【步步高】届高三数学大一轮复习_三角函数的图象与性质学案_理_新人教A版
[精品]新人教版A版高考数学理科一轮复习3.3 三角函数的图象与性质优质课教案
第三节三角函数的图象与性质三角函数的图象及性质能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间⎝⎛⎭⎪⎫-π2,π2内的单调性.知识点正弦函数、余弦函数、正切函数的图象和性质易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝ ⎛⎭⎪⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结. 3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件.必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠3π2+3k π,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠π6+k π,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠-π6+k π,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6+k π3,k ∈Z解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫2x -π2=-cos 2x ,∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( )A .关于直线x =π3对称 B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称 D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析:∵f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎪⎫2x +π3.经验证可知f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+π3=sin π=0,即⎝ ⎛⎭⎪⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.解析:函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:5 3π4+2k π(k ∈Z )考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( )A.⎣⎢⎡⎦⎥⎤-π6,π6B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6,k ∈ZC.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6,k ∈ZD .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝ ⎛⎭⎪⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22,故选B.答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos xx ≥cos x ,sin xx <cos x画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎢⎡⎦⎥⎥⎤-1,22. 答案:⎣⎢⎢⎡⎦⎥⎥⎤-1,221.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.(3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝⎛⎦⎥⎤0,12D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t在区间⎝ ⎛⎭⎪⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54. 答案:A2.求函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 的单调区间.解:把函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 变为y =-tan ⎝⎛⎭⎪⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 的单调减区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π3的最小正周期为________.解析:∵y ′=sin ⎝⎛⎭⎪⎫2x -π3的最小正周期T ′=π,∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝ ⎛⎭⎪⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝ ⎛⎭⎪⎫2π2ω2+(22)2,ω=π2.答案:π2探究二 三角函数的奇偶性 3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3解析:由y =sinx +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( ) A .1 B .2C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ).∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝ ⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cosωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎪⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2. 答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性 (1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值与最小值.(2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cosx .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎢⎡⎦⎥⎥⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.(2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝ ⎛⎭⎪⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1=2⎝⎛⎭⎪⎫sin x -142+78,∴当sin x =14时,y min =78,当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎪⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎢⎡⎦⎥⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递减,且f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,∴f ⎝⎛⎭⎪⎫π6+π22=0,∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π3,∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3ω+π3=0,∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎪⎫x +π3为( )A .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递增B .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递增C .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递减D .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝ ⎛⎭⎪⎫x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减,故选D.答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎪⎫kx +π3的最小正周期T满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k=3.答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π,∴f (x )=2sin ⎝ ⎛⎭⎪⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎢⎡⎦⎥⎤-14,34.答案:⎣⎢⎡⎦⎥⎤-14,348.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,2x ∈⎣⎢⎡⎦⎥⎤-π2,π2,故③是真命题;因为f ⎝ ⎛⎭⎪⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎪⎪⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ). (1)当f (x )为偶函数时,f (-x )=f (x ). ∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎪⎪⎫π6,32时, sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .10.(2016·长沙模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx3-1=3·sin ⎝⎛⎭⎪⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称, 所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤2π3,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈ ⎣⎢⎢⎡⎦⎥⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12.B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎪⎫2x +π4的最小正周期是( )A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin ⎝⎛⎭⎪⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x解析:采用验证法.由y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z )4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T .由题意知T 2≥π2-π6=π3, 又f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝ ⎛⎭⎪⎫π2+π6×12=π3, x 2=⎝ ⎛⎭⎪⎫π2+2π3×12=7π12, ∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.。
【步步高】届高三数学大一轮复习 简单的三角恒等变换学案 理 新人教A版
学案22 简单的三角恒等变换导学目标: 1.能推出二倍角的正弦、余弦、正切公式,并熟练应用.2.能运用两角和与差的三角公式进行简单的恒等变换.自主梳理1.二倍角的正弦、余弦、正切公式 (1)sin 2α=________________;(2)cos 2α=______________=________________-1=1-________________;(3)tan 2α=________________________ (α≠k π2+π4且α≠k π+π2).2.公式的逆向变换及有关变形(1)sin αcos α=____________________⇒cos α=sin 2α2sin α;(2)降幂公式:sin 2α=________________,cos 2α=________________; 升幂公式:1+cos α=________________,1-cos α=_____________;变形:1±sin 2α=sin 2α+cos 2α±2sin αcos α=________________________. 自我检测1.(2010²陕西)函数f (x )=2sin x cos x 是 ()A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数2.函数f (x )=cos 2x -2sin x 的最小值和最大值分别为 ()A .-3,1B .-2,2C .-3,32D .-2,323.函数f (x )=sin x cos x 的最小值是 ()A .-1B .-12 C.12D .14.(2011²清远月考)已知A 、B 为直角三角形的两个锐角,则sin A ²sin B ()A .有最大值12,最小值0B .有最小值12,无最大值C .既无最大值也无最小值D .有最大值12,无最小值探究点一 三角函数式的化简例1 求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值和最小值.变式迁移1 (2011²泰安模拟)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x .(1)求f ⎝ ⎛⎭⎪⎫-11π12的值;(2)当x ∈⎣⎢⎡⎭⎪⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值.探究点二 三角函数式的求值例2 已知sin(π4+2α)²sin(π4-2α)=14,α∈(π4,π2),求2sin 2α+tan α-1tan α-1的值.变式迁移2 (1)已知α是第一象限角,且cos α=513,求sin α+π4cos 2α+4π的值.(2)已知cos(α+π4)=35,π2≤α<3π2,求cos(2α+π4)的值.探究点三 三角恒等式的证明例3 (2011²苏北四市模拟)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α; (2)求f (x )的解析表达式;(3)若角α是一个三角形的最小内角,试求函数f (x )的值域.变式迁移3 求证:sin 2xsin x +cos x -1sin x -cos x +1=1+cos x sin x .转化与化归思想的应用例 (12分)(2010²江西)已知函数f (x )= ⎝ ⎛⎭⎪⎫1+1tan x sin 2x +m sin ⎝ ⎛⎭⎪⎫x +π4sin ⎝⎛⎭⎪⎫x -π4. (1)当m =0时,求f (x )在区间⎣⎢⎡⎦⎥⎤π8,3π4上的取值范围;(2)当tan α=2时,f (α)=35,求m 的值.【答题模板】解 (1)当m =0时,f (x )=⎝ ⎛⎭⎪⎫1+cos x sin x sin 2x=sin 2x +sin x cos x =1-cos 2x +sin 2x 2=12⎣⎢⎡⎦⎥⎤2sin ⎝⎛⎭⎪⎫2x -π4+1,[3分] 由已知x ∈⎣⎢⎡⎦⎥⎤π8,3π4,得2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,[4分]所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,[5分] 从而得f (x )的值域为⎣⎢⎡⎦⎥⎤0,1+22.[6分](2)f (x )=sin 2x +sin x cos x -m2cos 2x =1-cos 2x 2+12sin 2x -m 2cos 2x=12[sin 2x -(1+m )cos 2x ]+12,[8分] 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=45, cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-35.