恒山区第一高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒山区第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .
13 B .2
3
C .1
D .2 2. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6
B .9
C .36
D .72
3. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x
4. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)
+(cos 2θ)
(θ∈R ),则(
+
)
•
的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
5. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
6. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大
值为O 的体积为( )
A .81π
B .128π
C .144π
D .288π
【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
7. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
8.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()
A.x=﹣B.x=C.x=﹣D.x=
9.如图是一个多面体的三视图,则其全面积为()
A.B.C.D.
10.在
10
2015
1
1x
x
⎛⎫
++
⎪
⎝⎭
的展开式中,含2x项的系数为()
(A)10(B )30(C)45(D)120
11.已知双曲线和离心率为4
sin
π
的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 2
1
cos 21=
∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27
12.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )
A .
B .
C .4
D .
二、填空题
13.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .
14.在(2x+
)6
的二项式中,常数项等于 (结果用数值表示).
15.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .
16.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .
17.幂函数1
22
2)33)(+-+-=m m x
m m x f (在区间()+∞,0上是增函数,则=m .
18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .
三、解答题
19.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一
年的销售量为(x ﹣10)2
万件.
(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );
(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.
20.设p:关于x的不等式a x>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.
21.在中,、、是角、、所对的边,是该三角形的面积,且
(1)求的大小;
(2)若,,求的值。
22.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数
在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的
1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
23.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
24.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;
(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.
恒山区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112
(12)2323
⨯⨯⨯⨯=,选B . 2. 【答案】D
【解析】解:设等比数列{a n }的公比为q ,
∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2
=2. 则a 2a 6=9×q 6
=72.
故选:D .
3. 【答案】A 【解析】
试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 4. 【答案】 C
【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),
且sin 2θ+cos 2
θ=1,
∴=(1﹣cos 2θ)+(cos 2θ)=
+cos 2θ•(
﹣
),
即﹣
=cos 2θ•(
﹣
),
可得
=cos 2θ•
,
又∵cos 2
θ∈[0,1],∴P 在线段OC 上,
由于AB 边上的中线CO=2,
因此(+)•=2•,设|
|=t ,t ∈[0,2],
可得(+
)•
=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
5. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 6. 【答案】D
【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,
则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为34
2883
R π=π,故选D . 7. 【答案】
B
8. 【答案】A
【解析】解:根据题意,得;
=
+
(
+)
=
+
+
=
﹣
+, 又
∵
=
+x
+y
,
∴x=
﹣,
y=,
故选:A . 【点评】本题考查了空间向量的应用问题,是基础题目.
9. 【答案】C
【解析】解:由三视图可知几何体是一个正三棱柱, 底面是一个边长是的等边三角形,
侧棱长是
,
∴三棱柱的面积是3××2=6+,
故选C .
【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.
10.【答案】C
【解析】因为1010
101
9102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++
⎪ ⎪⎝⎭⎝⎭,所以2
x 项只能在
10(1)x +展开式中,即为2210C x ,系数为2
10
45.C =故选C . 11.【答案】C 【解析】
试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设
n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又2
1
c os 21=
∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2
221234a a c +=∴,432
221=+
∴c a c a ,设双曲线的离心率为,则432
2122=+e
)(,解得2
6
=e .故答案选C .
考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,
接着用余弦定理表示2
1
cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2
c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 12.【答案】B
【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)
∵点M(2,y0)到该抛物线焦点的距离为3,
∴2+=3
∴p=2
∴抛物线方程为y2=4x
∵M(2,y0)
∴
∴|OM|=
故选B.
【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.二、填空题
13.【答案】.
【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.
数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),
∴b2=3,则=,
故答案为.
【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.
14.【答案】240
【解析】解:由(2x+)6,得
=.
由6﹣3r=0,得r=2.
∴常数项等于.
故答案为:240.
15.【答案】D.
【解析】解:根据题意,质点运动的轨迹为: A →B →C →A →D →B →A →C →D →A
接着是→B →C →A →D →B →A →C →D →A … 周期为9.
∵质点经过2015次运动, 2015=223×9+8, ∴质点到达点D . 故答案为:D .
【点评】本题考查了函数的周期性,本题难度不大,属于基础题.
16.【答案】
=1
【解析】解:由题意得,圆心C (1,0),半径等于4,
连接MA ,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1,
∴b=
,
∴椭圆的方程为=1.
故答案为:
=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.
17.【答案】 【解析】
【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y x
R α
α=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函
数()y x R α
α=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值
的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 18.【答案】 {2,3,4} .
【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},
∴C U A={3,4},
又B={2,3},
∴(C U A)∪B={2,3,4},
故答案为:{2,3,4}
三、解答题
19.【答案】
【解析】解:(Ⅰ)该连锁分店一年的利润L(万元)与售价x的函数关系式为:
L(x)=(x﹣7)(x﹣10)2,x∈[7,9],
(Ⅱ)L′(x)=(x﹣10)2+2(x﹣7)(x﹣10)=3(x﹣10)(x﹣8),
令L′(x)=0,得x=8或x=10(舍去),
∵x∈[7,8],L′(x)>0,x∈[8,9],L′(x)<0,
∴L(x)在x∈[7,8]上单调递增,在x∈[8,9]上单调递减,
∴L(x)max=L(8)=4;
答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元.
【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.20.【答案】
【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;
故命题p为真时,0<a<1;
∵函数的定义域为R,
∴⇒a≥,
由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,
当p真q假时,则⇒0<a<;
当q真p假时,则⇒a≥1,
综上实数a的取值范围是(0,)∪[1,+∞).
21.【答案】
【解析】
解:(1)由得
,即
(2)
22.【答案】
【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.
23.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--' 令()0f x '=得1,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减
所以()()()min 28613213f x f k k ==-++⋅+= 符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()3
22min 3
13132
f x f k k k k k ==-
+++= 化简得:32
340k k -+=
即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='--
对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥
24.【答案】
【解析】解:(I )如图(a ),取AA 1的中点M ,连接EM ,BM ,因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .
又在正方体ABCD ﹣A 1B 1C 1D 1中.AD ⊥平面ABB 1A 1,所以EM ⊥面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,
∠EBM 直线BE 与平面ABB 1A 1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=,
于是在Rt △BEM 中,
即直线BE 与平面ABB 1A 1所成的角的正弦值为.
(Ⅱ)在棱C 1D 1上存在点F ,使B 1F 平面A 1BE ,
事实上,如图(b )所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG ,
因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,
因此D 1C ∥A 1B ,又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B ,这说明A 1,B ,G ,E
共面,所以BG ⊂平面A 1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.。