公平的席位分配论文
如何排座位辩论作文
如何排座位辩论作文今天咱们就来唠唠这排座位的事儿。
这可不像表面上看起来那么简单,这里面的门道可多着呢。
一、按身高排座位。
正方观点:按身高排座位那可是相当合理的。
你想啊,要是把高个儿都放后面,矮个儿都放前面,这就像搭积木一样,一层一层的,整整齐齐。
这样一来,后面的高个儿不会挡住前面矮个儿的视线,大家都能清清楚楚地看到黑板,老师写的字、画的图,那都能尽收眼底。
而且这种排法简单又公平,不用费什么心思,也不会有同学觉得老师偏心眼儿。
就像我们排队的时候按高矮个来,大家都觉得理所排座位也一样嘛。
这就好比是给每个同学安排了一个最适合看风景(黑板上的知识风景)的位置,多和谐。
反方观点:按身高排座位?这可有点太死板了。
要是有个同学视力不太好,按身高他就得坐在后面,可他看不清黑板啊,这不是耽误人家学习嘛。
而且啊,有些高个儿同学他其实很自律,也不会挡住别人视线,就因为身高高,就一直被固定在后面,多委屈啊。
再说了,我们又不是在选模特走秀,光看身高有啥用?每个同学都有自己的特殊情况,比如说有的同学脖子长一点,就算坐在稍微靠后的位置也能看到黑板,而有的矮个儿同学可能因为前面同学头发蓬松就啥也看不见了。
这时候还硬要按身高排,那就是不合理的。
二、按成绩排座位。
正方观点:反方观点:按成绩排座位这事儿可太伤同学的心了。
这就好像是给同学贴上了标签,成绩好的就高人一等,坐在前面享受最好的资源,成绩差的就只能在后面“自生自灭”。
这会让成绩不好的同学很自卑,觉得自己被歧视了,反而不利于他们学习的积极性。
而且学习成绩又不是衡量一个同学的唯一标准,有些同学虽然成绩不太好,但是在其他方面,像画画、唱歌、体育方面可有天赋了,凭啥因为成绩就把人家扔到后面去呢?这就好比是只看一朵花的颜色,而忽略了它的香味和形状,太片面了。
三、自由组合排座位。
正方观点:自由组合排座位那可太酷了。
同学们可以和自己合得来的朋友坐在一起,这样每天上课心情都特别好。
朋友之间互相了解,要是有谁落下课了,旁边的朋友可以马上帮忙讲解,比老师还贴心呢。
数学论文席位的公平分配问题
数学建模论文席位的公平分配问题姓名:学号:18 15 20公平的委员分配问题摘要:1.我们首先是用惯例分配法来解决这委员分配问题的,由于方法来解决存在很大的缺陷,因此,通过组内的讨论,我们想出了Q值法来解决此问题,发现这样能作到相对公平。
我们这一组开始就考虑到了该怎样分配能作到相对公平,就这个问题,我们开始了研讨。
我们采用惯例分配法分析发现:各楼所得到的委员数A 、B 、C楼分别为:3、3、4人,而Q值法其结果为:A、B、C楼分别为:2、3、5人。
2.“取其精华,去其糟粕”我们发现Q值法能很好的解决委员分配问题,Q 值法:我们用Qi=(Pi*Pi)/[n(n+1)],其中i=A、B、C,Pi为第i楼的人数,n 为分配到的委员数,我们采用将剩下的一位委员名额分给Q值最大的一方。
通过计算得到Qa=9204.16、Qb=9240.75、Qc=9331.2比较得到:Qa>Qb>Qc,所以我们决定把剩下的一名委员分给C楼。
3.我们用惯例分配法发现有一名委员不好分配,不知道分给谁更公平些。
建议:我们的思维不能太单一了,在考虑问题方面要做到全面些,这样才会少走弯路。
(无论在哪方面都一样。
)关键字:委员分配、比例法、Q值法1.1问题的重述分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中.分配问题涉及的内容十分广泛,例如:学校共有1000学生,235人住在A楼,333人住B楼,432人住C楼,学校要组织一个10人委员会,试用惯例分配法和Q值方法分配各楼的委员数并比较结果。
1.2问题的分析数学中通常人们用比例的方法来分配各个楼要派出几个人来组建委员会,当比例中有小数时人们有按照惯例使得各组中小数最大的组拥有更多的人数。
然而人们是怎样分配的呢?又因为没栋楼所占比例不是整数,可以会出现不公平的现象。
为了让席位分配更加公平我们不应该采用比例法,要引用不比例法更好的Q值法对其进行求解。
公平席位的分配(韩文斌)
公平席位分配模型班级:09数学(2)班姓名:韩文斌学号:0907022011摘要:通过建立人数比例模型、最大剩余法模型及Q值法模型解决了公平席位的分配问题。
比较三种模型分配的结果方案,我发现了Q值法模型是解决公平席位分配问题较公平的方法。
关键词:公平分配绝对不公平程度 Q值法模型正文1 问题的提出某学校有3个系共100名学生,其中甲系100名,乙系60名,丙系40名。
1.1 若学生代表会议设20个席位,公平而又简单的席位分配办法是什么?1.2 现在丙系有6名学生转入甲乙两系(其中3人转入甲系,3人转入乙系),现在该如何分配呢?1.3 因为有20个席位的代表会议在表决提案时可能出现10:10的结局,会议决定下一届增加1席。
在问题二中人数发生改变后的情况下,这1席又该分给哪个系呢?2 合理假设与变量说明假设3个系的总人数不再发生变动,各个系的人数除了问题二中人数的改动之外,不再发生任何改变。
3 模型建立3.1 人数比例模型公平标准iiP P N N =, i =1,2,3…通过计算总席位与总人数、各系席位数与各系总人数的比例相等,来确定各系的席位数的分配方案。
3.2 最大剩余法模型记,1,2,3ii iP R i N ==…的余数,i R 越大说明i 系分一个席位代表人数就越多,为了公平降低i R ,则剩余席位优先分给i R 最大的i 系。
3.3 Q 值法模型[1]当总席位增加1席时,计算令2(1)i i i i p Q n n =+,增加1席位应该分配给Q 值最大的一方。
3.3.1 不公平指标为简单起见考虑A ,B 两系分配席位的情况。
设两方人数分别为1P ,2P ,占有席位分别为1n ,2n ,则比值11p n ,22p n 为两方每个席位所代表的人数。
显然仅当1212p p n n =分配时才算完全公平的,但是因为人数和席位都是整数,所以通常1212p p n n ≠,分配不公平,并且对比值较大的一方不公平。
席位公平分配问题q值法的改进
席位公平分配问题q值法的改进随着社会的不断发展和进步,人们对于公平的追求也越来越强烈。
在各种社会活动和组织中,公平的分配问题一直备受关注。
席位公平分配问题作为一个重要的社会组织问题,一直以来都备受人们关注。
q值法作为目前解决席位公平分配问题的一种常用方法,然而在实际应用中却存在一些问题和不足。
如何改进q值法成为了当前亟待解决的一个问题。
