14-15-1课堂偶然误差数据处理

合集下载

化学分析中误差及分析数据的处理

化学分析中误差及分析数据的处理

xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统

实验误差分析及数据处理

实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z

Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n

i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。

第2章 误差与数据处理

第2章 误差与数据处理

保留三位 有效数字
说明:
在计算过程中,由于普遍使用计算器运算,虽然在 运算过程中不必对每一步的计算结果进行修约,但 应根据其准确度要求,正确保留最后计算结果的有 效数字位数。
10.7456,10.745,10.2350,250.650 10.75 10.74 10.24 250.6
18.0850001,6.468501,5.73350
18.09 6.469 5.734
2.3.3 计算规则
几个数据相加或相减时,它们的和或差 只能保留一位可疑数字,即有效数字位数 的保留,应以小数点后位数最少的数字为 根据,即以绝对误差最大的数为准。 例:计算50.1+1.46+0.5812=? 50.1 ±0.1 1.46 ±0.01 + 0.5812 ±0.0001 52.1412
准确度与精密度的关系
x1
x2
x3
x4
1.精密度是保证准确度的先决条件; 2.精密度好,不一定准确度高.
作 业:
P30-31, 习题1,2
2.3 有效数字及其运算规则
2.3.1 有效数字
在分析工作中实际能测量到的有实际意义的数字,
包括所有的准确数字和一位可疑数字。
例如:读取滴定管上的刻度:
甲:21.34mL,乙:21.35mL,丙:21.33mL。 可疑数字 估计的数值:
过失
由粗心大意引起, 可以避免。
例:器皿洗涤不干净、加错试剂、 计算错误等。
重做!
课堂讨论
P29,思考题2
2.2
准确度( accuracy) 和精密度
(precision)
准确度:分析结果与真实值接近的程度(用误
差衡量) ;
精密度:几次分析测定结果数值接近的程度

分析化学-第二章--定量分析中的误差及数据处理

分析化学-第二章--定量分析中的误差及数据处理

2021/3/10
1
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
2021/3/10
2
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
误差: 测定值与真实值之间的差值。 一般用绝对误差和相对误差来表示。
2021/3/10
3
绝对误差(E):
测定值(X)与真实值(XT)之间的差值。 E = X ̶ XT
注意: 绝对误差不能反映误差在测定结果中所占比例。
2021/3/10
4
相对误差(RE):
绝对误差在真实值中所占的百分率。
(X ̶ XT) RE= XT
×100%
注意: 绝对误差相同时, 若被测定的量较大, 则相对误差较小, 测定的准确度较高。
总体平均值的范围。
2021/3/10
31
表2-1 t 值表
2021/3/10
32
Xt s
n
讨论: 1. 置信度不变时: 2. n 增加, t 变小,置信区间变小。 2. n不变时:
置信度增加,t 变大,置信区间变大。
2021/3/10
33
例:A→D, n减小,置信区间变大(p.13)
表2-2 几种样本的置信区间(95%)
0.22 3.18 0.14 12.71
置信区间
20.7±0.2 20.6±0.3 20.9±0.4 20.7±1.3
34
置信度越高,置信区间越大,估计区间包含 真值的可能性↑ 置信区间——反映估计的精密度 置信度——说明估计的把握程度
2021/3/10
35
(四)离群值的取舍
离群值:在一组平行测定中,常有个别数据与平均值 的差值较大。将这种明显偏离平均值的测定 值称为可疑值或离群值。

分析化学中的误差及其数据处理

分析化学中的误差及其数据处理

2.6 分析化学中的误差定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。

在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。

即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。

同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。

这表明,在分析过程中,误差是客观存在,不可避免的。

因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。

2.6.1 误差与准确度分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。

准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。

误差又可分为绝对误差(absolute error )和相对误差(relative error )。

绝对误差(E )表示测定值(x )与真实值(x T )之差,即E =x - x T (2-13)相对误差(E r )表示误差在真实值中所占的百分率,即 %100Tr ⨯=x E E (2-14)例如,分析天平称量两物体的质量分别为1.6380 g 和0.1637 g ,假设两物体的真实值各为1.6381 g 和0.1638 g ,则两者的绝对误差分别为:E 1=1.6380-1.638= -0.0001 g E 2=0.1637-0.1638= -0.0001 g两者的相对误差分别为:E r1=%1006381.10001.0⨯-= -0.006% E r2=%1001638.00001.0⨯-= -0.06%由此可见,绝对误差相等,相对误差并不一定相等。