[10分] 所以35=12⎣⎢⎡⎦⎥⎤45+351+m +12,[11分]解得m =-2.[12分] 【突破思维障碍】三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.1.求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.2.三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=⎝⎛⎭⎪⎫α-β2+⎝ ⎛⎭⎪⎫β-α2,α2是α4的二倍角等.(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.(满分:75分)一、选择题(每小题5分,共25分)1.(2011²平顶山月考)已知0<α<π,3sin 2α=sin α,则cos(α-π)等于 ( )A.13 B .-13 C.16 D .-162.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝⎛⎭⎪⎫α+π4等于 ( )A.1318B.1322C.322D.163.(2011²石家庄模拟)已知cos 2α=12 (其中α∈⎝ ⎛⎭⎪⎫-π4,0),则sin α的值为 ( )A.12 B .-12 C.32 D .-324.若f (x )=2tan x -2sin 2x2-1sin x 2cosx2,则f ⎝ ⎛⎭⎪⎫π12的值为( )A .-433B .8C .4 3D .-4 35.(2010²福建厦门外国语学校高三第二次月考)在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( )A.1B.2C.3D .1 6.(2010²全国Ⅰ)已知α为第二象限的角,且sin α=35,则tan 2α=________.7.函数y =2cos 2x +sin 2x 的最小值是________.8.若cos 2αsin ⎝⎛⎭⎪⎫α-π4=-22,则cos α+sin α的值为________.三、解答题(共38分)9.(12分)化简:(1)cos 20°cos 40°cos 60°cos 80°; (2)3-4cos 2α+cos 4α3+4cos 2α+cos 4α.10.(12分)(2011²南京模拟)设函数f (x )=3sin x cos x -cos x sin ⎝ ⎛⎭⎪⎫π2+x -12.(1)求f (x )的最小正周期;(2)当∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最大值和最小值.11.(14分)(2010²北京)已知函数f (x )=2cos 2x +sin 2x -4cos x .(1)求f (π3)的值;(2)求f (x )的最大值和最小值.答案 自主梳理1.(1)2sin αcos α (2)cos 2α-sin 2α 2cos 2α 2sin 2α(3)2tan α1-tan 2α 2.(1)12sin 2α (2)1-cos 2α2 1+cos 2α2 2cos 2α2 2sin 2α2(sin α±cos α)2自我检测1.C 2.C 3.B 4.D 课堂活动区例1 解题导引 化简的原则是形式简单,三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.本题要充分利用倍角公式进行降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键.解 y =7-4sin x cos x +4cos 2x -4cos 4x=7-2sin 2x +4cos 2x (1-cos 2x )=7-2sin 2x +4cos 2x sin 2x=7-2sin 2x +sin 22x =(1-sin 2x )2+6,由于函数z =(u -1)2+6在[-1,1]中的最大值为z max =(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin 2x =-1时,y 取得最大值10, 当sin 2x =1时,y 取得最小值6. 变式迁移1 解 (1)f (x )=1+cos 2x 2-2cos 2x -1sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x=cos 22xsin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2cos 22x sin ⎝ ⎛⎭⎪⎫π2+2x =2cos 22x cos 2x =2cos 2x ,∴f ⎝ ⎛⎭⎪⎫-11π12=2cos ⎝ ⎛⎭⎪⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x=2sin ⎝⎛⎭⎪⎫2x +π4. ∵x ∈⎣⎢⎡⎭⎪⎫0,π4,∴2x +π4∈⎣⎢⎡⎭⎪⎫π4,3π4,∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1.例2 解题导引 (1)这类问题一般是先化简再求值;化简后目标更明确;(2)如果能从已知条件中求出特殊值,应转化为特殊角,可简化运算,对切函数通常化为弦函数.解 由sin(π4+2α)²sin(π4-2α)=sin(π4+2α)²cos(π4+2α)=12sin(π2+4α)=12cos 4α=14, ∴cos 4α=12,又α∈(π4,π2),故α=5π12,∴2sin 2α+tan α-1tan α-1=-cos 2α+sin 2α-cos 2αsin αcos α=-cos 2α+-2cos 2αsin 2α=-cos 5π6-2cos5π6sin5π6=532.变式迁移2 解 (1)∵α是第一象限角,cos α=513,∴sin α=1213.∴sin α+π4cos 2α+4π=22sin α+cos αcos 2α=22sin α+cos αcos 2α-sin 2α=22cos α-sin α=22513-1213=-13214. (2)cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=22(cos 2α-sin 2α), ∵π2≤α<32π, ∴3π4≤α+π4<74π.又cos(α+π4)=35>0,故可知32π<α+π4<74π,∴sin(α+π4)=-45,从而cos 2α=sin(2α+π2)=2sin(α+π4)cos(α+π4)=2³(-45)³35=-2425.sin 2α=-cos(2α+π2)=1-2cos 2(α+π4)=1-2³(35)2=725.∴cos(2α+π4)=22(cos 2α-sin 2α)=22³(-2425-725)=-31250.例3 解题导引 本题的关键是第(1)小题的恒等式证明,对于三角恒等式的证明,我们要注意观察、分析条件恒等式与目标恒等式的异同,特别是分析已知和要求的角之间的关系,再分析函数名之间的关系,则容易找到思路.证明三角恒等式的实质就是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证.对于第(2)小题同样要从角的关系入手,利用两角和的正切公式可得关系.第(3)小题则利用基本不等式求解即可.(1)证明 由sin(2α+β)=3sin β,得sin[(α+β)+α] =3sin[(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α, ∴tan(α+β)=2tan α.(2)解 由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x2.(3)解 ∵角α是一个三角形的最小内角,∴0<α≤π3,0<x ≤3,设g (x )=2x +1x ,则g (x )=2x +1x ≥22(当且仅当x =22时取“=”).故函数f (x )的值域为(0,24]. 变式迁移3 证明 因为左边=2sin x cos x[sin x +cos x -1][sin x -cos x -1]=2sin x cos x sin 2x -cos x -12 =2sin x cos xsin 2x -cos 2x +2cos x -1 =2sin x cos x -2cos 2x +2cos x =sin x 1-cos x=sin x 1+cos x 1-cos x 1+cos x =sin x 1+cos x sin 2x =1+cos x sin x=右边. 所以原等式成立. 课后练习区1.D [∵0<α<π,3sin 2α=sin α, ∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-16.]2.C [因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎪⎫β-π4. 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4 =tan α+β-tan ⎝⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322.]3.B [∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈⎝ ⎛⎭⎪⎫-π4,0,∴sin α=-12.]4.B [f (x )=2tan x +1-2sin2x212sin x =2tan x +2cos xsin x=2sin x cos x =4sin 2x∴f ⎝ ⎛⎭⎪⎫π12=4sinπ6=8.] 5.C [由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32.] 6.-247解析 因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan α=-247. 7.1- 2解析 ∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 2.8.12解析 ∵cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α-sin 2α22sin α-cos α=-2(sin α+cos α)=-22, ∴cos α+sin α=12.9.解 (1)∵sin 2α=2sin αcos α,∴cos α=sin 2α2sin α,…………………………………………………………………………(2分)∴原式=sin 40°2sin 20°²sin 80°2sin 40°²12²sin 160°2sin 80°=sin 180°-20°16sin 20°=116.……………………………………………………………………(6分)(2)原式=3-4cos 2α+2cos 22α-13+4cos 2α+2cos 22α-1………………………………………………………(9分)=1-cos 2α21+cos 2α2=2sin 2α22cos 2α2=tan 4α.………………………………………………………(12分)10.解 f (x )=3sin x cos x -cos x sin ⎝ ⎛⎭⎪⎫π2+x -12=32sin 2x -12cos 2x -1 =sin ⎝ ⎛⎭⎪⎫2x -π6-1.…………………………………………………………………………(4分)(1)T =2π2=π,故f (x )的最小正周期为π.…………………………………………………(6分)(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,……………………………………………………………………………………………(10分)当2x -π6=-π6,即x =0时,f (x )有最小值-32.……………………………………………………………………………………………(12分)11.解 (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.………………………………………………………………………(4分)(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x=3cos 2x -4cos x -1=3(cos x -23)2-73,x ∈R .………………………………………………………………(10分)因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6;当cos x =23时,f (x )取得最小值-73.…………………………………………………(14分)。
【步步高】高考数学总复习 4.4三角函数的图象和性质配套文档 理 新人教a版
§4.4 三角函数的图象和性质1. 用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2. 正弦函数、余弦函数、正切函数的图象和性质1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)常数函数f (x )=a 是周期函数,它没有最小正周期. ( √ ) (2)y =sin x 在x ∈[0,π2]上是增函数.( √ ) (3)y =cos x 在第一、二象限上是减函数. ( × ) (4)y =tan x 在整个定义域上是增函数. ( × ) (5)y =k sin x +1(x ∈R ),则y max =k +1. ( × ) (6)若sin x >22,则x >π4.( × ) 2. (2012·福建)函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2答案 C解析 方法一 ∵正弦函数图象的对称轴过图象的最高点或最低点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .取k =-1,则x =-π4.方法二 用验证法.x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ; x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ; x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确;x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. 3. 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于 ( )A.23B.32C .2D .3答案 B解析 ∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. 4. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 ( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得 sin(π3+m )=±1, ∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.5. 函数y =lg sin 2x +9-x 2的定义域为________________.答案 {x |-3≤x <-π2或0<x <π2}解析 由⎩⎪⎨⎪⎧sin 2x >09-x 2≥0, 得⎩⎪⎨⎪⎧2k π<2x <2k π+π,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg sin 2x +9-x 2的定义域为 {x |-3≤x <-π2或0<x <π2}.题型一 求三角函数的定义域和最值例1 (1)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3(2)函数y =1tan x -1的定义域为____________________________________________.思维启迪 求函数的定义域可利用三角函数的图象或数轴;求函数最值或值域时要利用图象、三角变换、二次函数等知识.答案 (1)A (2){x |x ≠π4+k π且x ≠π2+k π,k ∈Z }解析 (1)利用三角函数的性质先求出函数的最值. ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[]-3,2,∴y max +y min =2- 3.(2)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z x ≠π2+k π,k ∈Z .故函数的定义域为{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }.思维升华 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]答案 (1){x |2k π<x ≤π3+2k π,k ∈Z } (2)C解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z }.