1. q值法的基本原理q值法是一种基于权重的席位分配方法。
其基本原理是根据各个参与方的权重大小来确定席位的分配比例。
通常情况下,权重越大的参与方获得的席位数量也就越多。
这种方法在一定程度上确实能够体现参与方的重要性和影响力,但在实际应用中往往会出现一些问题。
2. q值法存在的问题q值法在确定权重时往往是基于主观判断的,缺乏客观的依据。
这就导致了权重的不确定性和不公平性,容易受到人为因素的影响。
q值法只是简单地依据权重来分配席位,忽略了其他可能存在的因素。
这就导致了分配结果可能并不合理和公平,无法充分考虑参与方的各种需求和意见。
再次,q值法在实际应用中往往面临的是计算复杂度较高的问题,尤其是在参与方众多、权重差异较大的情况下,很难进行准确而高效的计算。
q值法在解决席位公平分配问题时存在一些问题和不足,需要进行改进和优化。
3. q值法的改进方向为了解决q值法存在的问题,可以从以下几个方面进行改进:(1)建立客观评价体系。
可以通过建立客观的评价标准和体系来确定参与方的权重,以减少人为因素的干扰和影响,确保权重的客观和公正。
(2)综合考虑多种因素。
除了权重以外,还可以考虑其他多种因素来确定席位的分配比例,如参与方的历史贡献、实际需求等,以更全面地体现参与方的重要性和影响力。
(3)优化计算方法。
可以通过引入一些优化算法和技术,来提高席位分配的计算效率和准确性,特别是在复杂情况下的应用,能够更好地满足实际需求。
4. q值法的改进实践针对上述改进方向,可以通过实际案例和实践进行验证和应用。
数学建模论文-席位公平分配问题
数学建模论文-席位公平分配问题数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。
首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。
其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。
同时我建立了一D+Q值模型,通过汉丁顿模型和Q值模型的结合,最终得出一个比较合理的分配方案。
最后,我用相对不公平数来检验两个模型的公平性程度。
关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型1目录一、问题重述与分析: ................................... 3 1.1问题重述: ........................................ 3 1.2问题分析: ........................................ 3 二、模型假设 .......................................... 4 三、符号说明 .......................................... 4 四、模型建立: ........................................ 5 4.1公平的定义: ...................................... 5 4.2不公平程度的表示: ................................ 5 4.3相对不公平数的定义: .............................. 5 4.4模型一的建立:(比例分配模型) ...................... 6 4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 .......................................... 8 5.1模型一求解: ...................................... 8 5.2模型二的求解: .................................... 8 六、模型分析与检验 ..................................... 9 七、模型的评价: ...................................... 11 7.1、优点: ......................................... 11 7.2、缺点: ......................................... 11 7.3、改进方向: ..................................... 11 八、模型优化 ......................................... 11 九、参考文献 (12)2一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。
公平席位的分配
公平席位的分配数学(2)班学号 0907022022 高泽标摘要:讨论公平席位分配的模型已有很多。
本文首先用比例加惯例法、Q值法、D’hondt 法对问题中名额进行了分配,再对D’hondt法的合理性进行了分析,并在Q值法对绝对尾数(绝对不公平度)的处理方式基础上,提出了相对尾数模型,并讨论了其满足Young公理的1,3,4条关键词:相对尾数 Balinsky & Young不可能定理正文1 问题复述公平的席位分配问题是一个非常有趣而重要的问题,它在政治学、管理学和对策论等领域具有广泛的应用价值。
处理这个问题的最早的方法是Hamilton法,即比例加惯例法;后来出现了Q值法;1974年M.L.Balinski和H.P.Young引入了席位分配问题的公理体系研究方法,并于1982年证明了同时满足五个公理的席位分配方法是不存在的;因此,我们只能根据实际建立在一定公平准则下成立并尽量多的满足Young公理的算法。
这里,我们需要理解并运用比例加惯例法、Q值法、D’hondt法对宿舍委员会名额进行分配,继而提出更优的公平分配席位的方法。
2 模型假设2.1 合理假设2.1.1 比例加惯例法、Q值法等分配模型均为已知;2.1.2 各个宿舍相互独立互不影响,人数保持不变;2.1.3 委员分配以各宿舍人数为唯一权重。
2.2 符号约定3 模型的建立及求解3.1按比例加惯例模型分配根据比例加惯例分配模型的原理表3.2按Q 值法模型分配首先用比例分配法对名额进行初步分配,再根据表达式 C B A i ,,=对剩下的名额进行分配表2(Q 值法分配结果):3.3 D ’hondt 模型 3.3.1 模型建立设,分别表示宿舍总人数和总分配席位数,(1,2,3i =)表示各宿舍人数,令(1,2,3,1,2,...i j ==),则得到一个数列{}ij a ,将该数列按递减顺序重新排列,得到{}()k ij a ,其中()k ij a 表示{}()k ija 中第大的项。
