二次函数动点及最值问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数中的最值问题:
例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、 A、A’,求此抛物线的解析式及对称轴;∴ y=-x2+2x+3
(2)、若点P是第一象限内抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。
(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△ A’AN与△ A’AP的面积相等?,若存在,
请求出此时点P的坐标,若不存在,请说明理由。
例 2、(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且
AB=5,sinB=.
(1)求过A.C.D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.
解答:解:(1)∵四边形ABCD是菱形,
∴AB=AD=CD=BC=5,sinB=sinD=;
Rt△OCD中,OC=CD•sinD=4,OD=3;
OA=AD﹣OD=2,即:
A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);
设抛物线的解析式为:y=a(x+2)(x﹣3),得:
2×(﹣3)a=4,a=﹣;
∴抛物线:y=﹣x2+x+4.
(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;
由(1)得:y2=﹣x2+x+4,则:
,
解得:,;
由图可知:当y1<y2时,﹣2<x<5.
(3)∵S△APE=AE•h,
∴当P到直线AB的距离最远时,S△ABC最大;
若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;
设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,
﹣x+b=﹣x2+x+4,且△=0;
求得:b=,即直线L:y=﹣x+;
可得点P(,).
由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网
则点F(,0),AF=OA+OF=;
∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.
综上所述,当P(,)时,△PAE的面积最大,为.
针对训练:
1、(2013宜宾)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
解答:解:(1)抛物线y1=x2﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;
(2)x=0时,y=﹣1,
y=0时,x2﹣1=0,解得x1=1,x2=﹣1,
所以,点A(1,0),B(0,﹣1),
∴∠OBA=45°,
联立,
解得,
∴点C的坐标为(2,3),
∵∠CPA=∠OBA,
∴点P在点A的左边时,坐标为(﹣1,0),
在点A的右边时,坐标为(5,0),
所以,点P的坐标为(﹣1,0)或(5,0);
(3)存在.
∵点C(2,3),
∴直线OC的解析式为y=x,
设与OC平行的直线y=x+b,
联立,
消掉y得,2x2﹣19x+30﹣2b=0,
当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,
此时x1=x2=×(﹣)=,
此时y=(﹣4)2﹣1=﹣,
∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,
解得b=﹣,
∴过点Q与OC平行的直线解析式为y=x﹣,
令y=0,则x﹣=0,解得x=,
设直线与x轴的交点为E,则E(,0),
过点C作CD⊥x轴于D,根据勾股定理,OC==,
则sin ∠COD==, 解得h 最大=×=.
2、如图,抛物线)0(22
32≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为()0,4.
(1)求抛物线的解析式;
(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;
(3)若点M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并类型一、最值问题:
类型一、最值问题:
(2013•泸州)如图,在直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(1,﹣),已知抛物线y=ax 2
+bx+c (a ≠0)经过三点A 、B 、O (O 为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;
(3)如果点P 是该抛物线上x 轴上方的一个动点,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)
,﹣
可得:
解得:
x ﹣
,解得:,
﹣
)﹣
(﹣AF﹣
(+y y)﹣(
y+x+
(﹣x+
x﹣
()
时,△,
×+=,
,)
类型二、探索三角形的存在性。
例1、(2013•绵阳)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
,)
=,
=,
n=.
,,
=,
=,
,),
)时,
,
,(均不合题意舍去)
,
,(均不合题意舍去)
(2013•巴中)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB 的中点P为圆心,AB为直径作⊙P的正半轴交于点C.
(1)求经过A、B、C三点的抛物线所对应的函数解析式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.
,)代入得到方程组,
,
OP=,
OC=
﹣
﹣﹣x+2
﹣x+2
x+x+2=,
,)
,)代入得:,
,
x+2
x+2
y=x+2
x+2
﹣,
(﹣,
+=,=,
=
1、)(2013•湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A 点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.
(5)、点M 是抛物线上位于第一象限内的动点,当△BCM的面积达到最大值时,求点M的坐标及最大值?(6)、求△BAC的外接圆圆心E点的坐标?
(7)、求证圆E与直线:y=3x/4+4相切。
在该直线上找一点F,使△BCF为直角三角形,求F的坐标?
(8)、l是过点A且平行于BC的直线,在该直线上找一点D,使A,B,C,D所在的四边形为平行四边形,求D的坐标?
(9)、将△BAC绕点B顺时针旋转90°得到△BA′C′,求点A′和点C′的坐标及线段BC所扫过的区域的面积?(10)、在x轴上找一点G,使△CFG的周长最小,求G点坐标及周长最小值?求此时△CFG的面积?
(11)、在抛物线上找一点H,使△ABH的面积=△AOC的面积.。
求点H的坐标?
(12)、求抛物线关于直线:x=10,对称的抛物线的解析式?
(13)、N是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点N作NP∥AC交线段BC于点P,连接CN,记△CNP的面积为S,S是否存在最大值?若存在,求出S的最大
值及此时E点的坐标;若不存在,请说明理由.
求出对称轴方程;
)根据
﹣
∴﹣
,
﹣x
x+(+
x x
x x
==
=
=.
=
=
=,
,
)﹣
))
交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
解:(1)把点(b-2,2b2-5b-1)代入解析式,得
2b2-5b-1=(b-2)2+b(b-2)-3b+3,……………1′
解得b=2.
∴抛物线的解析式为y=x2+2x-3. ……………2′
(2)由x2+2x-3=0,得x=-3或x=1.
∴A(-3,0)、B(1,0)、C(0,-3).
抛物线的对称轴是直线x=-1,圆心M在直线x=-1上. ……………3′
∴设M(-1,n),作MG⊥x轴于G,MH⊥y轴于H,连接MC、MB.
∴MH=1,BG=2. ……………4′
∵MB=MC,∴BG2+MG2=MH2+CH2,
即4+n2=1+(3+n)2,解得n=-1,∴点M(-1,-1)……………5′
(3)如图,由M(-1,-1),得MG=MH.
∵MA=MD,∴Rt△AMG≌RtDMH,∴∠1=∠2.
由旋转可知∠3=∠4. ∴△AME≌△DMF.
若△DMF为等腰三角形,则△AME为等腰三角形. ……………6′
设E(x,0),△AME为等腰三角形,分三种情况:
①AE=AM=5,则x=5-3,∴E(5-3,0);
②∵M 在AB 的垂直平分线上,
∴MA =ME =MB ,∴E (1,0) ……………7′ ③点E 在AM 的垂直平分线上,则AE =ME .
AE =x +3,ME 2=MG 2+EG 2=1+(-1-x )2,∴(x +3)2=1+(-1-x )2,解得x =4
7
-,∴E (4
7-,0). ∴所求点E 的坐标为(5-3,0),(1,0),(4
7-,0) ……………8′
求出此时M 点的坐标.。