在上例中,同样的绝对误差,称量物体越重,其相对误差越小。

误差分析与数据处理基础知识-不确定度--小结

误差分析与数据处理基础知识-不确定度--小结

误差分析与数据处理基础知识 不确定度 小结一.误差分类系统误差 偶然误差(随机误差) 粗差(过失误差)系统误差可以消除;粗差应该剔除; 偶然误差永远存在,不可避免。

因此,误差分析与数据处理基础知识,主要针对偶然误差分析。

二.多次等精度测量的主要内容对物理量x 进行多次等精度测量,得到一个测量列:),,,(n i x x x x 21; 近真值为算术平均值:nx x n i i /∑==1 测量列的标准偏差(简称标准差)为:∑=--=n i i x x x n 12)(11σ; 近真值即算术平均值的标准差为:n xx σσ=;测量的统计结果表达形式为:⎪⎩⎪⎨⎧⨯==±=%).()(1006830x E P x x x x x σσ单位意义:真值落在)(x x σ-到)(x x σ+的概率为68.3%。

这种结果形式中,置信概率P =0.683可以省略三.间接测量的主要内容1.误差传递公式如果),,( C B A f N =,则+∆∂∂+∆∂∂+∆∂∂=∆C C f B B f A A f N两个结论:① 和与差的绝对偏差,等于各直接测量量的绝对偏差之和。

② 积与商的相对偏差,等于各直接测量量的相对偏差之和。

2. 标准误差传递公式+⋅⎪⎭⎫ ⎝⎛∂∂+⋅⎪⎭⎫ ⎝⎛∂∂=2222B A NB f A f σσσ 两个结论:① 和与差的绝对偏差等于各直接测量量的绝对偏差的“方和根”。

② 积与商的相对偏差等于各直接测量量的相对偏差的“方和根”。

四.测量不确定度评定与表示的主要内容1.A 类不确定度x A x u σ=)(∑=--=n i i xx x n n n 12)()1(1σ2.B 类不确定度 k x u B ∆=)(; 式中∆为仪器误差。

通常仪器误差服从的规律可简单认为服从均匀分布,这种情况下常数k 取3。

即误差均匀分布的B 类不确定度3∆=)(x u B 3.总不确定度(即合成不确定度))()()(22x u x u x u B A C += 注意:通常先将各来源的标准不确定度划归入A 类评定和B 类评定,再计算总不确定度。

误差与数据处理

误差与数据处理

误差与数据处理在染整测试中,由于各种主观与客观的原因,测量值不可能和真实值一致,测试中不可避免地存在误差。

一、误差所谓误差就是测量值与真实值之间的差值。

差值越小,则误差越小,为了在测试中减少误差,下面介绍有关概念。

1. 误差与准确度误差分为绝对误差和相对误差。

绝对误差是某一测量值和真值之差值,通常简称为误差。

绝对误差E a 可用如下所示:E a = X -X T其中,X 是测量值;X T 是真值。

相对误差是指绝对误差与被测量的真值之比,相对误差E r 可用如下所示:E r = %100 E a ⨯TX 所谓准确度,是指测量值与真值的接近程度,测量值与真值越接近,则表示准确度越高。