数学建模论文 - 席位公平分配问题1
数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。
首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。
其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。
同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。
最后,我用相对不公平数来检验两个模型的公平性程度。
关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。
公平席位分配
公平的名额分配摘要:公平分配的问题是关乎国家大局,人民情绪的重要问题。
多年以来,我们都在努力寻找“真正的公平”,就此本文讨论了两种常用的分配方法和一种名为d’Hondt方法,并结合人们公认的衡量公平分配的理想化原则,对两种基本方法进行深入剖析。
对于10个名额(席位)的分配,我们先按三个宿舍学生人数比例分配得到2:3:4,然后剩余的一个名额参照惯例分给比例中小数最大的A宿舍,这就是常用且简单的比例加惯例分配法。
当然若按照Q值方法,就必须舍弃所谓惯例,建立新的衡量指标——不公平度,按此指标计算,则多的一个名额应给C宿舍。
十个名额如此,十五个亦然。
d’Hondt法,对于名额(席位)不多的情况更易实施:只需将A,B,C三宿舍人数依次除以自然数列,商数按名额取大值即可,直观简单。
最小方差原则是希望各单位每个席位代表的人数差异不要太大,特别地应该与整个分配方案中平均每个席位所代表的人数P/N差异不要太大。
模型简化后,可直接用比例分配的方差大小表示差异大小,方差小,则说明分配合理,反之,则是不合理。
关键词:比例惯例不公平度Q值方差。
一、问题的重述我们身边时时刻刻都能遇到分配问题,大到一个国家的政策,小到你我家庭中的琐事,任何一个处理不好,都可能引发意想不到的恶果。
因此,公平分配就显得尤为重要。
现在我们已知某校学生要组织一个一定人数的委员会,各宿舍人数给定,总人数亦可知道。
摆在我们面前有三种分配方案,我们需要做的是找到一种方案,这个方案一方面满足委员会的要求,另一方面也让个宿舍成员满意。
怎样做才既能让委员会发挥已有的作用,又不失公平。
这是个问题。
二、模型假设与符号说明假设:1、学校近期没有学生转入或转走现象2、此A,B,C三宿舍人员不再变动(即没有搬入,搬出或互换)。
3、此委员会需三个宿舍共同参与,且此三宿舍均想参与委员会管理。
4、此委员会中无职位差别。
符号表示:n0i比例法得到的整数部分Pi参与分配各方的人数N分配名额总数P参与分配总人数di模型衡量指标m参与分配的单位数量m’初次分配后待定名额ni各方最终分配名额[qiqi向左取整]-[qiqi向右取整]+Z目标函数z0变量名、z01三、问题分析与模型建立有了以上的假设,我们可按下面的思路得到分配方案的结果模型一:第一步:按各宿舍占总人数比例,计算得到固定名额部分第二步:将比例法所得各数取小数部分比较大小,剩余待定名额大者得。
席位的公平分配
目录摘要 0ABSTRACT (1)绪论 (2)1.席位分配问题 (2)2.各种分配方法 (2)2.1 最大分数法 (2)2.2 最大分数法的优缺点 (4)2.3 不公平度指标 (4)2.3.1定义不公平度 (4)2.3.2 定义不公平程度 (4)2.3.3 定义相对不公平度 (5)2.4 Q值法 (5)2.5 用Q值法解决问题 (7)2.6 分析Q值法的优缺点 (8)2.7 D’Hondt法 (8)3.比较分配方法 (8)参考文献 (11)致谢 (12)附录 (13)摘要约两个世纪以来,出于美国和欧洲诸如会议席位分配等社会政治活动的需要,一些人包括数学家们先后提出了许多分配方法,这些方法对同一个问题常常给出了不同的答案,还会违背人们意愿甚至违背常识现象,这更引起数学家们的深入研究的兴趣。
本文从最简单的最大剩余法开始研究,一步步的优化方案。
我主要根据了各系人数因素对席位获得的影响,首先定义了不公平指标及相对不公平度的定义,采用了最大剩余法,Q值法和D’Hondt 法对模型进行比较,制定出更合理的方案。
开始,我采用了最大剩余法对问题进行研究.然后,我对相关资料进行了查阅,则定义了不公平度指标和相对不公平度用来检查方案的公平性程度。
确定了衡量公平的数量指标后,再优化模型采用Q值法进行分配,最后采用了D’Hondt法对模型进行了分析,几种方法的比较得出结论。
关键字:席位分配;Q值法;D’Hondt法ABSTRACTAbout two of a century, the need for American and Europe such as meeting seat allocation of social political activities, including some mathematicians have put forward many distribution methods, these methods to the same problem often give different answers, but also goes against the crowd even contrary to common sense, this caused more in-depth research mathematicians the interest. This paper studies the maximum residual method is the most simple, optimization step by step.I mainly according to the number of seats available on line, first defines unfair index and relative unfair degree, adopt the maximum residual method, Q method and D 'Hondt method to compare the model, to