(2)y =sin 2x +sin x -1,令t =sin x ,则有y =t 2+t -1,t ∈[-1,1], 画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1,可得y ∈[-54,1].题型二 三角函数的单调性、周期性 例2 写出下列函数的单调区间及周期:(1)y =sin ⎝⎛⎭⎫-2x +π3;(2)y =|tan x |. 思维启迪 (1)化为y =-sin ⎝⎛⎭⎫2x -π3,再求单调区间及周期.(2)由y =tan x 的图象→y =|tan x |的图象→求单调性及周期. 解 (1)y =-sin ⎝⎛⎭⎫2x -π3, 它的增区间是y =sin ⎝⎛⎭⎫2x -π3的减区间,它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 增区间为⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z . 最小正周期T =2π2=π.(2)观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z . 最小正周期T =π.思维升华 (1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象判定.求函数y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π6的周期、单调区间及最大、最小值. 解 ∵⎝⎛⎭⎫π3+4x +⎝⎛⎭⎫π6-4x =π2, ∴cos ⎝⎛⎭⎫4x -π6=cos ⎝⎛⎭⎫π6-4x =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+4x =sin ⎝⎛⎭⎫π3+4x . ∴y =2sin ⎝⎛⎭⎫4x +π3,周期T =2π4=π2. 当-π2+2k π≤4x +π3≤π2+2k π (k ∈Z )时,函数单调递增,∴函数的递增区间为⎣⎡⎦⎤-5π24+k π2,π24+k π2 (k ∈Z ). 当π2+2k π≤4x +π3≤3π2+2k π (k ∈Z )时,函数单调递减,∴函数的递减区间为⎣⎡⎦⎤π24+k π2,7π24+k π2(k ∈Z ). 当x =π24+k π2 (k ∈Z )时,y max =2;当x =-5π24+k π2 (k ∈Z )时,y min =-2.题型三 三角函数的奇偶性和对称性例3 (1)已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ) ⎝⎛⎭⎫|φ|≤π2的图象关于直线x =0对称,则φ的值为________.(2)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6B.π4C.π3D.π2答案 (1)π6(2)A解析 (1)f (x )=2sin ⎝⎛⎭⎫x +π3, y =f (x +φ)=2sin ⎝⎛⎭⎫x +π3+φ图象关于x =0对称, 即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,φ=k π+π6,k ∈Z , 又∵|φ|≤π2,∴φ=π6.(2)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.思维升华 若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大值或最小值.若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π (k ∈Z ),求x .如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π (k ∈Z )即可.(1)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A .(-π8,0)B .(0,0)C .(-18,0)D .(18,0)(2)设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论:①图象关于点(π4,0)对称;②图象关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上是增函数中,所有正确结论的编号为________. 答案 (1)C (2)②④解析 (1)由条件得f (x )=2sin(ax +π4),又函数的最小正周期为1,故2πa =1,∴a =2π,故f (x )=2sin(2πx +π4).将x =-18代入得函数值为0.(2)∵T =π,∴ω=2.又2×π12+φ=k π+π2(k ∈Z ),∴φ=k π+π3(k ∈Z ).∵φ∈(-π2,π2),∴φ=π3,∴y =sin(2x +π3),由图象及性质可知②④正确.三角函数的单调性、对称性典例:(10分)(1)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2](2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3思维启迪 (1)(π2,π)为函数f (x )某个单调减区间的子集;(2)由f (x +π4)=f (-x )可得函数的对称轴,应用函数在对称轴处的性质求解即可.答案 (1)A (2)C解析 (1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2],∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A. (2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3.温馨提醒 (1)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解.(2)函数y =A sin(ωx +φ)+b 的图象与其对称轴的交点是最值点.方法与技巧1. 讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2. 函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. 3. 对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx+φ,将其转化为研究y =sin t 的性质. 失误与防范1. 闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2. 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 下列函数中,周期为π且在[0,π2]上是减函数的是( )A .y =sin(x +π4)B .y =cos(x +π4)C .y =sin 2xD .y =cos 2x答案 D解析 对于函数y =cos 2x ,T =π,当x ∈[0,π2]时,2x ∈[0,π],y =cos 2x 是减函数.2. (2012·湖南)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎡⎦⎤-32,32 答案 B解析 将函数化为y =A sin(ωx +φ)的形式后求解. ∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6 =sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3].3. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数, ∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )D /⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.4. 若f (x )=2cos(ωx +φ)+m 对任意实数t 都有f (t +π4)=f (-t ),且f (π8)=-1,则实数m 的值等于( )A .±1B .-1或3C .±3D .-3或1答案 D解析 对任意实数t ,都有f (t +π4)=f (-t ),则函数f (x )的图象关于x =t +π4+(-t )2=π8对称,所以cos(ω·π8+φ)=±1,即f (π8)=±2+m =-1⇒m =-3或1.5. (2012·天津)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是 ( )A.13B .1C.53D .2答案 D解析 根据题意平移后函数的解析式为y =sin ω⎝⎛⎭⎫x -π4, 将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0, 故ω的最小值为2. 二、填空题6. 函数y =cos(π4-2x )的单调减区间为________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4)得2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).7. 当-π2≤x ≤π2,函数y =sin x +3cos x 的最大值为________,最小值为________.答案 2 -1解析 y =2sin(x +π3),-π6≤x +π3≤5π6,∴-12≤sin(x +π3)≤1,∴-1≤y ≤2,故y max =2,y min =-1.8. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________.答案3解析 由题中图象可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2,所以ω=2.由题意可知,图象过定点(3π8,0),所以0=A tan(2×3π8+φ),即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ),又|φ|<π2,所以φ=π4.又图象过定点(0,1),所以A =1. 综上可知,f (x )=tan(2x +π4),故有f (π24)=tan(2×π24+π4)=tan π3= 3.三、解答题9. 设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 10.设函数f (x )=sin(πx 4-π6)-2cos 2πx8+1.(1)求f (x )的最小正周期.(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx 4=32sin πx 4-32cos πx4=3sin(πx 4-π3),故f (x )的最小正周期为T =2ππ4=8.(2)方法一 在y =g (x )的图象上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图象上, 从而g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin[π2-πx 4-π3]=3cos(πx 4+π3).当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.方法二 区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于直线x =1对称, 故y =g (x )在[0,43]上的最大值为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(πx 4-π3),当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.B 组 专项能力提升 (时间:25分钟,满分:43分)1. 函数y =|sin x +cos x |-1的定义域是( )A .[k π,k π+π2](k ∈Z )B .[2k π,2k π+π2](k ∈Z )C .[-π2+k π,k π](k ∈Z )D .[-π2+2k π,2k π](k ∈Z )答案 A解析 |sin x +cos x |-1≥0⇒(sin x +cos x )2≥ 1⇒sin 2x ≥0,∴2k π≤2x ≤2k π+π,k ∈Z ,故原函数的定义域是[k π,k π+π2](k ∈Z ).2. 设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 答案 2解析 f (x )=3sin(π2x +π4)的周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.3. 已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π; ③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________. 答案 ③④解析 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.4. 已知函数f (x )=sin 2x -3cos 2x +1.(1)当x ∈[π4,π2]时,求f (x )的最大值和最小值;(2)求f (x )的单调区间.解 (1)f (x )=sin 2x -3cos 2x +1=2sin(2x -π3)+1.∵π4≤x ≤π2,∴π2≤2x ≤π,∴π6≤2x -π3≤2π3, ∴12≤sin(2x -π3)≤1,∴1≤2sin(2x -π3)≤2, 于是2≤2sin(2x -π3)+1≤3,∴f (x )的最大值是3,最小值是2. (2)由2k π-π2≤2x -π3≤2k π+π2,k ∈Z得2k π-π6≤2x ≤2k π+5π6,k ∈Z ,∴k π-π12≤x ≤k π+5π12,k ∈Z ,即f (x )的单调递增区间为[k π-π12,k π+5π12],k ∈Z ,同理由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z得f (x )的单调递减区间为[k π+5π12,k π+11π12],k ∈Z . 5. 已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6.∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
【步步高】届高三数学大一轮复习 中档题目强化练 三角函数教案 理 新人教A版
中档题目强化练——三角函数A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 已知角A 是△ABC 的一个内角,若sin A +cos A =713,则tan A 等于( ) A .-125B.712C .-712D.125答案 A解析 由⎩⎪⎨⎪⎧sin A +cos A =713,sin 2A +cos 2A =1,得⎩⎪⎨⎪⎧sin A =1213,cos A =-513或⎩⎪⎨⎪⎧sin A =-513,cos A =1213(舍去),∴tan A =-125. 2. 函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则φ的可能取值是( ) A.3π4B .-3π4C.π4D.π2答案 A解析 ∵y =cos x +2的对称轴为x =k π(k ∈Z), ∴x +φ=k π(k ∈Z),即x =k π-φ(k ∈Z),令π4=k π-φ(k ∈Z)得φ=k π-π4(k ∈Z),在四个选项中,只有3π4满足题意. 3. 对于函数f (x )=2sin x cos x ,下列选项中正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫π4,π2上是递增的 B .f (x )的图象关于原点对称C .f (x )的最小正周期为2πD .f (x )的最大值为2 答案 B解析 f (x )=2sin x cos x =sin 2x ,是周期为π的奇函数,其最大值为1,在⎝ ⎛⎭⎪⎫π4,π2上递减.4. 设函数f (x )=cos(ωx +φ)-3sin(ωx +φ)⎝⎛⎭⎪⎫ω>1,|φ|<π2,且其图象相邻的两条对称轴为x 1=0,x 2=π2,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数 B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为2π,且在(0,π)上为增函数 D .y =f (x )的最小正周期为2π,且在(0,π)上为减函数 答案 B解析 由已知条件得f (x )=2cos ⎝⎛⎭⎪⎫ωx +φ+π3,由题意得T 2=π2,∴T =π.∴T =2πω,∴ω=2.又∵f (0)=2cos ⎝⎛⎭⎪⎫φ+π3,x =0为f (x )的对称轴, ∴f (0)=2或-2,又∵|φ|<π2,∴φ=-π3,此时f (x )=2cos 2x ,在⎝⎛⎭⎪⎫0,π2上为减函数,故选B. 二、填空题(每小题5分,共15分)5. 