新建区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新建区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()
A.232B.252C.472D.484
2.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()
A.3B.4C.5D.6
3.已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则该双曲线的方程为()
A.﹣=1B.﹣y2=1C.x2﹣=1D.﹣=1
4.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:
降水量X X<100100≤X<200200≤X<300X≥300
工期延误天数Y051530
概率P0.40.20.10.3
在降水量X至少是100的条件下,工期延误不超过15天的概率为()
A.0.1B.0.3C.0.42D.0.5
5.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()
A.B.20C.21D.31
6.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()
A.i≤21B.i≤11C.i≥21D.i≥11
7.若a=ln2,b=5,c=xdx,则a,b,c的大小关系()
A.a<b<cB B.b<a<cC C.b<c<a D.c<b<a
8.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()
A.﹣1B.2C.﹣5D.﹣3
9.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()
A.a>0B.﹣1<a<0C.a>1D.0<a<1
10.函数f(x)=ax2+bx与f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()
A .
B .
C .
D .
11.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )
A .{3}
B .{0,1}
C .{0,1,2}
D .{0,1,2,3}
12.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .
C .
D .
二、填空题
13.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-2
6121a a a =∙12n n S -⎧⎫

⎬⎩⎭
的最大值为_________.
14.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
15.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
16.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.
()3
f x x x =-+17.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >
的标准差是,则

a =18.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .
三、解答题
19.已知复数z=.
(1)求z 的共轭复数;
(2)若az+b=1﹣i ,求实数a ,b 的值.
20.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .
(Ⅰ)求线段AD 的长;
(Ⅱ)比较∠ADC 和∠ABC 的大小.
21.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y )(1)求f (1)的值,
(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.
22.(本小题满分13分)已知函数,3
2
()31f x ax x =-+(Ⅰ)讨论的单调性;
()f x (Ⅱ)证明:当时,有唯一的零点,且.
2a <-()f x 0x 01(0,)2
x ∈23.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;
(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.
24.(本小题满分12分)
已知数列{}的前n 项和为,且满足.n a n S *)(2N n a n S n n ∈=+(1)证明:数列为等比数列,并求数列{}的通项公式;
}1{+n a n a (2)数列{}满足,其前n 项和为,试求满足的n b *))(1(log 2N n a a b n n n ∈+⋅=n T 20152
2>++n
n T n 最小正整数n .
【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.
n
新建区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】
C
【解析】【专题】排列组合.
【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有
种取法,由此可得结论.
【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,
故所求的取法共有﹣﹣=560﹣16﹣72=472
故选C.
【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.
2.【答案】B
【解析】解:模拟执行程序框图,可得
s=0,n=0
满足条件n<i,s=2,n=1
满足条件n<i,s=5,n=2
满足条件n<i,s=10,n=3
满足条件n<i,s=19,n=4
满足条件n<i,s=36,n=5
所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,
有n=4时,不满足条件n<i,退出循环,输出s的值为19.
故选:B.
【点评】本题主要考查了循环结构的程序框图,属于基础题.
3.【答案】B
【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0),
即c=,
又因为双曲线的渐近线方程为y=±x,
则有a2+b2=c2=10和=,
解得a=3,b=1.
所以双曲线的方程为:﹣y2=1.
故选B.
【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题. 
4.【答案】D
【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,
设:降水量X至少是100为事件A,工期延误不超过15天的事件B,
P(A)=0.6,P(AB)=0.3,
P=P(B丨A)==0.5,
故答案选:D.
5.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
6.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
7.【答案】C
【解析】解:∵a=ln2<lne即,
b=5=,
c=xdx=,
∴a,b,c的大小关系为:b<c<a.
故选:C.
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.
8.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f′(x)=0的两个根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(﹣1)==1,
﹣1×2==﹣2,
即c=﹣6a,2b=﹣3a,
即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),
则===﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
9.【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立
∵1﹣3x2≥0成立
∴a>0
故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.
10.【答案】D
【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;
B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;
C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;
D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义
域上是减函数,D正确.
【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.
11.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,
∵全集U=R,M={x|x>2},N={0,1,2,3},
∴∁M={x|x≤2},
∴∁M∩N={0,1,2},
故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
12.【答案】B
【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,
其中恰有两个球同色C31C41=12种,
故恰有两个球同色的概率为P==,
故选:B.
【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.
二、填空题
13.【答案】
【解析】