develop a more reasonable scheme. To start, I adopt the maximum residual method to research the problem. Then, I carried out the inspection of the relevant information, define the unfair degree index and relative unfair degree used to check the program fairness degree. To determine the quantitative index to measure the fair, then optimization model with a Q value method is used, the D 'Hondt method for model analysis, compare several methods of conclusion.Keywords: seat allocation; Q value method; d’hondt method绪论起初,对于出现在社会政治领域中的席位分配,人们认为是一个简单的数学问题,用初等的办法解决,但是在应用中这样的办法得出许多难以接受的结果,人们发现所有的方法都有不合理之处。
公平席位分配模型(
公平的席位分配模型班级:数(2)学号:0907022015 姓名:王秀丽摘要:本文建立数学模型的方法,通过讨论某学校的学生代表席位在不同院系之间的公平分配问题。
由于人数是一个整数,所以在通常情况下不能保证各个院系最终分得的代表席位数与其人数取相同的比例。
因此席位分配不可能在任何情况下都绝对公平,我们通过建立数学模型的方法找到尽可能使分配结果的整体不公平程度降低。
关键词:主要分数法席位分配公平度指标正文1 问题的重述有关公平分配席位的问题,由于人数是一个整数导致在一般情况下不能保证各个院系最终分得的代表席位数与其人数取相同的比例。
因此席位分配不可能在任何情况下都绝对公平,进行了各种方法的比较,经过多次试验证明主要除数法的结果要贴近实际,不公平程度较低,最后又对所用方法的科学性进行了阐明。
2 合理假设与变量说明2.1假定各系的人数已确定,且席位增加时各系的席位数不减少。
2.2在各系的席位数分配好的前提下,人数增加的系席位数不会减少。
2.3 p:总人数;i p:各方人员;i=1,2,3...nN:总席数;i N各方分配数;i=1,2,3...nA的相对不公平度:11221222//(,)/Ap n p nr n np n-=;()1122//p n p n>;B的相对不公平度:22112111//(,)/Bp n p nr n np n-=;()2211//p n p n>;3 问题的分析及模型建立初等模型(不可分割的实体分配)p:总人数;i p:各方人员; i=1,2,3……n N:总席数;i N各方分配数;i=1,2,3……nA的相对不公平度:1122 1222//(,)/Ap n p nr n np n-=()1122//p n p n>;B的相对不公平度:22112111//(,)/Bp n p nr n np n-=()2211//p n p n>;为了寻求新的,公平的席位分配方法,先讨论衡量公平的数量指标。
席位公平分配
席位公平分配的“绝对+优化”摘 要: 为了使席位分配达到更高的公平度.本文采用了“绝对+优化”选择法.不是像以往那样直接地用Q 值法或d’Hondt 法进行分配.而是在分配之前又做了一次“深加工”,即将所有的组数随机的分为两组选出最优的,进行分配,再在选出的两组中每组再分成两组选出最优的再分配依次进行直到分配结束,整个过程都是在优选中完成的.充分的展示了优化组合的合理性、公平性.关键词: 公平度;优化组合;绝对值;深加工;最优 0 引言席位分配的公平与否历来受到人们的普遍关注,特别是在政治学、管理、对策论和能源利用等领域具有广泛的应用.1974 年,M.L.Balinski 和H. P. Young 引入了席位分配问题的公理化体系,认为合理的分配方法f 应该包含五条公理:人口单调性公理、无偏性公理、席位单调性公理、公平分摊性公理和接近份额性公理[]1.其中席位单调性和公平分摊性由于在美国众议院引起诸多悖论而广受关注.我们知道,不存在绝对公平的分配方案,于是,人们便致力于研究席位分配的相对公平问题,寻找不同公平原则下的分配方法,如比例+惯例法、Q 值法、x 2拟合法、0 -1规划法、最大熵法、最小极差法、最大概率法等[]9-2.究竟如何分配才算是最为公平的呢?本文为此提出了一种新方法——“绝对+优化”.1 席位公平分配问题的数学模型1.1 席位分配问题的描述假设m 方,第i 方的人数为i n (i=1,2,3…,m),共有n=Σm i 1=i n 人,从中选出k 个代表,第i 方的席位为w i (i=1,2,3…,m),如何寻找一组非负整数,,21w w …m w ,使k=Σmi 1=w i,并尽可能公平.理想的公平分配方案是按人数比例分配,即第i 方应分配w i =(i n /n)k 个席位,但在实际中此数往往不是整数,这是如果按四舍五入或上下取整的方法可能导致分配更不公平.1.2 绝对+优化记t=[m/2],将m 按t:m-t 随机的组合为1组,2组,共有w=c m i 种情况,当m=2时,直接按Q 值法进行分配,当m>2时,直接按Q 值法不满足平均分配的公理一,记Δ=∣(n a 1-[k n a 1/n][n/k]-(n a 2-[k n a 2/n][n/k]∣( n a 1 ,n a 2为第a 次组合时1组,2组的总人数,a=1,2,…w).当Δ=0时为最优组合,当Δ>0时,从所有组合中选取最大的为最优组合,然后按Q 值法进行分配,再在选出的两组中再组合、分配,直到结束.1.3 理论证明(a):当Δ=0时,显然知两组的相对不公平度为零.(b):当Δ>0时,则有[k n a 1/n]+ [k n a 2/n]=k-1,即余下一位未分配,令x 1=n i 1-[k n i 1/n][n/k], x 2=n i 2[k n i 2/n][n/k],不妨设x 1< x 2 ,则x 2/( x 1+ x 2)所占的比例越大,对1组来说失去这一席位的不公平度越小,如1组2组的比例分别为(0.1,0.9),(0.4,0.6)显然按第一种情况分配更公平.2 实例分析例1: 某学校共1000名学生,235人住在A 单元,333人住在B 单元 ,432人住在C 单元,学生们要组织一个15人的委员会,请给出具体的分配方案?