函数y =sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫π6-x 的最大值为________.答案2+34解析 y =sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫π6-x =cos x ·cos ⎝ ⎛⎭⎪⎫π6-x =cos x ⎝⎛⎭⎪⎫cosπ6·cos x +sin π6·sin x=cos x ⎝ ⎛⎭⎪⎫32cos x +12sin x =32cos 2x +12sin x ·cos x=32·1+cos 2x 2+14sin 2x =34+34cos 2x +14sin 2x =34+12⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x =34+12sin ⎝⎛⎭⎪⎫2x +π3,∴当sin ⎝⎛⎭⎪⎫2x +π3=1时,y max =2+34. 6. 函数y =tan ⎝⎛⎭⎪⎫2x +π6的对称中心为________. 答案 ⎝ ⎛⎭⎪⎫-π12+k π4,0(k ∈Z)解析 ∵y =tan x (x ≠π2+k π,k ∈Z)的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z),∴可令2x +π6=k π2(k ∈Z),解得x =-π12+k π4(k ∈Z).因此,函数y =tan ⎝⎛⎭⎪⎫2x +π6的对称中心为 ⎝ ⎛⎭⎪⎫-π12+k π4,0(k ∈Z).7. 已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)=________.答案 23解析 由图象,可知所求函数的最小正周期为2π3,故ω=3.从函数图象可以看出这个函数的图象关于点⎝ ⎛⎭⎪⎫7π12,0中心对称, 也就是函数f (x )满足f ⎝ ⎛⎭⎪⎫7π12-x =-f ⎝ ⎛⎭⎪⎫7π12+x ,当x =π12时,得f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫2π3=-f (0),故得f (0)=23.三、解答题(共22分)8. (10分)已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,所以T =2π2=π.又因为sin ⎝ ⎛⎭⎪⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎪⎫2A -π3=1. 因为0<A <23π,所以2A -π3=π2,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2.又因为sin A =sin ⎝ ⎛⎭⎪⎫π4+π6=2+64,所以S △ABC =12bc sin A =3+34.9. (12分)已知函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,0<φ<π2)的图象与x 轴的相交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤π12,π2时,求f (x )的值域.解 (1)由最低点为M ⎝ ⎛⎭⎪⎫2π3,-2,得A =2. 由x 轴上相邻的两个交点之间的距离为π2得,T 2=π2,即T =π,所以ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在函数f (x )的图象上,得2sin ⎝ ⎛⎭⎪⎫2×2π3+φ=-2, 即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1.故4π3+φ=2k π-π2,k ∈Z,所以φ=2k π-11π6(k ∈Z). 又φ∈⎝ ⎛⎭⎪⎫0,π2,所以φ=π6,故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)因为x ∈⎣⎢⎡⎦⎥⎤π12,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π3,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=7π6,即x =π2时,f (x )取得最小值-1. 故函数f (x )的值域为[-1,2].B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知函数f (x )=2cos(ωx +φ)(ω>0)的图象关于直线x =π12对称,且f ⎝ ⎛⎭⎪⎫π3=0,则ω的最小值为( ) A .2B .4C .6D .8答案 A解析 由题意知ω·π12+φ=k 1π,ω·π3+φ=k 2π+π2,其中k 1,k 2∈Z,两式相减可得ω=4(k 2-k 1)+2, 又ω>0,易知ω的最小值为2.故选A. 2. 若0≤sin α≤22,且α∈[-2π,0],则α的取值范围是( )A.⎣⎢⎡⎦⎥⎤-2π,-7π4∪⎣⎢⎡⎦⎥⎤-5π4,-π B.⎣⎢⎡⎦⎥⎤-2π+2k π,-7π4+2k π∪⎣⎢⎡⎦⎥⎤-5π4+2k π,-π+2k π(k ∈Z)C.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,π D.⎣⎢⎡⎦⎥⎤2k π,2k π+π4∪⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+π(k ∈Z) 答案 A解析 根据题意并结合正弦线可知, α满足⎣⎢⎡⎦⎥⎤2k π,2k π+π4∪ ⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+π(k ∈Z),∵α∈[-2π,0],∴α的取值范围是⎣⎢⎡⎦⎥⎤-2π,-7π4∪⎣⎢⎡⎦⎥⎤-5π4,-π. 故选A.3. 同时具有下列性质:“①对任意x ∈R,f (x +π)=f (x )恒成立;②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数”的函数可以是( )A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6 答案 B解析 依题意,知满足条件的函数的一个周期是π, 以x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. 对于A ,其周期为4π,因此不正确;对于C ,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 不正确; 对于D ,f ⎝ ⎛⎭⎪⎫π3≠±1,因此D 不正确. 二、填空题(每小题5分,共15分)4. 若函数f (x )=cos ωx cos ⎝ ⎛⎭⎪⎫π2-ωx (ω>0)的最小正周期为π,则ω的值为________. 答案 1解析 由于f (x )=cos ωx cos ⎝ ⎛⎭⎪⎫π2-ωx =12sin 2ωx所以T =2π2ω=π⇒ω=1.5. 已知函数f (x )=2sin x ,g (x )=2sin ⎝ ⎛⎭⎪⎫π2-x ,直线x =m 与f (x ),g (x )的图象分别交于M 、N 两点,则|MN |的最大值为________. 答案 2 2解析 构造函数F (x )=2sin x -2cos x =22sin ⎝⎛⎭⎪⎫x -π4,故最大值为2 2.6. 曲线y =2sin ⎝⎛⎭⎪⎫x +π4cos ⎝⎛⎭⎪⎫x -π4与直线y =12在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|=________. 答案 π解析 y =2sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝⎛⎭⎪⎫x -π4 =2sin ⎝⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-π2=2sin 2⎝ ⎛⎭⎪⎫x +π4 =1-cos ⎝⎛⎭⎪⎫2x +π2=1+sin 2x , |P 2P 4|恰为一个周期的长度π. 三、解答题7. (13分)已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x .(1)求f (x )的最小正周期;(2)设x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求f (x )的值域和单调递增区间. 解 (1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos 2x -sin 2x =-2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴f (x )的最小正周期为π.(2)∵x ∈⎣⎢⎡⎦⎥⎤-π3,π3,∴-π3≤2x +π3≤π.∴-32≤sin ⎝⎛⎭⎪⎫2x +π3≤1.∴f (x )的值域为[-2,3]. ∵当y =sin ⎝⎛⎭⎪⎫2x +π3递减时,f (x )递增, 令2k π+π2≤2x +π3≤2k π+3π2,k ∈Z, 则k π+π12≤x ≤k π+7π12,k ∈Z,又x ∈⎣⎢⎡⎦⎥⎤-π3,π3,∴π12≤x ≤π3.故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π12,π3.。
【步步高 学案导学设计】高中数学 第一章 三角函数章末复习课 新人教A版必修4
第一章 三角函数章末复习课 新人教A 版必修4课时目标 1.复习三角函数的基本概念、同角三角函数基本关系式及诱导公式.2.复习三角函数的图象及三角函数性质的运用. 知识结构一、选择题1.c os 330°等于( ) A.12 B .-12 C.32 D .-322.已知cos(π+x )=35,x ∈(π,2π),则tan x 等于( )A .-34B .-43 C.34 D.433.已知集合M =⎩⎨⎧⎭⎬⎫x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π2,k ∈Z }.则( )A .M =NB .M NC .N MD .M ∩N =∅4.为得到函数y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将函数y =sin 2x 的图象( ) A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度5.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-3π4<x <2k π+π4,k ∈Z }B .{x |2k π+π4<x <2k π+5π4,k ∈Z }C .{x |k π-π4<x <k π+π4,k ∈Z }D .{x |k π+π4<x <k π+3π4,k ∈Z }6.如图所示,一个大风车的半径为8 m ,每12 min 旋转一周,最低点离地面2 m .若风车翼片从最低点按逆时针方向开始旋转,则该翼片的端点P 离地面的距离h (m)与时间t (min)之间的函数关系是( )A .h =8cos π6t +10B .h =-8cos π3t +10C .h =-8sin π6t +10D .h =-8cos π6t +107.已知sin α=55,则sin 4α-cos 4α的值为________.8.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.9.函数f (x )=|sin x |的单调递增区间是__________.10.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3的图象为C , ①图象C 关于直线x =1112π对称;②函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ③由y =3sin 2x 的图象向右平移π3个单位长度可以得到图象C .以上三个论断中,正确论断的序号是________.三、解答题11.已知tan α=2,求下列代数式的值. (1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.12.已知函数f (x )=-sin 2x -a sin x +b +1的最大值为0,最小值为-4,若实数a >0,求a 、b 的值.能力提升13.若0<x <π2,则2x 与πsin x 的大小关系是( )A .2x >πsin xB .2x <πsin xC .2x =πsin xD .与x 的取值有关14.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≥cos x ,cos x ,sin x <cos x .给出下列四个命题:①该函数的图象关于x =2k π+π4(k ∈Z )对称;②当且仅当x =k π+π2(k ∈Z )时,该函数取得最大值1;③该函数是以π为最小正周期的周期函数;④当且仅当2k π+π<x <2k π+3π2 (k ∈Z )时,-22≤f (x )<0.其中正确的是________.(填序号)三角函数的性质是本板块复习的重点,在复习时,要充分利用数形结合思想把图象与性质结合起来,即利用图象的直观性得到函数的性质,或由单位圆中三角函数线表示的三角函数值来获得函数的性质,同时也能利用函数的性质来描述函数的图象,这样既有利于掌握函数的图象与性质,又能熟练运用数形结合的思想方法.章末复习课答案作业设计 1.C2.D [cos(π+x )=-cos x =35,∴cos x =-35<0,∵x ∈(π,2π),∴x ∈(π,32π),∴sin x =-45,∴tan x =43.]3.B [M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +14π,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +24π,k ∈Z .比较两集合中分式的分子,知前者为奇数π,后者是整数π.再根据整数分类关系,得M N .选B.]4.A [∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫2x +π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +5π12=sin ⎝ ⎛⎭⎪⎫2x +5π6. 由题意知要得到y =sin ⎝⎛⎭⎪⎫2x +5π6的图象只需将y =sin 2x 向左平移5π12个单位长度.] 5.D [sin 2x >cos 2x ⇔|sin x |>|cos x |.在直角坐标系中作出单位圆及直线y =x ,y =-x ,根据三角函数线的定义知角x 的终边应落在图中的阴影部分,故应选D.] 6.D [据题意可设y =10-8cos ωt (t ≥0).由已知周期为12 min ,可知t =6时到达最高点,即函数取最大值,知18=10-8cos 6ω,即cos 6ω=-1.∴6ω=π,得ω=π6.∴y=10-8cos π6t (t ≥0).]7.-35解析 sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1=2×15-1=-35.8.32解析 由图象可知三角函数的周期为T =4×π3=2πω,∴ω=32.9.⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z 解析 f (x )=|sin x |的周期T =π,且f (x )在区间[0,π2]上单调递增,∴f (x )的单调增区间为[k π,k π+π2],k ∈Z .10.①②解析 ①f ⎝ ⎛⎭⎪⎫11π12=3sin ⎝ ⎛⎭⎪⎫116π-π3=3sin 32π=-3,∴x =1112π为对称轴;②由-π12<x <5π12⇒-π2<2x -π3<π2,由于函数y =3sin x 在⎝ ⎛⎭⎪⎫-π2,π2内单调递增,故函数f (x )在⎝ ⎛⎭⎪⎫-π12,5π12内单调递增; ③∵f (x )=3sin2⎝⎛⎭⎪⎫x -π6,∴由y =3sin 2x 的图象向右平移π3个单位长度得到函数f (x )=3sin2⎝⎛⎭⎪⎫x -π3的图象,得不到图象C .11.解 (1)原式=4tan α-23tan α+5=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 12.解 令t =sin x ,则g (t )=-t 2-at +b +1=-⎝ ⎛⎭⎪⎫t +a 22+a24+b +1,且t ∈[-1,1].下面根据对称轴t 0=-a2与区间[-1,1]的位置关系进行分类讨论.(1)当-a2≤-1,即a ≥2时,⎩⎪⎨⎪⎧y max =g -=a +b =0,y min =g =-a +b =-4.解之得⎩⎪⎨⎪⎧a =2,b =-2.(2)当-1<-a2<0,即0<a <2时,⎩⎪⎨⎪⎧y max =g ⎝ ⎛⎭⎪⎫-a 2=a 24+b +1=0,y min =g=-a +b =-4.解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-6,b =-10.都不满足a 的范围,舍去. 综上所述,a =2,b =-2. 13.B[在同一坐标平面内作出函数y =2x 与函数y =πsin x 的图象,如图所示. 观察图象易知:当x =0时,2x =πsin x =0;当x =π2时,2x =πsin x =π;当x ∈⎝⎛⎭⎪⎫0,π2时,函数y =2x 是直线段,而曲线y =πsin x 是上凸的.所以2x <πsin x .故选B.]14.① 解析f (x )=max{sin x ,cos x },在同一坐标系中画出y =sin x 与y =cos x 的图象易知f (x )的图象为实线关于x =2k π+π4(k ∈Z )对称,故①对;线所表示的曲线.由曲=2k π+π2(k ∈Z )时,f (x )max =1,故②错;当x =2k π (k ∈Z )或x 该函数以2π为最小正周期,故③错;观察曲线易知,当2k π+时,-22≤f (x )<0,反之不成立,故④错. π<x <2k π+3π2(k ∈Z )。