从误差的角度来讲,相对误差越小,则准确度越高。

2.偏差和精密度在实际测量中,真值通常是未知的,误差和准确度只有在理论上才有意义,这里可用偏差的概念代替误差,用精密度的概念代替准确度。

所谓偏差,是指测定值与平均值的差值。

差值越小,则偏差越小,偏差可分为绝对偏差和相对偏差。

绝对偏差d 可用如下定义表示: d =XX - 其中,X 是测量值;X 是平均值。

而相对偏差可定义为:相对偏差 = %100⨯Xd 所谓精密度,是指测量值与平均值的接近程度,测量值与平均值越接近,则表示精密度越高。

从偏差的角度来讲,相对偏差越小,则精密度越高。

3.系统误差和偶然误差系统误差也称可测误差,从理论上讲,是可以测定的,也是可以校正或避免的。

它是某些确定的因素所引起的,按产生的原因来分,系统误差可以分为以下几种:(1)方法误差:由于分析方法的缺陷所引起的误差。

如滴定分析中指示剂选择不当,引起滴定终点与化学计量点相差太大,而产生误差。

(2)仪器误差:由于仪器的缺陷所引起的误差。

如仪器刻度不准而引起的误差。

(3)试剂误差:由于试剂的不纯所引起的误差。

如所用的试剂杂质含量过高。

(4)主观误差:由于测试者人为的因素所引起的误差。

如测试者对指示剂颜色变化的深浅程度不同,而引起滴定终点系统偏高或偏低。

误差与数据处理

误差与数据处理
45
2. 两组数据平均值的比较(用标准方法做对照实验时)
x1 ,
s1, n1
x2 ,
s 2, n 2
① F检验法-s1,s2 差异 ② t检验法-
x1 , x2
差异
46
F 检验法
2 s大 F计算= 2 s小
检验精密度的差异
两组数据的精密度存在显著差异
F计算> F表 t 检验法
t计算= x1 x2 s
19
2. 随机误差(random error)
形成:不确定的原因造成的。
特点:可正可负,无方向性,
服从统计规律(正态分布);
不可以消除,但可以减少 (增加测定次数)。
结果:影响测定结果的精密度。
20
x1
x2
x3
x4
21
3. 测量误差
由仪器的测量精度决定 50mL滴定管(Burette)、分析天平 (Analytical balance)的测量误差:
ห้องสมุดไป่ตู้
解: 理解为在 47 .50 % 0.10 %的区间内 包括总体均值 在内的概率为 95 %
36
例1.4:对某未知试样中Cl-的百分含量进行测定,4次结 果为47.64%,47.69%,47.52%,47.55%,计算置信度 为90%,95%和99%时的总体均值μ的置信区间。 解: x 47.64% 47.69% 47.52% 47.55% 47.60%
第二章
误差与数据处理
1
定量测定结果的二特征:
永远不可能得到绝对准确的测定结果;
平行实验结果不可能完全相同。
定量分析中,误差是不可避免的。
2
必须根据要求和样品的复 杂程度,采取措施,减小 误差对测定结果的影响, 并对结果的可靠性做出正 确评价。

分析化学第二章误差与分析数据处理

分析化学第二章误差与分析数据处理
选择合适的分析方法
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性

1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。

误差分析与数据处理

误差分析与数据处理

产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。

当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。

如何进行误差计算

如何进行误差计算

误差一、直接测量和间接测量在物化实验中需对某些物理量进行测量,以便寻找出化学反应中的某些规律,测量又可分为直接测量和间接测量。

直接测量是指实验结果可直接用实验数据表示。

如用温度计测量温度,用米尺测量长度,用压力计测量压力等。

另一类间接测量是指实验结果不能直接用实验数据表示,而必须由若干个直接测量的数据通过某种公式进行数学运算方可表示的实验结果。

如用凝固点降低法测溶质的分子量,就必须通过测量质量、体积和温差这些直接测量的数据,再用冰点降低公式进行数学运算后,方可得到溶质的分子量。

在直接测量过程中由于所使用的测量工具不准确,测量方法的不完善,都使得测量结果不准确,以致于偏离真实值,这就是误差。

在间接测量中由于直接测量的结果有误差,此误差可传递到最后的结果中,也可使其偏离真实值。

由上所述,可知误差存在于一切测量之中,所以讨论误差,了解其规律、性质、来源和大小就非常有必要。

实验误差的分析,对人们改进实验,提高其精密度和准确度(精密度和准确度的意义在以后讨论),甚至新的发现都具有重要的意义。

二、真值真值是一个实际上不存在的值,它只是一个理论上的数值。

例如,我们可取光在真空中的速度作为速度的计量标准,又如,可用理论安培作为电流的计量标准,其定义为:若在真空中有两根截面无限小的相距2米的无限长平行导体,在其上流过一安的电流时,则在二导体间产生10-7牛顿/米的相互作用力。