当增加为20时的分配结果?2.1模型求解有题知种情况分别是:,之差的绝对值为:知为最优组合.按组合比例法对其分配如下:,总的分配结果:直接按Q值法求得的结果为:,d’Hondt法分配结果:当为20名委员时:为:知为最优组合.分配结果: Q值法分配结果:d’Hondt法分配结果:表1 三种方法的分配结果比较表2A B C表示其值越大表示分配时越不公平,显然可以看出优化法还是比较公平的,虽然和Q 值法较接近,但当数据和组数较多时优化法显然要优于Q法.经过下面的较量,优化法的优越性,公平性,合理性能的到更好的展示.3模型的优越性较量此过程将证明为什么先组合再分配是最优的,若所有的都等于z时则最公平,但这种结果是在极少的情况下才会出现的,那么对于一般的情况而言,只有充分接近Z时分配才是最公平的,即越小越公平.那么也就是说将连续化做成图形其波动越小越公平.例2当n =1500,i=16,k=50时,各单位人数如表3所示.有表3中的数据可得表4,表5,表6,表7,图1.图1:系列1、系列2、系列3、系列4纵轴分别表示,总单元数分别分为16组、8组、4组、2组的人数与席位数之比.从图中可以清晰地看出分的组数越少曲线越平缓.当分两组时曲线近似接近直线,也即是说两者之间的不公平性非常的小,席位分配的也就越合理,越公平.从而证明了优化组合分配的优越性,公平性.5 结束语本模型打破了原有的老路,利用了优化组合的思想,使每一次分配都达到了最优,最公平.若将其应用到能源的分配、资金投资、人员安排上将会达到物尽其用,人尽其才的效果.参考文献[1] 吴建国.数学建模案例精编.北京:中国水利水电出版社,2005.[2] 林健良.席位公平分配的最小极差法的改良.华南理工大学学报:自然科学版,2002,30(3):22-23.[3] 万中,罗汉.席位分配问题的数学模型[J].湖南大学学报:自然学版,2001,28(6):5-9.[4] 郭文旌,周幼英,胡奇英.带有初始风险证券的最优组合投资[J].系统工程学报,2003,18(5):391-396.[5] 岳林.关于Q值法的一种新定义[J].系统工程,1995,13(4):70-72.。
席位分配问题研究论文答辩
(9)
2.2最小遗憾度法的分配方法
step1.分配给各部门应得席位份额中的整数部分,即 [ qi ] step2.将剩余下的席位分配给其中的某些部门,每个部门 最多能得到一个席位,假设共有k种分配方案。
step3.计算 xi 的值,取每种方案中的 min xi 然后从中 选取最大值,即max min xi ,亦即使最大遗憾度最小。
• 公理5 (接近份额性)没有从一个单位到另一个单位的名额 转让会使得这两个单位都接近于它们应得的份额
论文主要内容
• 对几种现有的席位分配方法进行研究分析
• 提出关于分配方法的最小遗憾度判断标准 • 提出最小遗憾度的席位分配方法
• 提出余额延续分配法
几种现有的分配方法
• • • • • • • Hamilton 法 经典Q 值法、改进Q 值法、新Q 值法 最小极差法 0-1 规划法 平均公平度法 相对尾数法 公平累加法
余额延续法
3.1余额延续法思想
基于多次相同的席位分配,记录每次分配后各部门的余额。 在下次席位分配时加上本次所记录的余额,然后进行分配。该 方法追求在某一时间段内各个部门的平均分配结果接近分配比 例。
3.2余额延续法的分配方法
step1.计算各部门的分配比例qi ,加上上次分配后的余额
si ' ,得
最小遗憾度法 Q值法 新Q值法 最小极差法 平均公平度法 Hamilton法 按比例分配 10 11 10 11 11 10 10.30 6 6 6 6 6 6 6.30 4 3 4 3 3 4 3.40
表3
21席位时最小遗憾度法与其他分配方法的分配结果
A部门(103人) B部门(63人)C部门(34人) 最小遗憾度法 11 6 4
公平的席位分配
席位公平分配问题—Q值法的改进摘要:本文为建立席位分配问题的公平合理方案.对经典Q 值法进行了研究并提出改进,构造了衡量相对不公平程度的新标准量。
通过对书本中的经典席位分配问题实例的计算,比较分析了多种席位分配方法的求解结果,并与经典的Q值法进行了公平性的比较。
结果表明改进的标准量更为合理,从而验证了该方法的有效性和合理性。
一、问题背景席位分配问题是人类社会生活中相当普遍的一类资源分配问题,是数学在政治领域中应用的典型实例,其目标是在一个大集体对小集体进行某种资源分配时试图尽可能做到公平合理。
席位分配问题最关键之处是它的悖论观,无论选择怎样的分配方案,总会产生这样或那样的矛盾,著名的有以下几种悖论:亚拉巴马悖论、人口悖论和新州悖论。
同时,席位公平分配的关键是提出衡量公平度的一个量,即满足下述5条公理:公理1(人口单调性):一方的人口增加不会导致它失去一个名额。
公理2(无偏性):在整个时间平均,每一方应接受到它自己应分摊的份额。
公理3(名额单调性):总名额的增加不会使某一方的名额减少。
公理4(公平分摊性):任何一方的名额都不会偏离其比例份额数。
公理5(接近份额性):没有从一方到另一方的名额转让会使得这两方都接近于它们应得的份额。
然而,1982年M .L .Balinski 和H .P .Young 证明了一个B —Y 不可能定理,即绝对公平的分配(满足公理1~公理5)方案是不存在的,既然绝对公平的分配方案不存在,人们便致力于席位分配问题的相对公平的研究。
著名的Q 值法是1982年由D .N .Burghes 和I .Hunttey 等人提出的一种相对不公平衡量标准,该方法简单易行,且克服了其他方法的一些矛盾,被广泛的应用于资源公平分配问题中。
但不足之处是未考虑名额分配后的整体状况,而首先给每一方分配一个名额也是没有道理的。
基于此考虑,这里提出了一种新的衡量相对不公平的标准,不需要事先给每一方分配一个名额,其计算量与Q 值法相当,但比Q 值法更趋于公平。
公平的席位分配论文
题目:公平的席位分配问题摘要数学问题中离不开分配问题,下面我就以公平的席位分配问题进行分析。
在以下的分析中,我会先按照比例的分配方法分配,再按照比例家惯例的方法进行分配,表示不公平的席位分配,最后我们利用Q值法对题目进行重新分配,以Q值的特性使得对其席位的分配更加公平。
比例法是我们生活中必不可少的分配方法,但是在有的时候使用Q值法会得到更加的公平分配。