【步步高】届高三数学大一轮复习 第十三章 选修系列学案 理 新人教A版
第十三章选修系列4学案73 几何证明选讲(一)相似三角形的判定及有关性质导学目标: 1.了解平行线等分线段定理和平行线分线段成比例定理;2.掌握相似三角形的判定定理及性质定理;3.理解直角三角形射影定理.自主梳理1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.2.平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段__________.推论1 平行于三角形一边的直线截其他两边(或________________),所得的对应线段__________.推论2 平行于三角形的一边,并且和其他两边________的直线所截得的三角形的三边与原三角形的三边对应________.推论3 三角形的一个内角平分线分对边所得的两条线段与这个角的两边对应成比例.3.相似三角形的判定判定定理1 对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应________的两个三角形相似.判定定理2 对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且____________相等的两个三角形相似.判定定理3 对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例的两个三角形相似.4.相似三角形的性质(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方.5.直角三角形射影定理直角三角形一条直角边的平方等于该直角边在____________与斜边的______,斜边上的高的________等于两条直角边在斜边上的射影的乘积.自我检测1.如果梯形的中位线的长为6 cm,上底长为4 cm,那么下底长为________cm.2.如图,在△ABC中,ED∥BC,EF∥BD,则下列四个结论正确的是(填序号)________.①AFFD=EDBC;②AFFD=CDAD;③AFFD=ADDC;④AFFD=ABAE.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=3,则AC=________.4.如图所示,在△ABC中,AD是∠BAC的平分线,AB=5 cm,AC=4 cm,BC=7 cm,则BD=________cm.第4题图第5题图5.(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________.探究点一确定线段的n等分点例1已知线段PQ,在线段PQ上求作一点D,使PD∶DQ=2∶1.变式迁移1 已知△ABC,D在AC上,AD∶DC=2∶1,能否在AB上找到一点E,使得线段EC的中点在BD上.探究点二 平行线分线段成比例定理的应用例2 在△ABC 的边AB 、AC 上分别取D 、E 两点,使BD =CE ,DE 的延长线交BC 的延长线于点F.求证:DF EF =ACAB.变式迁移2 如图,已知AB∥CD∥EF,AB =a ,CD =b(0<a<b),AE∶EC=m∶n(0<m<n),求EF.探究点三 相似三角形的判定及性质的应用例3 如图,已知梯形ABCD 中,AB∥CD,过D 与BC 平行的直线交AB 于点E ,∠ACE =∠ABC,求证:AB·CE=AC·DE.变式迁移3 如图,已知▱ABCD中,G是DC延长线上一点,AG分别交BD和BC于E、F 两点,证明AF·AD=AG·BF.1.用添加平行辅助线的方法构造使用平行线等分线段定理与平行线分线段成比例定理的条件.特别是在使用平行线分线段成比例定理及推论时,一定要注意对应线段,对应边.2.利用平行线等分线段定理将某线段任意等分,需要过线段的一个端点作辅助线,在作图时要注意保留作图痕迹.3.在证明两个或两个以上的比例式相等时,需要找第三个比例式与它们都相等,可考虑利用平行线分线段成比例定理或推论,也可以考虑用线段替换及等比定理,由相等的传递性得出结论.4.判定两个三角形相似,根据题设条件选择使用三角形相似的判定定理.(满分:75分)一、填空题(每小题5分,共40分)1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号).(1)AD DF =CE BC ;(2)AD BE =BC AF ;(3)CE DF =AD BC ;(4)AF DF =BE CE.2.如图所示,D 是△ABC 的边AB 上的一点,过D 点作DE∥BC 交AC 于E.已知AD DB =23,则S △ADES 四边形BCED=__________________________________________.3.如图,在四边形ABCD 中,EF∥BC,FG∥AD,则EF BC +FGAD=________.4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________.5.(2010·苏州模拟)如图,在梯形ABCD 中,AD∥BC,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF∥BC,若AD =12,BC =20,则EF =________.6.如图所示,在△ABC 中,A D⊥BC,CE 是中线,DC =BE ,DG⊥CE 于G ,EC 的长为4,则EG =________.7.(2010·天津武清一模)如图,在△ABC 中,AD 平分∠BAC,DE∥AC,EF∥BC,AB =15,AF =4,则DE =________.8.如图所示,BD 、CE 是△ABC 的中线,P 、Q 分别是BD 、CE 的中点,则PQBC=________.二、解答题(共35分)9.(11分)如图所示,在△ABC 中,∠CAB=90°,AD⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F ,求证:DF AF =AEEC.10.(12分)如图,△ABC 中,D 是BC 的中点,M 是AD 上一点,BM 、CM 的延长线分别交AC 、AB 于F 、E.求证:EF∥BC.11.(12分)(2010·苏州模拟)如图,在四边形ABCD 中,AC 与BD 相交于O 点,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别相交于点M ,N ,R ,S 和P ,求证:PM·PN=PR·PS.学案73 几何证明选讲 (一)相似三角形的判定及有关性质自主梳理2.成比例 两边的延长线 成比例 相交 成比例 3.相等 夹角 5.斜边上的射影 乘积 平方 自我检测 1.8 2.③ 3.2133解析 由射影定理:CD 2=AD·BD. ∴AD=43,∴AC=CD 2+AD 2=4+169=2133.4.359解析 ∵AB AC =BD DC =54,∴BD=359cm .5.4 2解析 ∵AC=4,AD =12,∠ACD=90°, ∴CD 2=AD 2-AC 2=128, ∴CD=8 2.又∵AE⊥BC,∠B=∠D, ∴△ABE∽△ADC,∴AB AD =BECD ,∴BE=AB·CD AD =6×8212=4 2.课堂活动区例1 解题导引 利用平行线等分线段定理可对线段任意等分,其作图步骤为:首先作出辅助射线,然后在射线上依次截取任意相同长度的n 条线段,最后过辅助线上的各等分点作平行线,确定所求线段的n 等分点.解 在线段PQ 上求作点D ,使PD∶DQ=2∶1,就是要作出线段PQ 上靠近Q 点的一个三等分点,通过线段PQ 的一个端点作辅助射线,并取线段的三等分点,利用平行线等分线段定理确定D 点的位置.作法:①作射线PN.②在射线PN 上截取PB =2a ,BC =a. ③连接CQ.④过点B 作CQ 的平行线,交PQ 于D. ∴点D 即为所求的点. 变式迁移1解 假设能找到,如图,设EC 交BD 于点F ,则F 为EC 的中点, 作EG∥AC 交BD 于G. ∵EG∥AC,EF =FC ,∴△EGF≌△CDF,且EG =DC , ∴EG 綊12AD ,△BEG∽△BAD,∴BE BA =EG AD =12,∴E 为AB 的中点. ∴当E 为AB 的中点时,EC 的中点在BD 上.例2 解题导引 证明线段成比例问题,一般有平行的条件可考虑用平行线分线段成比例定理或推论,也可以用三角形相似或考虑用线段替换等方法.证明 作EG∥AB 交BC 于G ,如图所示,∵△CEG∽△CAB,∴EG AB =CE AC ,即AC AB =CE EG =DB EG , 又∵DB EG =DF EF ,∴DF EF =AC AB.变式迁移2 解 如图,过点F 作FH∥EC,分别交BA ,DC 的延长线于点G ,H ,由EF∥AB∥CD 及FH∥EC,知AG =CH =EF ,FG =AE ,FH =EC.从而FG∶FH=AE∶EC=m∶n.由BG∥DH,知BG∶DH=FG∶FH=m∶n. 设EF =x ,则得(x +a)∶(x+b)=m∶n. 解得x =mb -na n -m ,即EF =mb -nan -m.例3 解题导引 有关两线段的比值的问题,除了应用平行线分线段成比例定理外,也可利用相似三角形的判定和性质求解.解题中要注意观察图形特点,巧添辅助线,对解题可起到事半功倍的效果.证明 方法一 ∵AB∥CD, ∴EA CD =AF CF ,即EA AF =CD CF .① ∵DE∥BC,∴AF AC =AE AB ,即EA AF =AB AC.②由①②得CD CF =ABAC,③∵∠FDC=∠ECF,∠DEC=∠FEC, ∴△EFC∽△ECD. ∴CD CF =DE CE .④ 由③④得AB AC =DECE ,即AB·CE=AC·DE.方法二 ∵AB∥CD,DE∥BC, ∴BEDC 是平行四边形. ∴DE=BC.∵∠ACE=∠ABC,∠EAC=∠BAC, ∴△AEC∽△ACB.∴BC CE =ABAC .∴AB AC =DECE,即AB·CE=AC·DE. 变式迁移3 证明 因为四边形ABCD 为平行四边形, 所以AB∥DC,AD∥BC.所以△ABF∽△GCF,△GCF∽△GDA. 所以△ABF∽△GDA.从而有AF AG =BFAD ,即AF·AD=AG·BF.课后练习区 1.(4)解析 由平行线分线段成比例定理可知(4)正确. 2.421解析 由AD DB =23知,AD AB =25,S △ADE S △ABC =425,故S △ADE S 四边形BCED =421.3.1解析 ∵EF∥BC,∴EF BC =AFAC,又∵FG∥AD,∴FG AD =CFAC ,∴EF BC +FG AD =AF AC +CF AC =ACAC =1. 4.562解析 设斜边上的两段的长分别为3t,2t ,由直角三角形中的射影定理知:62=3t·2t,解得t =6(t>0,舍去负根),所以斜边的长为56,故斜边上的中线的长为562.5.15解析 ∵AD∥BC,∴OB OD =BC AD =2012=53,∴OB BD =58,∵OE∥AD,∴OE AD =OB BD =58,∴OE=58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF=OE +OF =15. 6.2解析 连接DE ,因为AD⊥BC,所以△ADB 是直角三角形,则DE =12AB =BE =DC.又因为DG⊥CE 于G ,所以DG 平分CE ,故EG =2.7.6解析 设DE =x ,∵DE∥AC, ∴BE 15=x x +4,解得BE =15x x +4. ∴BD DC =BE EA =BE 15-BE =x 4. 又∵AD 平分∠BAC,∴BD DC =BA AC =15x +4=x4,解得x =6.8.14解析 连接DE ,延长QP 交AB 于N ,则⎩⎪⎨⎪⎧NP =12ED =14BC ,NP +PQ =12BC.得PQ =14BC.9.证明 由三角形的内角平分线定理得, 在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC,②(3分)在Rt △ABC 中,由射影定理知,AB 2=BD·BC, 即BD AB =ABBC.③(6分) 由①③得:DF AF =ABBC ,④(9分)由②④得:DF AF =AEEC.(11分)10.证明 延长AD 至G ,使DG =MD ,连接BG 、CG. ∵BD=DC ,MD =DG ,∴四边形BGCM 为平行四边形.(4分) ∴EC∥BG,FB∥CG, ∴AE AB =AM AG ,AF AC =AM AG,∴AE AB =AFAC ,(8分) ∴EF∥BC.(12分) 11.证明 ∵BO∥PM, ∴PM BO =PAOA ,(2分) ∵DO∥PS,∴PS DO =PA OA ,∴PM BO =PSDO .(4分) 即PM PS =BODO ,由BO∥PR 得PR BO =PCCO.(6分) 由DO∥PN 得PN OD =PCCO .(8分)∴PR BO =PN DO ,即PR PN =BO DO, ∴PR PN =PMPS.∴PM·PN=PR·PS.(12分) 学案74 几何证明选讲 (二)直线与圆的位置关系导学目标: 1.理解圆周角定理,弦切角定理及其推论;2.理解圆的切线的判定及性质定理;3.理解相交弦定理,割线定理,切割线定理;4.理解圆内接四边形的性质定理及判定.自主梳理1.圆周角、弦切角及圆心角定理(1)__________的度数等于其的对______的度数的一半.推论1:________(或________)所对的圆周角相等;同圆或等圆中,相等的圆周角__________相等.推论2:半圆(或直径)所对的__________等于90°.反之,90°的圆周角所对的弧是________(或__________).(2)弦切角的度数等于其所夹孤的度数的____.(3)圆心角的度数等于它所对弧的度数.2.圆中比例线段有关定理(1)相交弦定理:______的两条____________,每条弦被交点分成的____________的积相等.(2)切割线定理:从圆外一点引圆的一条割线和一条切线,切线长是这点到割线与圆的两个交点的线段长的____________.(3)割线定理:从圆外一点引圆的两条________,该点到每条割线与圆的交点的两条线段长的积相等.温馨提示相交弦定理,切割线定理,割线定理揭示了与圆有关的线段间的比例关系,在与圆有关的比例线段问题的证明、计算以及证明线段或角相等等问题中应用甚广.3.切线长定理从________一点引圆的两条切线,__________相等.4.圆内接四边形的性质与判定定理(1)性质定理:圆内接四边形的对角________.推论:圆内接四边形的任何一个外角都等于它的内角的________.(2)判定定理:如果四边形的__________,则四边形内接于____.推论:如果四边形的一个外角等于它的____________,那么这个四边形的四个顶点________.5.圆的切线的性质及判定定理(1)性质定理:圆的切线垂直于经过切点的________.推论1:经过________且________与垂直的直线必经过切点.推论2:经过________且切线与垂直的直线必经过______________________________.(2)判定定理:过半径________且与这条半径________的直线是圆的切线.自我检测1.如图在Rt△ABC中,∠B=90°,D是AB上一点,且AD=2DB,以D为圆心,DB为半径的圆与AC相切,则sin A=________.2.(2010·南京模拟)如图,AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为________.3.(2011·湖南)如图,A ,E 是半圆周上的两个三等分点,直径BC =4,AD⊥BC,垂足为D ,BE 与AD 相交于点F ,则AF 的长为________.4.如图所示,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 交⊙O 于点D ,若AD =32,CD =18,则AB =________.5.(2010·揭阳模拟)如图,已知P 是⊙O 外一点,PD 为⊙O 的切线,D 为切点,割线PEF 经过圆心O ,PF =12,PD =43,则圆O 的半径长为________、∠EFD 的度数为________.