅频特性曲线低频段的斜率改变
C.使相频特性曲线产生平移
D.对相频特性曲线不产生任何影响
39. 所谓最小相位系统是指( ):
A.系统传递函数的极点均在S平面左半平面
B. 系统开环传递函数的所有极点和零点均在S平面左半平面
C. 系统闭环传递函数的所有极点和零点均在S平面右半平面
D. 系统开环传递函数的所有极点和零点均在S平面右半平面
40. —闭环系统的开环传递函数为G(S)二10(S 3)(S 5),则该
(2S 3)( S 2)(3S 5)
系统为( ):
A. “ 0”型系统,开环增益为10;
B. “I”型系统,开环增益为10;
C. “I”型系统,开环增益为5;
D. “ 0”型系统,开环增益为5。

41. 温度检测元件有
A. “铂铑一铂”热电偶
B.热电阻
C. 玻璃水银温度计
D.辐射式测温计
42. 某系统在单位阶跃信号作用下,其输出具有非周期特性,则该系
统可能是
A. 一阶系统
B. 阻尼比1的二阶系统
C.阻尼比E >1的二阶系统
D. 阻尼比0的二阶系统
43. 系统的频率特性这一数学模型取决于
A.输入量的大小
B. 扰动量
C.系统内部的固有参数
D. 系统内部的结构
44. 下列稳定的系统是
A.开环传递函数为K的系统
S(TS 1)
B. 相位裕量丫 >0的系统
C. 开环传递函数为S (bH ( a <b )的系统
D.开环传递函数为魯 (a >b )的系统
系统的
A. 开环相频特性曲线下移
B. 开环幅频特性曲线下移
C. 幅值穿越频率3 C 变小,系统的快速性变差
D. 相位裕量丫增大,稳定性变好
46. 线位移检测元件有

A.差动变压器
B.热电阻
C. 热电偶
D.感应同步器
47.
线性系统在正弦输入信号作用下, 其稳态输出与输入的〔

B. 频率相等
D.频率不相等
〔 〕
B.扰动量
D. 输入量的大小
45.对于开环传递函数为 S ^K ^的系统,减少开环增益K 将使
A.相位可能相等 C.幅值可能相等 48.系统的数学模型取决于 A.系统内部的结构 C.系统内部的固有参数
49. 某开环系统增加如下的某一环节后,致使系统的稳定性变差的是
〔〕
A.积分环节
B. 惯性环节
第25页共53页
C. 比例微分
D. 振荡环节
50. 增加系统的开环增益K 将使系统的〔〕
A. 开环相频特性曲线不变
B. 开环幅频特性曲线上移
C. 幅值穿越频率3 C变大,系统的快速性变好
D.相位裕量丫增大,稳定性变好
第三部分:简答题
1. 对自动控制系统性能指标的主要要求是什么?而M P、N反映了系统的什么,T S反映了系统的什么,e ss又反映了系统的什么;
2. 试说明串联校正的优点与不足。

3. 试分析PI D调节器性能。

4. 在位置随动系统中,采用转速负反馈校正,对系统的动态性能有何影响?
5. 叙述系统开环增益K的大小、积分环节个数v的多少与系统稳定性和稳态性能的关系;
6. 系统稳定的充要条件是什么?( 从系统特征根的分布来分析)
7. 简述奈氏稳定判据内容;
8. 叙述系统开环对数幅频特性L(3 ) 低频段渐近线斜率大小,L(3 )
在3=1处的高度对系统稳态精度的影响。

9. 对PWI控制的大功率晶体管直流调压电路,采用调制频率为400Hz 的方波较
50Hz 方波供电的优点是什么?
10. 试述“传递函数”、“频率特性”的定义;
11. 经典控制理论的数学模型有几种形式?写出时域中数学模型的通式。

12. 试分析比较串联校正与反馈校正的优点与不足。

13. 试分析积分环节、惯性环节、微分环节对系统稳定性的影响,并说出理由。

14. 已知f(t)=0.5t+1 ,其L[f(t)]= 多少?
15. 开环系统与闭环系统的最本质区别及其优缺点比较。

16. 从能量转换方面讨论惯性环节与振荡环节的阶跃响应特点。

17 传递函数。

18. 系统稳定性。

19. 试说明增设比例加积分调节器后,对闭环控制系统的动、静态性能的影响。

20. 最小相位系统和非最小相位系统。

21. 说明开环控制系统和闭环控制系统的优缺点。

22. 奈奎斯特稳定性判据。

23. 为什么稳定的调速系统的前向通道中含有积分环节能实现无静差控制。

24. 什么叫系统校正。

25. 为什么在位置随动系统中,转速负反馈会得到普遍的应用?
26. 时域分析中常用的性能指标有哪些?
27. 幅频特性和相频特性。

28. 频域分析中如何来表征系统的稳定程度。

29. 经典控制理论的数学模型有几种形式?写出时域中数学模型的通
式。

30. 在经典控制理论中,系统的数学模型有几种形式。

31. 有源校正网路和无源校正网路有什么不同特点,在实现校正规律时其作用是否相同?
32. 试举出能够实现超前和迟后校正的元件,并从原理上说明这些元件所起的作用。