关键词:席位分配比例法比例加惯例 Q值法一、问题的重述与分析1.1 问题的重述某学校有3个系学生共200名,其中甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,三个系分别为10,6,4个席位。
现因学生转系,三系人数分别为103,63,34名,问20席如何分配。
若增加为21席,又如何分配。
1.2 问题的分析本题讲将有200名学生,甲103、乙63、丙34,现有20个或21个席位,那我们应该怎么来分配呢?看到这个题,首先想到的是用比例加惯例法,得出:20个席位,三系仍分别占有10,6,4个席位;21个席位,三系分别占有11,7,3个席位。
显然这个结果对丙不太公平,因为总席位增加1席,而丙系却由4席减为3席,最后通过比较,还是Q值法分配相对公平。
二、符号设定1、各系的人数:p i(i=1,2,3……)2、各系分配到的席位数:n i(i=1,2,3……)3、各系不公平程度的指标:r i(i=1,2,3……)4、各系Q 值:Q i (1,2,3……)三、模型的建立与求解3.1 比例加惯例分配如下表分配的席位取整数,20席位时,甲、乙、丙系分到的席位数分别为10,6,4;可是总席位增加1个席位时,丙系却由4席减为3席,这显然对丙席不公平。
所以按照各系人数所占比例大小分配,有的时候是不公平的。
不妨设A 、B 方人数分别为 p 1、p 2,席位分别为 n 1、n 2当p 1/n 1=p 2/n 2时,分配公平当p 1/n 1>p 2/n 2时,对A 不公平p 1/n 1-p2/n 2~对A 的绝对不公平度如:p1=150,n 1=10,p1/n 1=15p1=1050,n 1=10,p 1/n 1=105p2=100,n 2=10,p 2/n 2=10 p 2=1000,n 2=10,p 2/n 2=100p 1/n 1-p2/n 2=5 p 1/n 1-p 2/n 2=5虽二者的绝对不公平度相同,但后者对A 的不公平程度已大大降低。
公平的席位分配
公平的席位分配姓名:仇嘉程 班级:数学与应用数学(2)班 学号:0907022010摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。
席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。
本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平度的定义,采用了最大剩余法模型和Q 值法模型,通过检验2种模型的相对不公平度来制定比较合理的分配方案。
关键词:不公平度指标、Q 值法、最大剩余法一、问题的提出:某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
问题一:若学生代表会议设20个席位,如何公平席位分配?问题二:丙系有6名学生转入甲乙两系,其中甲系转入3人,乙系转入3人,又将如何公平的分配20个学生代表会议席位?三、模型的建立:模型1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配办法是按学生人数比例分配:某单位席位分配数 = 某单位总人数比例⨯总席位即:(1,2,3...)i i p P i n N N ==,其中1n i i N N ==∑ 1n i i P P ==∑但是在实际生活中,若按模型1来计算,由于席位数不同,很难使得到的结果为整数,因此模型1难以成立,即绝对公平难以成立,我们需要寻求可能相对公平的分配方案。
模型2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
某学院按有甲乙丙三个系并设20个学生代表席位。
它的最初学生人数及学生代表席位为系名甲乙丙总数学生数 100 60 40 200学生人数比例 100/200 60/200 40/200席位分配 10 6 4 20后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为系名甲乙丙总数学生数 103 63 34 200学生人数比例 103/200 63/200 34/200按比例分配席位 10.3 6.3 3.4 20按惯例席位分配 10 6 4 20由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。
数学建模论文(分配问题)精品
【关键字】政治、方案、情况、方法、问题、有效、深入、充分、合理、公平、召开、建立、提出、研究、关键、理想、工程、资源、任务、分析、推广、规划、管理公平席位的分配系别:机电工程系模具班学号: 1号摘要:分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。
分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。
代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。
而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。
因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配关键字:理想化原则; 整数规划; 席位公平分配问题的提出:某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。
如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。
但是若按学生人数的比例分配的席位数不是整数,就会带来一些麻烦。
比如甲系103人,乙系63人,丙系34人,怎么分?问题重述学院的最初人数见下表,此系设20个席位代表。
甲乙丙总人数1006040200学生人数比例:100/200 60/200 40/200按比例分配方法:分配人数=学生人数比例初按比例分配席位:甲乙丙共10 6 4 20若出现学生转系情况:甲乙丙总人数103 63 34200学生人数比例:103/200 63/200 34/200按例分配方法:比例分配出现最小数时,先按整数分配席位,余下的按小数的大小分配席位按比例分配席位:甲乙丙10.815 6.615 3.57按比例分配席位,丙系却缺少一席的情况,按比例分配席位的方法有缺陷,试建立更合理的分配方法.模型假设分配席位的情况单位人数席位数A单位 X n mB单位 Y n。
公平的席位分配问题