点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公
1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.1,a d 14.【答案】 (﹣1,1] .
【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:
由图可得不等式f (x )≥log 2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1] 
15.【答案】 4 
【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键. 
16.
【答案】(【解析】 ,所以增区间是(
)2
310f x x x ⎛=-+>⇒∈ ⎝'
⎛ ⎝17.【答案】2【解析】
试题分析:第一组数据平均数为,
2)((()()(,2
52
42
32
22
1=-+-+-+-+-∴x x x x x x x x x x x .
22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.18.【答案】 m ≥2 .
【解析】解:集合A={x|x+m ≥0}={x|x ≥﹣m},全集U=R ,所以C U A={x|x <﹣m},又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2.故答案为m ≥2. 
三、解答题
19.【答案】 【解析】解:(1).
∴=1﹣i .
(2
)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,∴

解得a=﹣1,b=2.
【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键. 
20.【答案】
【解析】解:(Ⅰ)在Rt △BEC 中,CE=1,∠EBC=30°,∴BE=,
在△ADE 中,AE=BE=,DE=CE=1,∠AED=150°,
由余弦定理可得AD=
=

(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE 与∠EBC 的大小.
在△ADE 中,由正弦定理可得,
∴sin ∠ADE=<=sin30°,
∴∠ADE <30°∴∠ADC <∠ABC .
【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键. 
21.【答案】
【解析】解:(1)在f ()=f (x )﹣f (y )中,令x=y=1,则有f (1)=f (1)﹣f (1),∴f (1)=0;
(2)∵f (6)=1,∴2=1+1=f (6)+f (6),∴不等式f (x+3)﹣f ()<2
等价为不等式f (x+3)﹣f ()<f (6)+f (6),∴f (3x+9)﹣f (6)<f (6),即f (
)<f (6),
∵f (x )是(0,+∞)上的增函数,

,解得﹣3<x <9,
即不等式的解集为(﹣3,9). 
22.【答案】(本小题满分13分)
解:(Ⅰ), (1分)
2
()363(2)f x ax x x ax '=-=-①当时,解得或,解得,0a >()0f x '>2x a >
0x <()0f x '<20x a <<∴的递增区间为和,的递减区间为. (4分)
()f x (,0)-∞2(,)a +∞()f x 2
(0,a
②当时,的递增区间为,递减区间为. (5分)
0a =()f x (,0)-∞(0,)+∞③当时,解得,解得或0a <()0f x '>20x a <<()0f x '<0x >2
x a
<
∴的递增区间为,的递减区间为和. (7分)()f x 2(,0)a ()f x 2(,)a
-∞(0,)+∞(Ⅱ)当时,由(Ⅰ)知上递减,在上递增,在上递减.
2a <-2(,a -∞2(,0)a
(0,)+∞∵,∴在没有零点. (9分)2
2
24
0a f a a -⎛⎫=> ⎪⎝⎭
()f x (,0)-∞∵,,在上递减,
()010f =>11
(2)028
f a ⎛⎫=+< ⎪⎝⎭()f x (0,)+∞∴在上,存在唯一的,使得.且 (12分)
(0,)+∞0x ()00f x =01
(0,2x ∈综上所述,当时,有唯一的零点,且. (13分)
2a <-()f x 0x 01
(0,)2
x ∈23.【答案】
【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:
分数在[50,60)之间的频数为2,
∴全班人数为

(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;
频率分布直方图中[80,90)间的矩形的高为.
(Ⅲ)将[80,90)之间的3个分数编号为a 1,a 2,a 3,[90,100)之间的2个分数编号为b 1,b 2,
在[80,100)之间的试卷中任取两份的基本事件为:
(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)共10个,
其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.
24.【答案】
【解析】(1)当,解得.(1分)111,12n a a =+=时11a =当时,,

2n ≥2n n S n a +=,

11(1)2n n S n a --+-=①-②得,即,(3分)1122n n n a a a -+=-121n n a a -=+即,又.112(1)(2)n n a a n -+=+≥112a +=所以是以2为首项,2为公比的等比数列.
{}1n a +
即故().
(5分)
12n n a +=21n n a =-*n N ∈。

相关文档
最新文档