探究点一 与圆有关的等角、等弧、等弦的判定例1 如图,⊙O 的两条弦AC ,BD 互相垂直,OE⊥AB,垂足为点E.求证:OE =12CD.变式迁移1 在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆O 交BC 于点N ;若AC =13AB ,求证:BN =3MN.探究点二 四点共圆的判定例2 如图,四边形ABCD 中,AB 、DC 的延长线交于点E ,AD ,BC 的延长线交于点F ,∠AED,∠AFB 的角平分线交于点M ,且EM⊥FM.求证:四边形ABCD 内接于圆.变式迁移2 如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C两点,圆心O在∠PAC的内部,点M是BC的中点.(1)证明:A,P,O,M四点共圆;(2)求∠OAM+∠APM的大小.探究点三与圆有关的比例线段的证明例3如图,PA切⊙O于点A,割线PBC交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E,求证:(1)AD=AE;(2)AD2=DB·EC.变式迁移3 (2010·全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.1.圆周角定理与圆心角定理在证明角相等时有较普遍的应用,尤其是利用定理进行等角代换与传递.2.要注意一些常用的添加辅助线的方法,若证明直线与圆相切,则连结直线与圆的公共点和圆心证垂直;遇到直径时,一般要引直径所对的圆周角,利用直径所对的圆周角是直角解决有关问题.3.判断两线段是否相等,除一般方法(通过三角形全等)外,也可用等线段代换,或用圆心角定理及其推论证明.4.证明多点共圆的常用方法:(1)证明几个点与某个定点距离相等;(2)如果某两点在某条线段的同旁,证明这两点对这条线段的张角相等;(3)证明凸四边形内对角互补(或外角等于它的内角的对角).5.圆中比例线段有关定理常与圆周角、弦切角联合应用,要注意在题中找相等的角,找相似三角形,从而得到线段的比.(满分:75分)一、填空题(每小题5分,共40分)1.如图,已知AB ,CD 是⊙O 的两条弦,且AB =CD ,OE⊥AB,OF⊥CD,垂足分别是E ,F ,则结论①AB =CD ,②∠AOB=∠COD,③OE=OF ,④AD =BC 中,正确的有________个.2.(2010·湖南)如图所示,过⊙O 外一点P 作一条直线与⊙O 交于A 、B 两点.已知PA =2,点P 到⊙O 的切线长PT =4,则弦AB 的长为________.3.(2010·陕西)如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm,4 cm ,以AC 为直径的圆与AB 交于点D ,则BDDA=________.4.(2009·广东)如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB=45°,则圆O 的面积为________.5.已知PA 是圆O 的切线,切点为A ,PA =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R =________.6.如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,CD =27,AB =3.则BD 的长为________.7.(2011·天津)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF =CF =2,AF∶FB∶BE=4∶2∶1.若CE 与圆相切,则线段CE 的长为________.8.(2010·天津)如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P.若PB PA =12,PC PD =13,则BCAD的值为________.二、解答题(共35分)9.(11分)如图,三角形ABC 中,AB =AC ,⊙O 经过点A ,与BC 相切于B ,与AC 相交于D ,若AD =CD =1,求⊙O 的半径r.10.(12分)(2009·江苏)如图,在四边形ABCD 中,△ABC≌△BAD.求证:AB∥CD.11.(12分)(2011·江苏)如图,圆O 1与圆O 2内切于点A ,其半径分别为r 1与r 2(r 1>r 2).圆O 1的弦AB 交圆O 2于点C(O 1不在AB 上).求证:AB∶AC 为定值.学案74 几何证明选讲 (二)直线与圆的位置关系自主梳理1.(1)圆周角 弧 同弧 等弧 所对的弧 圆周角 半圆 弦为直径 (2)一半 2.(1)圆 相交弦 两条线段长(2)等比中项 (3)割线 3.圆外 切线长 4.(1)互补 对角 (2)对角互补 圆 内角的对角 共圆5.(1)半径 圆心 切线 切点 圆心 (2)外端 垂直 自我检测 1.12解析 设切点为T ,则DT⊥AC,AD =2DB =2DT , ∴∠A=30°,sin A =12.2.2 3解析 连接CB ,则∠DCA=∠CBA,又∠ADC=∠ACB=90°, ∴△ADC∽△ACB. ∴AD AC =AC AB. ∴AC 2=AB·AD=2×6=12. ∴AC=2 3. 3.233解析 如图,连接CE ,AO ,AB.根据A ,E 是半圆周上的两个三等分点,BC 为直径,可得∠CEB=90°,∠CBE=30°,∠AOB=60°,故△AOB 为等边三角形,AD =3,OD =BD =1,∴DF=33,∴AF=AD -DF =233. 4.40解析 如图,连接BD ,则BD⊥AC,由射影定理知,AB 2=AD·AC=32×50=1 600,故AB =40. 5.4 30°解析 由切割线定理得PD 2=PE·PF, ∴PE=PD 2PF =16×312=4,∴EF=8,OD =4.又∵OD⊥PD,OD =12PO ,∠P=30°,∠POD=60°=2∠EFD,∴∠EFD=30°. 课堂活动区例1 解题导引 (1)借用等弦或等弧所对圆周角相等,所对的圆心角相等,进行角的等量代换;同时也可借在同圆或等圆中,相等的圆周角(或圆心角)所对的弧相等,进行弧(或弦)的等量代换.(2)本题的证法是证明一条线段等于另一条线段的一半的常用方法.证明 作直径AF ,连接BF ,CF ,则∠ABF=∠ACF=90°. 又OE⊥AB,O 为AF 的中点, 则OE =12BF.∵AC⊥BD,∴∠DBC+∠ACB=90°,又∵AF 为直径,∠BAF+∠BFA=90°, ∵∠AFB=∠ACB,∴∠DBC=∠BAF,即有CD =BF. 从而得OE =12CD.变式迁移1 证明 ∵CM 是∠ACB 的平分线, ∴AC AM =BC BM , 即BC =AC·BMAM,又由割线定理得BM·BA=BN·BC, ∴BN·AC·BMAM =BM·BA,又∵AC=13AB ,∴BN=3AM ,∵在圆O 内∠ACM=∠MCN, ∴AM=MN ,∴BN=3MN.例2 解题导引 证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.证明连接EF,因为EM是∠AEC的角平分线,所以∠FEC+∠FEA=2∠F EM.同理,∠EFC+∠EFA=2∠EFM.而∠BCD+∠BAD=∠ECF+∠BAD=(180°-∠FEC-∠EFC)+(180°-∠FEA-∠EFA)=360°-2(∠FEM+∠EFM)=360°-2(180°-∠EMF)=2∠EMF=180°,即∠BCD与∠BAD互补.所以四边形ABCD内接于圆.变式迁移2 (1)证明连接OP,OM,因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°,由圆心O在∠PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆.(2)解由(1)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(1)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°,所以∠OAM+∠APM=90°.例3解题导引寻找适当的相似三角形,把几条要证的线段集中到这些相似三角形中,再用圆中角、与圆有关的比例线段的定理找到需要的比例式,使问题得证.证明 (1)∠AED=∠EPC+∠C,∠ADE=∠APD+∠PAB.因PE 是∠APC 的角平分线,故∠EPC=∠APD,PA 是⊙O 的切线,故∠C =∠PAB. 所以∠AED=∠ADE.故AD =AE. (2)⎭⎪⎬⎪⎫∠PCE=∠PAD ∠CPE=∠APD ⇒△PCE∽△PAD ⇒EC AD =PCPA ;⎭⎪⎬⎪⎫∠PEA=∠PDB ∠APE=∠BPD ⇒△PAE∽△PBD ⇒AE DB =PAPB .又PA 是切线,PBC 是割线⇒PA 2=PB·PC ⇒PA PB =PC PA. 故EC AD =AE DB,又AD =AE ,故AD 2=DB·EC. 变式迁移3 证明 (1)因为AC =BD ,所以∠BCD=∠ABC. 又因为EC 与圆相切于点C ,故∠ACE=∠ABC, 所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB,故BC BE =CD BC ,即BC 2=BE×CD.课后练习区 1.4解析 ∵在同圆或等圆中,等弦所对的圆心角相等,所对的弧相等,所对弦心距相等,故①②③成立,又由AB =CD ,得AD =BC ,∴④正确.2.6解析 连接BT ,由切割线定理, 得PT 2=PA·PB, 所以PB =8,故AB =6. 3.169解析AD AC =AC AB ⇒AD 3=35⇒AD =95⇒BD =165(cm ),BD DA =169. 4.8π解析 连接OA ,OB ,∵∠BCA=45°, ∴∠AOB=90°.设圆O 的半径为R ,在Rt △AOB 中,R 2+R 2=AB 2=16,∴R 2=8.∴圆O 的面积为8π.5. 3解析 如图,依题意,AO⊥PA,AB⊥PC,PA =2,PB =1,∠P=60°, 在Rt △CAP 中,有2OA =2R =2tan 60°=23, ∴R= 3. 6.4解析 由切割线定理得:DB·DA=DC 2,即DB(DB +BA)=DC 2,∴DB 2+3DB -28=0,∴DB =4.7.72解析 设BE =a ,则AF =4a ,FB =2a. ∵AF·FB=DF·FC,∴8a 2=2,∴a=12,∴AF=2,FB =1,BE =12,∴AE=72.又∵CE 为圆的切线,∴CE 2=EB·EA=12×72=74.∴CE=72. 8.66解析 ∵∠P=∠P,∠PCB=∠PAD,∴△PCB∽△PAD.∴PB PD =PC PA =BCAD .∵PB PA =12,PC PD =13,∴BC AD =66. 9.解 过B 点作BE∥AC 交圆于点E ,连接AE ,BO 并延长交AE 于F , 由题意∠ABC=∠ACB=∠AEB,(2分)又BE∥AC,∴∠CAB=∠ABE,则AB =AC 知,∠ABC=∠ACB=∠AEB=∠BAE,(4分) 则AE∥BC,四边形ACBE 为平行四边形. ∴BF⊥AE.又BC 2=CD×AC=2, ∴BC=2,BF =AB 2-AF 2=142.(8分) 设OF =x ,则⎩⎪⎨⎪⎧x +r =142,x 2+222=r 2,解得r =2147.(11分)10.证明 由△ABC≌△BAD 得∠ACB=∠BDA,(3分) 故A 、B 、C 、D 四点共圆,(5分) 从而∠CAB=∠CDB.(7分)再由△ABC≌△BAD 得∠CAB=∠DBA, 因此∠DBA=∠CDB,(10分) 所以AB∥CD.(12分) 11.证明 如图,连接AO 1并延长,分别交两圆于点E 和点D.连接BD ,CE.因为圆O 1与圆O 2内切于点A ,所以点O 2在AD 上,故AD ,AE 分别为圆O 1,圆O 2的直径.(5分)从而∠ABD=∠ACE=π2.(7分)所以BD∥CE,于是AB AC =AD AE =2r 12r 2=r 1r 2.(10分)所以AB∶AC 为定值.(12分)学案75 坐标系与参数方程导学目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用.自主梳理1.极坐标系的概念在平面上取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做________;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个____________.设M 是平面上任一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的________,记为θ.有序数对(ρ,θ)叫做点M 的__________,记作(ρ,θ).2.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标为(ρ,θ),则它们之间的关系为x =__________,y =__________.另一种关系为:ρ2=__________,tan θ=______________.3.简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程φ(ρ,θ)=0,并且坐标适合方程φ(ρ,θ)=0的点都在曲线上,那么方程φ(ρ,θ)=0叫做曲线的____________.(2)常见曲线的极坐标方程 ①圆的极坐标方程____________表示圆心在(r,0)半径为|r|的圆; ____________表示圆心在(r ,π2)半径为|r|的圆;________表示圆心在极点,半径为|r|的圆. ②直线的极坐标方程____________表示过极点且与极轴成α角的直线; ____________表示过(a,0)且垂直于极轴的直线; ____________表示过(b ,π2)且平行于极轴的直线;ρsin (θ-α)=ρ0sin (θ0-α)表示过(ρ0,θ0)且与极轴成α角的直线方程. 4.常见曲线的参数方程 (1)直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α.这是直线的参数方程,其中参数l 有明显的几何意义.(2)圆的参数方程若圆心在点M(a ,b),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,0≤α<2π.(3)椭圆的参数方程中心在坐标原点的椭圆x 2a 2+y2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数).(4)抛物线的参数方程抛物线y 2=2px(p>0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt.自我检测1.(2010·北京)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( )A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线2.(2010·湖南)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线3.(2010·重庆)直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ∈[0,2π))交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .76π B .54π C .43πD .53π4.(2011·广州一模)在极坐标系中,直线ρsin (θ+π4)=2被圆ρ=4截得的弦长为________.5.(2010·陕西)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.探究点一 求曲线的极坐标方程例1 在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程为________.变式迁移1 如图,求经过点A(a,0)(a>0),且与极轴垂直的直线l 的极坐标方程.探究点二 极坐标方程与直角坐标方程的互化例2 (2009·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.变式迁移2 (2010·东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.探究点三 参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =3k 1+k2y =6k21+k2;(2)⎩⎪⎨⎪⎧x =1-sin 2θy =sin θ+cos θ;(3)⎩⎪⎨⎪⎧x =1-t 21+t2y =t1+t2.变式迁移3 化下列参数方程为普通方程,并作出曲线的草图. (1)⎩⎪⎨⎪⎧x =12sin 2θy =sin θ+cos θ(θ为参数);(2)⎩⎪⎨⎪⎧x =1t y =1tt 2-1(t 为参数).探究点四 参数方程与极坐标的综合应用例4 求圆ρ=3cos θ被直线⎩⎪⎨⎪⎧x =2+2ty =1+4t(t 是参数)截得的弦长.