2)Q 值方法 表 6 Q 值法分配方案 宿舍 A B C 学生 人数 235 333 432 10 席的分配 比例 2.35 3.33 4.32 Q值 9204.2 9240.8 9331.2 结果 2 3 5 比例 3.525 4.995 6.480 15 席的分配 Q值1 4602.1 5544.5 4443.4 Q值2 4602.1 3696.3 4443.4 结果 4 5 6
计算出每个宿舍分到的每个席位代表的人数 eij ,将 eij 从大到小排列可得一数列
e ,其中 e 表示 e 中第 k 大的项,从数列 e 中选取前 n 项( n 表示所要选的
k ij k ij k ij k ij
席位总数) , 记 n p eij
k 1,2,, n中i p的项的个数 p A, B, C 得出每类数的个数
总和
1000
10.00
/
10
15.000
/
/
15
3)d’Hondt 方法 表 7 d’Hondt 法分配方案 宿舍 A B C 总和 学生人数 235 333 432 1000 10 个名额分配 2 3 5 10 15 个名额分配 3 5 7 15
4)d’Hondt+Q 值法 表 8 d’Hondt+Q 值法分配方案 i 1 2 3 4 5 6 7 获得名额 4 5 27612.5 9204.2 4602.1 2761.3 A 宿舍 Q值 席次 3 7 12 15 55444.5 18481.5 9240.8 5544.5 3696.3 B 宿舍 Q值 席次 2 5 8 11 14 93312.0 31104.0 15552.0 9331.2 6220.8 4443.4 6 C 宿舍 Q值 席次 1 4 6 9 10 13
如何排座位辩论作文
如何排座位辩论作文一、开场。
今天咱们来聊聊这个在教室里超重要的事儿——排座位。
这可不是个简单的事儿,就像搭积木,每一块(每个同学)放哪儿都有讲究呢。
二、正方观点:按成绩排座位。
正方辩友先发言啦。
他们觉得按成绩排座位那是相当合理。
你想啊,成绩好的同学坐在前面,那就是一种榜样啊。
就像一群小鸭子,前面有个游得最快的小鸭子带路,后面的小鸭子就会想着,“我得努力跟上,不然就掉队啦”。
而且老师上课的时候,重点肯定是先照顾前面的同学,成绩好的同学在前面能更好地回应老师,课堂效率一下子就提高了。
比如说,老师问个高难度的数学题,前面成绩好的同学立马就能说出解题思路,这多带感,就像打游戏里的大神带飞全场一样。
还有啊,这按成绩排座位就像是一种奖励机制。
你要是想坐前面,想享受好的学习资源,那你就努力学习,提高成绩呗。
这样就可以激励那些成绩不太好的同学拼命往前赶,大家都争着当学霸,教室里的学习氛围那不得嗷嗷好啊。
三、反方观点:按身高排座位。
反方辩友可就不同意了。
他们说按身高排座位才是最公平公正的。
你看,咱又不是在比学习,是在教室里找个合适的地儿坐。
按身高来,高个子坐后面,矮个子坐前面,这多顺理成章。
要是按成绩排,那不是歧视那些成绩暂时不太好的同学嘛,让人家坐在角落里,心里多难受啊。
按身高排座位呢,就很人性化。
大家一进教室,按个头大小站成一排,很快就能把座位安排好。
不像按成绩,还得统计成绩排名,麻烦得很。
而且啊,高个子坐后面也不会挡住矮个子的视线,这样大家都能舒舒服服地看黑板。
这就好比盖房子,得先把地基打好,按照身高排座位就是打好这个看黑板的“地基”,不管你成绩好不好,都能有个良好的学习视野。
四、正方反驳。
正方辩友听了可不干了,立马反驳。
他们说,按身高排座位太不注重学习这个主要任务了。
教室是学习的地方,不是走秀台比身高的。
按成绩排座位虽然可能会让成绩不好的同学暂时有点小失落,但这也是一种鞭策。
而且老师也可以灵活调整啊,如果成绩不好的同学有进步了,马上就能把座位往前调,这也是一种积极的反馈。
席位公平分配的比例极差法及其改进方法
席位公平分配的比例极差法及其改进方法
座位公平分配比例极差法作为一种在座位分配时所采用的策略,它将每一位参
与者被分配到相同比例的座位上。
例如:A、B、C三人有80个座位可以分配,则A 获得80/3=26.7%的座位数、B获得80/3=26.7%与C获得80/3=26.7%。
传统的比例极差法存在一定的问题,例如座位数为80,比例可能会分成80/3、80/4、80/5等不同的份额,使参与者出现无中生有的状况,容易引起争端,因此,为了改变这种情况,人们提出了比例极差法的改进方法。
其一是将座位分成多个不同的比例份额,以增加参与者的分配数量,同时提供
精确的分配细节,使不同参与者分配到不同程度的座位数量。
例如,同样有80个
座位总数,通过多比例份额的分配,则可以将这80个座位分成四个比例:A:20%、B:30%、C:25%、D:25%,以此来更精确地分配该座位。
其二是采用多层次座位分配策略。
这种方法将参与者按照职业、年龄或其他标
准进行分组,以便相同的参与者可以获得相同程度的座位分配比例。
例如,A、B、
C三个群体,其中A群体有80/3=26.7%的座位,B群体有80/3=26.7%且C群体有
80/3=26.7%;而经过多层次座位分配策略处理,A群体在原有的26.7%的比例上可
以再次分配成20%、30%、30%,如此,不同参与者可以获得不同程度的分配权,也
可以有效地避免出现某种参与者突然受益的情况。
以上是座位公平分配比例极差法及其改进方法的简介,此法虽然可以很好的解
决座位分配的问题,但其也可能某些情况下产生偏差,如果要进一步改善,可以考虑采取机器学习、人工智能或者更高级的策略。
公平的席位分配
公平的席位分配姓名:仇嘉程 班级:数学与应用数学(2)班 学号:0907022010摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。
席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。
本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平度的定义,采用了最大剩余法模型和Q 值法模型,通过检验2种模型的相对不公平度来制定比较合理的分配方案。
关键词:不公平度指标、Q 值法、最大剩余法一、问题的提出:某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