这样的参考标准实际上是不存在的,它只存在于理论之中,因此这样的真值是不可知的。

但人类的认识总是在发展的,能够无限地逐渐迫近真值。

由于真值是不可知的,所以一般国家(或国际上)都设立一个能维持不变的实物基础和标准器。

指定以它的数值作为参考标准。

例如,以国家计量局的铯射束原子频率标准中,铯原子的基态超精细能级跃迁频率的平均值作为9,129,631,770赫。

这样的参考标准叫做指定值。

在实际工作中,我们不可能把所使用的仪器都一一地与国家或国际上的指定值相对比,所以通常是通过多级计量检定网来进行一系列的逐级对比。

第二章误差和数据处理

第二章误差和数据处理
1)与经典方法进行比较 2)校准仪器:消除仪器的误差 3)空白试验:消除试剂误差 4)对照实验:消除方法误差 5)回收实验:加样回收,以检验是否存在方法误差
第二节 有效数字及其运算法则
一、有效数字 二、数字的修约规则 三、有效数字的运算规则
一、有效数字 (significant figure)
定义:是指在分析工作中实际上能测量到的数字, 有效数字位数包括所有准确数字和一位欠准数字。
解:R= 4.10 0.0050 / 1.97 =0.0104 R/R=-0.02/4.10+0.0001/0.00500–(-0.04)/1.97
=0.035 = 3.5% R =R 0.035 = 0.035 0.0104 = 0.00036 = R - R = 0.0104 - 0.00036 =0.01004
系统误差的来源
•方法误差:方法不恰当或不完善 •仪器误差:仪器不准或未校正 •试剂误差:试剂不纯 •操作误差:个人操作问题
(主观误差)
系统误差的表现方式
•恒量误差:多次测定中系统误差的 绝对值保持不变 •比例误差:系统误差的绝对值随样 品量的增大而成比例增大,相对值不 变。
偶然误差
又称随机误差或不可定误差,是由某些偶 然因素引起的误差。
偶然误差特点
a.方向不确定(误差时正时负) b.大小不确定(误差时大时小) c.符合统计规律
绝对值相等的正负误差出现概率基本相等 小误差出现的概率大,大误差出现的概率小
d.可增加平行测定次数消除
过失误差
在正常情况下不会发生过失误差,是仪器失灵、 试剂被污染、试样的意外损失等原因造成的。 一旦察觉到过失误差的发生,应停止正在进行 的步骤,重新开始实验。
•平均偏差:各个偏差绝对值的平均值。

误差及数据处理

误差及数据处理
2 0.0001 Er % 100% 0.1% m
m 0.2000 g
33
2)滴定 例:滴定管一次的读数误差为0.01mL,两 次的读数误差为0.02ml,Er% 少移液体积? 0.1%,计算最
2 0.01 Er % 100% 0.1% V
V 20ml
6
3. 真值与标准值 (1) 约定真值:国际单位和我国的法定计量单位, 如 摩尔、 原子量等。 (2) 标准值与标准试样: 标准值:采用可靠的分析方法,在不同实验室 (经相关部门认可),由不同分析人员对同一试样 进行反复复多次测定,然后将大量测定数据用数理 统计方法处理而求得的测量值,这种通过高精度测 量而获得的更加接近真值的值称为标准值(或相对 真值)。 获得标准值的样品称为标准样品或标准参考物质。
2
积、商结果的相对标准偏差的平方, 等于各测量值的相对标准偏差的平方和。
29
例:设天平称量时的标准偏差S=0.1mg,求 称量试样时的标准偏差Sm
解:试样重W是两次称量所得ml与m2的差值, 即: m=m1-m2 或 m=m2-m1
S m S S 2 S 0.14 ( mg )
2 1 2 2 2
d 相对偏差( ) 100% % x 注意: (1)无单位
(2)只有正值
x
i
x
nx
100%
12
(4)标准偏差(standard deviation;S):
对少量测定值(n≤20)
( xi x ) 2
i 1 n
S
n 1

S
1 n xi ( xi ) 2 n i 1 i 1 n 1
(2)重现性(reproducibility):在不同实验室之间, 由不同分析人员对同一试样测定结果的接近程度。