变式迁移 4 (2011·课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数)M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB|.本节内容要注意以下两点:一、简单曲线的极坐标方程可结合极坐标系中ρ和θ的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出.同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同.在没有充分理解极坐标的前提下,可先化成直角坐标解决问题.二、在普通方程中,有些F(x ,y)=0不易得到,这时可借助于一个中间变量(即参数)来找到变量x ,y 之间的关系.同时,在直角坐标系中,很多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量.将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x ,y(它们都是参数的函数)的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.参数方程化普通方程常用的消参技巧有:代入消元、加减消元、平方后相加减消元等.同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题.(满分:75分)一、选择题(每小题5分,共25分)1.在极坐标系中,与点(3,-π3)关于极轴所在直线对称的点的极坐标是( )A .(3,23π)B .(3,π3)C .(3,43π)D .(3,56π)2.曲线的极坐标方程为ρ=2cos2θ2-1的直角坐标方程为( ) A .x 2+(y -12)2=14B .(x -12)2+y 2=14C .x 2+y 2=14D .x 2+y 2=13.(2010·湛江模拟)在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π6)作曲线C 的切线,则切线长为( )A .4B .7C .2 2D .2 34.(2010·佛山模拟)已知动圆方程x 2+y 2-x sin 2θ+22·y sin (θ+π4)=0(θ为参数),那么圆心的轨迹是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分5.(2010·安徽)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共12分)6.(2010·天津)已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =t ,y =1+t (t 为参数)与x 轴的交点,且圆C与直线x +y +3=0相切,则圆C 的方程为________.7.(2011·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.8.(2010·广东深圳高级中学一模)在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为________.三、解答题(共38分)9.(12分)(2011·江苏)在平面直角坐标系xOy中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t(t 为参数)平行的直线的普通方程.。
【步步高】高三数学大一轮复习 4.1任意角、弧度制及任意角的三角函数教案 理 新人教A版
§4.1 任意角、弧度制及任意角的三角函数2014高考会这样考 1.考查三角函数的定义及应用;2.考查三角函数的符号;3.考查弧长公式、扇形面积公式.复习备考要这样做 1.理解任意角的概念,会在坐标系中表示及识别角;2.掌握三角函数的定义,这是三角函数的基石.1. 角的概念(1)任意角:①定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,那么这个角不属于任何一个象限. 2. 弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad,1 rad =⎝ ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3. 任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx.三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .(Ⅱ)(Ⅲ) (Ⅳ)为正弦线;有向线段OM 为余弦线;有向线段[1. 对角概念的理解要准确(1)不少同学往往容易把“小于90°的角”等同于“锐角”,把“0°~90°的角”等同于“第一象限的角”.其实锐角的集合是{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同,终边相同的角的同一三角函数值相等.2. 对三角函数的理解要透彻三角函数也是一种函数,它可以看成是从一个角(弧度制)的集合到一个比值的集合的函数,也可以看成是以实数为自变量的函数,定义域为使比值有意义的角的范围. 如tan α=yx有意义的条件是角α终边上任一点P (x ,y )的横坐标不等于零,也就是角α的终边不能与y 轴重合,故正切函数的定义域为⎩⎨⎧⎭⎬⎫α|α≠k π+π2,k ∈Z .3. 三角函数线是三角函数的几何表示(1)正弦线、正切线的方向同纵轴一致,向上为正,向下为负. (2)余弦线的方向同横轴一致,向右为正,向左为负.(3)当角α的终边在x 轴上时,点T 与点A 重合,此时正切线变成了一个点,当角α的终边在y 轴上时,点T 不存在,即正切线不存在.(4)在“数”的角度认识任意角的三角函数的基础上,还可以从图形角度考察任意角的三角函数,即用有向线段表示三角函数值,这是三角函数与其他基本初等函数不同的地方.1. 若点P 在角2π3的终边上,且|OP |=2,则点P 的坐标是________.答案 (-1,3)解析 ∵x =|OP |cos 2π3=2×⎝ ⎛⎭⎪⎫-12=-1, y =|OP |sin2π3=3.∴点P 的坐标为(-1,3). 2. (2011·江西)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 答案 -8解析 因为sin θ=y42+y2=-255, 所以y <0,且y 2=64,所以y =-8.3. 下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45° (k ∈Z )B .k ·360°+94π (k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+94π (k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.4. 已知cos θ·tan θ<0,那么角θ是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角答案 C解析 若cos θ>0,tan θ<0,则θ在第四象限; 若cos θ<0,tan θ>0,则θ在第三象限,∴选C.5. 已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或4 答案 C解析 设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.题型一 角的有关问题例1 (1)写出终边在直线y =3x 上的角的集合;(2)若角θ的终边与67π角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第一象限角,试确定2α、α2所在的象限.思维启迪:利用终边相同的角进行表示或判断;根据角的定义可以把角放在坐标系中确定所在象限.解 (1)终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z }.(2)所有与67π角终边相同的角的集合是{θ|θ=67π+2k π,k ∈Z },∴所有与θ3角终边相同的角可表示为θ3=27π+23k π,k ∈Z .∴在[0,2π)内终边与θ3角终边相同的角有27π,2021π,3421π.(3)∵2k π<α<2k π+π2,k ∈Z ,∴4k π<2α<4k π+π,k π<α2<k π+π4,k ∈Z .∴2α在第一或第二象限或终边在y 轴非负半轴上,α2角终边在第一或第三象限. 探究提高 所有与α角终边相同的角(连同角α在内),可以表示为β=k ·360°+α,k ∈Z ;在确定α角所在象限时,有时需要对整数k 的奇、偶情况进行讨论.已知角α=45°,(1)在区间[-720°,0°]内找出所有与角α有相同终边的角β; (2)设集合M =⎩⎨⎧⎭⎬⎫x |x =k2×180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k4×180°+45°,k ∈Z ,那么两集合的关系是什么? 解 (1)所有与角α有相同终边的角可表示为 β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°≤0°, 得-765°≤k ×360°≤-45°,解得-765360≤k ≤-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M N . 题型二 三角函数的定义例2 已知角α的终边经过点P (x ,-2) (x ≠0),且cos α=36x ,求sin α+1tan α的值.思维启迪:先根据任意角的三角函数的定义求x ,再求sin α+1tan α的值.解 ∵P (x ,-2) (x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10.∴r =2 3. 当x =10时,P 点坐标为(10,-2), 由三角函数的定义,有sin α=-223=-66,1tan α=10-2=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同理可求得sin α+1tan α=65-66.探究提高 任意角的三角函数值与终边所在的位置有关,与点在终边上的位置无关,故要首先判定P 点所在的象限,确定r ,最后根据定义求解.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.解 ∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t ) (t ≠0), 则x =4t ,y =-3t ,r =x 2+y 2=t2+-3t2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34或sin α=35,cos α=-45,tan α=-34.题型三 三角函数线、三角函数值的符号 例3 (1)若θ是第二象限角,试判断os θθ的符号;(2)已知cos α≤-12,求角α的集合.思维启迪:由θ所在象限,可以确定sin θ、cos θ的符号;解三角不等式,可以利用三角函数线.解 (1)∵2k π+π2<θ<2k π+π (k ∈Z ),∴-1<cos θ<0,4k π+π<2θ<4k π+2π (k ∈Z ), -1≤sin 2θ<0,∴sin(cos θ)<0,cos(sin 2θ)>0.∴θθ<0.∴θθ的符号是负号.(2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2k π+23π≤α≤2k π+43π,k ∈Z }.探究提高 (1)熟练掌握三角函数在各象限的符号. (2)利用单位圆解三角不等式(组)的一般步骤: ①用边界值定出角的终边位置; ②根据不等式(组)定出角的范围; ③求交集,找单位圆中公共的部分; ④写出角的表达式.(1)y =sin x -32的定义域为________. (2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P (tan θ,cos θ)在第几象限? (1)答案 {x |2k π+π3≤x ≤2k π+23π,k ∈Z }解析 ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、 OB ,则OA 与OB 围成的区域(图中阴影部分)即为角α的终边的范围,故满足条件的角α的集合为{x |2k π+π3≤x ≤2k π+23π,k ∈Z }.(2)解 方法一 由sin 2θ<0,得2k π+π<2θ<2k π+2π (k ∈Z ),k π+π2<θ<k π+π (k ∈Z ).当k 为奇数时,θ的终边在第四象限; 当k 为偶数时,θ的终边在第二象限.又因cos θ≤0,所以θ的终边在左半坐标平面(包括y 轴),所以θ的终边在第二象限.所以tan θ<0,cos θ<0,点P 在第三象限. 方法二 由|cos θ|=-cos θ知cos θ≤0,① 又sin 2θ<0,即2sin θcos θ<0②由①②可推出⎩⎪⎨⎪⎧sin θ>0cos θ<0因此θ在第二象限,P (tan θ,cos θ)在第三象限. 题型四 扇形的弧长、面积公式的应用例4 已知一扇形的圆心角为α (α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积; (2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 思维启迪:(1)弓形面积可用扇形面积与三角形面积相减得到;(2)建立关于α的函数. 解 (1)设弧长为l ,弓形面积为S 弓,则 α=60°=π3,R =10,l =π3×10=10π3(cm),S 弓=S 扇-S △=12×10π3×10-12×102×sin π3=503π-5032=50⎝ ⎛⎭⎪⎫π3-32 (cm 2). (2)扇形周长C =2R +l =2R +αR ,∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 22α·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.探究提高 (1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷. (2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S 是扇形面积.(1)一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?扇形的面积是多少?(2)一扇形的周长为20 cm ;当扇形的圆心角α等于多少弧度时,这个扇形的面积最大? 解 (1)设扇形的圆心角为θ rad ,则扇形的周长是2r +r θ. 依题意:2r +r θ=πr ,∴θ=(π-2)rad. ∴扇形的面积S =12r 2θ=12(π-2)r 2.(2)设扇形的半径为r ,弧长为l , 则l +2r =20,即l =20-2r (0<r <10).∴扇形的面积S =12lr =12(20-2r )r=-r 2+10r =-(r -5)2+25. ∴当r =5时,S 有最大值25, 此时l =10,α=lr=2 rad.因此,当α=2 rad 时,扇形的面积取最大值.数形结合思想在三角函数线中的应用典例:(12分)(1)求函数y =lg(3-4sin 2x )的定义域;(2)设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.审题视角 (1)求定义域,就是求使3-4sin 2x >0的x 的范围.用三角函数线求解. (2)比较大小,可以从以下几个角度观察:①θ是第二象限角,θ2是第几象限角?首先应予以确定.②sin θ2,cos θ2,tan θ2不能求出确定值,但可以画出三角函数线.③借助三角函数线比较大小. 规范解答解 (1)∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.[2分] 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示), ∴x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).[4分] (2)∵θ是第二象限角,∴π2+2k π<θ<π+2k π,k ∈Z , ∴π4+k π<θ2<π2+k π,k ∈Z , ∴θ2是第一或第三象限的角.[6分] (如图阴影部分),结合单位圆上的三角函数线可得:①当θ2是第一象限角时,sin θ2=AB ,cos θ2=OA ,tan θ2=CT ,从而得,cos θ2<sin θ2<tan θ2;[8分]②当θ2是第三象限角时,sin θ2=EF ,cos θ2=OE ,tan θ2=CT ,得sin θ2<cos θ2<tan θ2.[10分]综上可得,当θ2在第一象限时,cos θ2<sin θ2<tan θ2;当θ2在第三象限时,sin θ2<cos θ2<tan θ2.