问题一:若学生代表会议设20个席位,如何公平席位分配?问题二:丙系有6名学生转入甲乙两系,其中甲系转入3人,乙系转入3人,又将如何公平的分配20个学生代表会议席位?三、模型的建立:模型1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配办法是按学生人数比例分配:某单位席位分配数 = 某单位总人数比例⨯总席位即:(1,2,3...)i i p P i n N N ==,其中1n i i N N ==∑ 1n i i P P ==∑但是在实际生活中,若按模型1来计算,由于席位数不同,很难使得到的结果为整数,因此模型1难以成立,即绝对公平难以成立,我们需要寻求可能相对公平的分配方案。
模型2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
某学院按有甲乙丙三个系并设20个学生代表席位。
它的最初学生人数及学生代表席位为系名甲乙丙总数学生数 100 60 40 200学生人数比例 100/200 60/200 40/200席位分配 10 6 4 20后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为系名甲乙丙总数学生数 103 63 34 200学生人数比例 103/200 63/200 34/200按比例分配席位 10.3 6.3 3.4 20按惯例席位分配 10 6 4 20由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:公平的席位分配问题
摘要
数学问题中离不开分配问题,下面我就以公平的席位分配问题进行分析。
在以下的分析中,我会先按照比例的分配方法分配,再按照比例家惯例的方法进行分配,表示不公平的席位分配,最后我们利用Q值法对题目进行重新分配,以Q 值的特性使得对其席位的分配更加公平。
比例法是我们生活中必不可少的分配方法,但是在有的时候使用Q值法会得到更加的公平分配。
关键词:席位分配比例法比例加惯例 Q值法
一、问题的重述与分析
1.1 问题的重述
某学校有3个系学生共200名,其中甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,三个系分别为10,6,4个席位。
现因学生转系,三系人数分别为103,63,34名,问20席如何分配。
若增加为21席,又如何分配。
1.2 问题的分析
本题讲将有200名学生,甲103、乙63、丙34,现有20个或21个席位,那我们应该怎么来分配呢?看到这个题,首先想到的是用比例加惯例法,得出:20个席位,三系仍分别占有10,6,4个席位;21个席位,三系分别占有11,7,3个席位。
显然这个结果对丙不太公平,因为总席位增加1席,而丙系却由4席减为3席,最后通过比较,还是Q值法分配相对公平。
二、符号设定
1、各系的人数:p i(i=1,2,3……)
2、各系分配到的席位数:n i(i=1,2,3……)
3、各系不公平程度的指标:r i(i=1,2,3……)
4、各系Q值:Q
i
(1,2,3……)
三、模型的建立与求解
3.1 比例加惯例分配
如下表
分配的席位取整数,
20席位时,甲、乙、丙系分到的席位数分别为10,6,4;可
是总席位增加1个席位时,丙系却由4席减为3席,这显然对丙席不公平。
所以按照各系人数所占比例大小分配,有的时候是不公平的。
不妨设A、B方人数分别为p
1、p
2
,席位分别为n1、n2
当p
1
/n1=p2/n2时,分配公平
当p
1
/n1>p2/n2时,对A不公平
p
1
/n1-p2/n2~对A的绝对不公平度
如:p
1
=150,n1=10,p1/n1=15 p1=1050,n1=10,p1/n1=105
p
2
=100,n2=10,p2/n2=10 p2=1000,n2=10,p2/n2=100
p 1
/n 1-p
2
/n 2=5 p 1/n 1-p 2/n 2=5
虽二者的绝对不公平度相同,但后者对A 的不公平程度已大大降低。
若 p 1/n 1﹥p 2/n 2,定义
~对A 的相对不公平度,类似地定义r B (n n 21-)
公平分配方案应使r A ,r B 尽量小
将一次性的席位分配转化为动态的席位分配, 即设A, B 已分别有n 1, n 2 席,若增加1席,问应分给A, 还是B
不妨设分配开始时p 1/n 1﹥p 2/n 2,即对A 不公平 讨论以下几种情况:
(1)若p 1/(n 1+1)﹥p 2/n 2,则这席应给 A (2)若p 1/(n 1+1)﹤p 2/n 2,应计算r B (n n 21,1+) (3)若p 1/n 1 ﹥p 2/(n 2+1),应计算r A (1,21+n n ) 问:p 1/n 1 ﹤p 2/(n 2+1)是否会出现? 否! 若r B (n n 21,1+)﹤r A (1,21+n n ),则这席位应给A 若r B (n n 21,1+)﹥r A (1,21+n n ),则这席位应给B
3.2 分配新方法“Q 值法”
(一)当r B (n n 21,1+)﹤r A (1,21+n n ),该席给A
r A ,r B 的定义
该席给A ,否则该席给B
定义:
该席给Q 值较大的一方 ),(///212
22
211n n r n p n p n p A =-)
1()1(112
1
2222+<
+n n p n n p ,2,1,)
1(2
=+=i n n p Q i i i i
推广到m
方分配席位,计算 ,该席给Q 值最大的一方
(二)三系用Q 值法重新分配21个席位: 按人数比例的整数部分已将19席分配完毕
甲系:p 1=103,n 1=10 乙系:p 2=63,n 2=6 丙系:p 3=100,n 3=10 用Q 值法分配第20席和第21席
第20席:
最大,第20席给甲系
第21席:
最大,第21席给丙系 Q 值方法分配结果:甲系11席,乙系6席,丙系4席,相对要公平
3.3 结果对比
综上所述:按惯例分配法得到的席数分别为:10,6,4,而按Q 值计算得到的结果为:11,7,3,只有这样才能做到相对公平
四、模型评价
席位分配问题应该对各方公平,其关键在于建立合理的数量指标,比例法所得的结果是相对不公平的,在这个前提下,使用Q 值法求出结果,这是相对公平平等的。
五、参考文献
《数学建模》(第四版) 姜启源
m i n n p Q i i i i ,2,1,)
1(2
=+=3.964
334,5.947663,4.9611101032
32221=⨯==⨯==⨯=Q Q Q 1Q 3Q 3.964
33423,5.94766322,4.80111010321=⨯==⨯==⨯=Q Q Q。