小学物理实验教学中的误差分析及处理方法

小学物理实验教学中的误差分析及处理方法

小学物理实验教学中的误差分析及处理方法在小学物理实验教学中,误差是不可避免的。

误差可以分为系统误差和随机误差。

系统误差是由实验仪器、实验环境或实验操作等因素引起的,导致测量结果整体偏离真实值的误差。

处理系统误差的方法包括:
仪器校准:确保实验仪器的准确性和稳定性。

可以定期进行校准,并记录仪器的校准日期。

检查实验环境:确保实验环境符合实验要求,尽量减少外界因素对实验结果的影响。

注意实验操作:遵循实验步骤和要求,注意操作细节,减少人为误差的产生。

随机误差是由测量本身的不确定性引起的,使得多次测量结果存在变动的误差。

处理随机误差的方法包括:
多次测量:进行多次测量,求平均值可以减小随机误差的影响。

交叉验证:使用不同的测量方法或不同的测量仪器进行相同或类似的测量,将测量结果进行比较,以减小随机误差的影响。

数据分析:对测量数据进行统计分析,计算测量数据的标准差、平均偏差等指标,以评估测量结果的准确性和可靠性。

除了上述方法,还可以采用其他有效的处理方法,如使用合适的图表和图像展示数据,进行误差传递分析等。

需要注意的是,在小学物理实验教学中,鼓励学生养成严谨的实验态度,重视实验过程中的观察和记录,培养他们对误差的认识和处理能力。

同时,教师也应该通过实例和练习,引导学生正确理解和应用误差分析及处理方法。

误差与数据处理

误差与数据处理
2024/10/8
4 准确度和误差
(1)准确度(Accuracy)─分析结果与真实值的接近程度
准确度的高低用误差的大小来衡量;
(2)表示形式: 绝对误差(Ea)测量值与真值之间的差值,有正负。
Ea x xT
相对误差(Er), 误差在真值中所占的百分率,
相对误差能更好的表明准确度的高低。
Er
Ea xT
标准偏差比平均偏差更灵敏的表示出较大偏差的存在和测定 次数的影响
如有3组数据如下: 1. 25.98,26.02,26.02,25.98,25.98,25.98,26.02,26.02 2. 25.98,26.02,25.98,26.02 3. 26.02,26.01,25.96,26.01 三组的平均偏差相同为0.02,而标准偏差s分别为0.021,0.023,0.027
主要指工作中的差错,由于工作粗枝大叶,不按规程办事
等原因造成
2024/10/8
第10页/共55页
公差
生产部门对于分析结果允许误差的一种表示方法
1.公差(相对误差):待测组分质量分数为20%,公差= 1.0%, 则允许:19.8%≤含量 ≤20.2% 2 . 公 差 ( 绝 对 误 差 ) : 试 样 含 S% = 0.020%, 公 差 =±0.002%则允许:0.018%≤S%≤0.022%
第4页/共55页
④极差(R)
R xmax xmin
估计误差的范围,粗略衡量精密度,适用于少数几次测
相定对中极。差:
R 100% x
如果只有两个测量值,又称为相差和相对相差
例: 实验数据处理中平均值和相对相差的应用
6. 重复性和再现性
重复性:同一分析人员在同一条件下所得测量值的精密度 再现性:不同分析人员或不同实验室之间在各自的条件下 所得分析结果的精密度

误差、偏差、有效位数

误差、偏差、有效位数
1. 量和数 所谓“量”即物理量的简称。它包括两部分:数值和单位。 而数则是由物理量的数值抽象出来的,是没有单位的。
量通常表示为数值乘单位,即量=数值×单位。如某个样 品的质量为5克,某一溶液的体积为1.00升等。我们通常解 的物理方程都是量方程,等式两端不仅数值要相等而且单位 也要相等,所以,在量方程中,必须写出每个量的数值和单 位。如1.01325×105Pa大气压力下,1.000mol理想气体的体 积为22.40升,故根据理想气体状态方程,摩尔气体常数为:
P / Pa
1.01325×105
V / m3
22.40×10-3
n / mol
1.000
T/K
275.15
R / J.mol-1.K-1

1.01325 105 22.40 103 x 8.314 1.000 273.15
故R = 8.314J.mol-1.K-1
2. 准确度和误差 准确度:测定值与真实值的接近程度。一个量的准确度 的大小可以通过误差来衡量
12.0090
12.0095
_
12.0101
12.0106
求: 1. 测定的碳原子量的平均值 X 2. 第三次测定的绝对偏差d3 及相对偏差; 3. 整个测定的相对平均偏差; 4. 整个测定的标准偏差S及相对标准偏差RSD。 解: 1. X 0.0080 0.0090 0.0095 0.0101 0.0106 12 12.0094 5 2. d3 =12.0095-12.0094 = +0.0001 ;
标准偏差 S
d i2
i 1
n
n 1
S X
_
相对标准偏差(RSD)也称变动系数(CV):RSD 显然,偏差越小,测定的精密度就越高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档