33. 一阶无差系统加入加速度信号时能否工作,为什么?在什么情况下能工作。

34. 为什么一阶无差系统加入速度反馈校正后能够改善系统的动态特性,用物理概念来解释。

35. 二阶无差系统加入微分反馈后对系统的无差度和时间常数有什么影响?
36. 有差系统加入微分反馈后对系统的无差度、时间常数和开环放大倍数有什么影响?
37. 有哪些元件可作为速度反馈用,试举例说明。

38. 要实现比例加微分校正作用,应采用什么样的反馈校正元件,其传递函数如何?
39. 比例加积分控制规律,能否有反馈校正来实现?
40. 设有一系统其超调量c %=20%调整时间t s=0.5秒,求系统的相位裕度丫和剪切频率3 o。

41. 设原系统开环传递函数G o(s)=弹2,要求校正后系统的复
s (0.1s 1)
数主导极点具有阻尼比Z =0.75。

试用根轨迹法求K a = 15 1秒2时的串联超前校正装置。

42. 设原系统开环传递函数
G o(s)= 史,要求校正后系统
s(0.2s 1)(0.5s 1)
的相位裕度丫=65 °,幅值裕度K g =6分贝。

试求串联超前校正装置。

第四部分:建模题
1. 下图为热水器电加热器。

为了保持希望的温度,由温控开关接通
或断开电加热器的电源。

在使用热水时,水箱中流出热水并补充冷水
试画出这一闭环系统的原理方块图,若要改变所需温度时,定性地说
明应怎样改变和操作
图1-1
1亠水筆,2—閱瀝元井」9一电加轉器F 4亠融
疫开关.
2. 试说明上图所述系统,当水箱向外放热水和向里补充冷水时,系统应如何工作并画出对应的系统方块图。

3. 机械系统如下图所示,其中,外力f(t)为系统的输入,位移x(t) 为系统的输出,m为小车质量,k为弹簧
的弹性系数,B为
阻尼器的阻尼系数,试求
系统的传递函数(小车与地面的摩擦不计)
4. 下图是手控调压系统。

当发电机的负载改变或发电机的转速变化 时,发电机的端电压就要随之波动。

为了保持端电压的恒定,需不断 调节电阻R J ,以改变激磁电流I f ,使端电压保持不变,这样做很不方 便,现将其改成自动调压系统。

试画出系统原理图并标出各点应具有
5. 下图为一电动机速度控制系统原理图。

在这个图中除速度反馈外 又增加了一个电流反馈,以补偿负载变化的影响。

试标出各点信号的 正、负号并画出方块图
6.
今测得最小相位系统渐近对数幅频特性曲线如下图所示, 试求其传
递函数G(S)的表达式。

的正、负号
7. 下图(a)与(b)均为自动调压系统。

现在假设空载时(a)与(b)的发电机的端电压相同均为110伏。

试问带上负载后(a)与(b)哪个能保持110伏电压不变,哪个电压要低于110伏,其道理何在?
8.某PID调节器的对数幅频特性如下图所示,求传递函数。

L1()
-20dB/dec +20dB/dec
9.如图所示,以U sc(t)为输出量,以U sr(t)为输入量的系统,试求出其传递函数。

并指出它属于哪些典型环节组成?
C0Rf
usr(t)
I
R P □•♦
usct)
1
10.机械系统如图所示,其中,A点的位移X(t)为系统的输入,位移X2(t)为系统的输出,心、K2分别为两弹簧的弹性系数,B为阻尼器的阻尼系数,试求系统的传递函数。

11. 下图为一随动系统。

当控制电位器的滑臂转角①1与反馈电位器的滑臂转角①2不同时,则有U0送入放大器,其输出电压U D加到执行电动机的电枢两端,电机带动负载和滑臂一起转动直到反馈电位器滑臂位置与控制电位器滑臂位置一致时,即①2二①1时才停止。

试将这个系统绘成方块图,并说明该系统的控制量,被控制量和被控制对象是什么?
12. 今测得最小相位系统渐近对数幅频特性曲线如下图所示,试求其传递函数G(S)的表达式。

13. 下图所示为二级RC电路网络图。

已知ui(t)为该网络的输入,
uo(t)为该网络的输出,i1(t) 、i2(t) 、ua(t)为中间变量。

⑴试画出以ui(t)为输入,uo(t)为输出的系统的动态结构图; ⑵根据画出的系统结构图,求出系统的传递函数。

R1
R2
14. 弹簧-阻尼系统如右图所示,其中K i 、K 2为弹簧弹性系统,Bi 、B 2 为粘性阻尼系数。

若位移x(t)为输入量,位移y(t)为输出量。

试求 该系统的传递函数。

15. 下图为一温度控制系统。

试分析这个系统的自动调温过程并说明 这个系统的输出量和干扰量是什么?
ui(t)
i1(t)
C1 |ua(t)
C2
uo(t)

1-13
NMA 的擒电2—加粘崛削雄| J 一闕魂布卜4—闕屁?L
16. 已知某单位负反馈系统为最小相位系统,其对数幅频特性曲线的渐近线如图所示,试求其开
17. 如下图为一机械系统(小车的质量为m,弹簧的弹性系数为K,不
计小车与地面的摩擦),若以冲击力F(t)为输入量,小车位移x(t)为输出量。

①求此系统的传递函数△旦;
F(s)
②当F(t)为一单位脉冲函数3 (t)时,求小车的位移x(t)= ?
18.某单位负反馈系统(设为最小相位系统)的开环对数幅频特性曲线渐近线如下,求该系统的L()
(dB)
20
-20dB/dec
20dB/dec。

相关文档
最新文档