[12分] 温馨提醒 1.第(1)小题的实质是解一个简单的三角不等式,可以用三角函数图象,也可以用三角函数线.用三角函数线更方便.2.第(2)小题比较大小,由于没有给出具体的角度,所以用图形可以更直观的表示.3.本题易错点:①不能确定θ2所在的象限;②想不到应用三角函数线.原因在于概念理解不透,方法不够灵活.方法与技巧1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP |=r 一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 失误与防范1.注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.注意熟记0°~360°间特殊角的弧度表示.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 角α的终边过点P (-1,2),则sin α等于( ) A.55B.255C .-55D .-255答案 B解析 由三角函数的定义, 得sin α=2-2+22=255. 2. 若α是第三象限角,则下列各式中不成立的是( )A .sin α+cos α<0B .tan α-sin α<0C .cos α-tan α<0D .tan αsin α<0答案 B解析 在第三象限,sin α<0,cos α<0,tan α>0,则可排除A 、C 、D ,故选B. 3. 已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C. 4. 有下列命题:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y 2. 其中正确的命题的个数是( )A .1B .2C .3D .4答案 A解析 ①正确,②不正确,∵sin π3=sin 2π3,而π3与2π3角的终边不相同.③不正确.sin α>0,α的终边也可能在y 轴的非负半轴上. ④不正确.在三角函数的定义中,cos α=x r=x x 2+y 2,不论角α在平面直角坐标系的任何位置,结论都成立. 二、填空题(每小题5分,共15分)5. 已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限.答案 二解析 点P 在第三象限,∴tan α<0,cos α<0. ∴α在第二象限.6. 设α为第二象限角,其终边上一点为P (m ,5),且cos α=24m ,则sin α的值为________.答案104解析 设P (m ,5)到原点O 的距离为r , 则m r =cos α=24m , ∴r =22,sin α=5r =522=104. 7. 函数y =sin x +12-cos x 的定义域是____________________. 答案 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z ) 解析 由题意知⎩⎪⎨⎪⎧sin x ≥0,12-cos x ≥0,即⎩⎪⎨⎪⎧sin x ≥0,cos x ≤12.∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z .三、解答题(共22分)8. (10分)已知角θ的终边经过点P (-3,m ) (m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值. 解 由题意,得r =3+m 2, 所以sin θ=m3+m2=24m . 因为m ≠0,所以m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角,所以cos θ=x r =-322=-64,tan θ=y x =5-3=-153;当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角,所以cos θ=x r =-322=-64,tan θ=y x =-5-3=153.9. (12分)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .解 设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=l r=2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A .-12B.12C .-32D.32答案 B解析 ∵r =64m 2+9,∴cos α=-8m64m 2+9=-45, ∴m >0,∴4m 264m 2+9=125,即m =12.2. 已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4 B.3π4C.5π4D.7π4答案 D解析 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角,∵tan θ=cos3π4sin3π4=-1,θ∈[0,2π),∴θ=7π4.3. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是 ( )A .1B .2C .3D .4答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确. 二、填空题(每小题5分,共15分)4. 已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m ,3m ) (m >0)是α终边上一点,则2sin α+cos α=________. 答案 25解析 由条件可求得r =5m ,所以sin α=35,cos α=-45,所以2sin α+cos α=25.5. 函数y =2cos x -1的定义域为________.答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示). ∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ). 6. 一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为__________.答案 (7+43)∶9解析 设扇形半径为R ,内切圆半径为r .则(R -r )sin 60°=r ,即R =⎝⎛⎭⎪⎫1+233r .又S 扇=12αR 2=12×2π3×R 2=π3R 2=7+439πr 2,∴S 扇πr 2=7+439. 三、解答题7. (13分)已知sin α<0,tan α>0.(1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为 {α|(2k +1)π<α<2k π+3π2,k ∈Z }.(2)由(2k +1)π<α<2k π+3π2,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质
第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。
【步步高】高三数学大一轮复习 专题一函数图象与性质的综合应用教案 理 新人教A版
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案19 三角函数的图象与性质导学目标: 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.自主梳理1.三角函数的图象和性质当x =____________________________________时,取最大值1; 当x =____________________________________时,取最小值-1. 3.余弦函数y =cos x当x =__________________________时,取最大值1; 当x =__________________________时,取最小值-1.4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为____________、___________、______________.5.y =sin x 、y =cos x 的对称轴分别为______________和____________,y =tan x 没有对称轴.自我检测1.(2010·十堰月考)函数y =Asin(ωx +φ) (A ,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω为 ( )A .1B .2C .3D .42.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是 ( ) A .x =-π6 B .x =-π12C .x =π6D .x =π123.(2010·湖北)函数f(x)=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为 ( ) A.π2B .πC .2πD .4π 4.(2010·北京海淀高三上学期期中考试)函数f(x)=(sin x +cos x)2+cos 2x 的最小正周期为 ( )A .4πB .3πC .2πD .π5.函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6 B.π4 C.π3 D.π2探究点一 求三角函数的定义域 例1 (2011·衡水月考)求函数y =2+log 12x +tan x 的定义域.变式迁移1 函数y =1-2cos x +lg(2sin x -1)的定义域为________________________.探究点二 三角函数的单调性例2 求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调区间.变式迁移2 (2011·南平月考)(1)求函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,x ∈[-π,π]的单调递减区间;(2)求函数y =3tan ⎝ ⎛⎭⎪⎫π6-x 4的周期及单调区间.探究点三 三角函数的值域与最值例3 已知函数f(x)=2asin(2x -π3)+b 的定义域为[0,π2],函数的最大值为1,最小值为-5,求a 和b 的值.变式迁移3 设函数f(x)=acos x +b 的最大值是1,最小值是-3,试确定g(x)=bsin(ax +π3)的周期.转化与化归思想的应用例 (12分)求下列函数的值域:(1)y =-2sin 2x +2cos x +2;(2)y =3cos x -3sin x ,x ∈[0,π2];(3)y =sin x +cos x +sin xcos x. 【答题模板】解 (1)y =-2sin 2x +2cos x +2=2cos 2x +2cos x=2(cos x +12)2-12,cos x ∈[-1,1].当cos x =1时,y max =4,当cos x =-12时,y min =-12,故函数值域为[-12,4].[4分](2)y =3cos x -3sin x =23cos(x +π6)∵x ∈[0,π2],∴π6≤x+π6≤2π3,∵y =cos x 在[π6,2π3]上单调递减,∴-12≤cos(x+π6)≤32∴-3≤y≤3,故函数值域为[-3,3].[8分](3)令t =sin x +cos x ,则sin xcos x =t 2-12,且|t|≤ 2.∴y =t +t 2-12=12(t +1)2-1,∴当t =-1时,y min =-1;当t =2时,y max =12+ 2.∴函数值域为[-1,12+2].[12分]【突破思维障碍】1.对于形如f(x)=Asin(ωx +φ),x ∈[a ,b]的函数在求值域时,需先确定ωx +φ的范围,再求值域.同时,对于形如y =asin ωx +bcos ωx +c 的函数,可借助辅助角公式,将函数化为y =a 2+b 2sin(ωx +φ)+c 的形式,从而求得函数的最值.2.关于y =acos 2x +bcos x +c(或y =asin 2x +bsin x +c)型或可以为此型的函数求值域,一般可化为二次函数在闭区间上的值域问题.提醒:不论用什么方法,切忌忽略函数的定义域.1.熟练掌握正弦函数、余弦函数、正切函数的定义、图象和性质是研究三角问题的基础,三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实质上就是解最简单的三角不等式(组).2.三角函数的值域问题,实质上是含有三角函数的复合函数的值域问题.3.函数y =Asin(ωx +φ) (A>0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体,利用y =sin x 的单调区间来求.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·黄山月考)已知函数y =sin x 的定义域为[a ,b],值域为[-1,12],则b -a 的值不可能是 ( )A.π3B.2π3 C .π D.4π32.(2010·安徽6校高三联考)已知函数y =tan ωx (ω>0)与直线y =a 相交于A 、B两点,且|AB|最小值为π,则函数f(x)=3sin ωx -cos ωx 的单调增区间是 ( )A.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6 (k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3 (k ∈Z ) D.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6 (k ∈Z ) 3.函数f(x)=tan ωx (ω>0)的图象的相邻的两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是 ( )A .0B .1C .-1 D.π44.函数y =-xcos x 的部分图象是图中 ( )5.(2011·三明模拟)若函数y =sin x +f(x)在[-π4,3π4]上单调递增,则函数f(x)可以是( )A .1B .cos x6.设点P 是函数f(x)=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对称轴的距离的最小值是π8,则f(x)的最小正周期是________.7.函数f(x)=2sin x4对于任意的x ∈R ,都有f(x 1)≤f(x)≤f(x 2),则|x 1-x 2|的最小值为________.8.(2010·江苏)定义在区间⎝⎛⎭⎪⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.三、解答题(共38分)9.(12分)(2011·厦门月考)已知函数f(x)=2cos 4x -3cos 2x +1cos 2x,求它的定义域和值域,并判断它的奇偶性.10.(12分)(2010·福建改编)已知函数f(x)=2sin(ωx +π6)+a(ω>0)与g(x)=2cos(2x +φ)+1的图象的对称轴完全相同.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)当x ∈[0,π2]时,f(x)的最小值为-2,求a 的值.11.(14分)(2010·安徽合肥高三二模)已知向量a =(sin x ,23sin x),b =(2cos x ,sin x),定义f(x)=a·b - 3.(1)求函数y =f(x),x ∈R 的单调递减区间;(2)若函数y =f(x +θ) (0<θ<π2)为偶函数,求θ的值.答案 自主梳理1.R R {x|x≠k π+π2,k ∈Z } [-1,1] [-1,1] R 2π 2π π 奇函数 偶函数 奇函数 [2k π-π2,2k π+π2](k ∈Z ) [2k π+π2,2k π+32π](k ∈Z ) [2k π-π,2k π](k ∈Z ) [2k π,2k π+π](k ∈Z ) (k π-π2,k π+π2)(k ∈Z )2.2k π+π2(k ∈Z ) 2k π-π2(k ∈Z ) 3.2k π(k ∈Z ) 2k π+π(k ∈Z ) 4.(k π,0)(k∈Z ) ⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ) ⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ) 5.x =k π+π2(k ∈Z ) x =k π(k ∈Z ) 自我检测1.C 2.D 3.D 4.D 5.A 课堂活动区例1 解题导引 求三角函数的定义域时,需要转化为三角不等式(组)求解,常常借助于三角函数的图象和周期解决,求交集时可以利用单位圆,对于周期相同的可以先求交集再加周期的整数倍即可.解 要使函数有意义,则⎩⎪⎨⎪⎧2+log 12x≥0,x>0,tan x≥0,x≠k π+π2k∈Z ,得⎩⎪⎨⎪⎧0<x≤4,k π≤x<k π+π2 k∈Z .所以函数的定义域为 ⎩⎨⎧⎭⎬⎫x|0<x<π2或π≤x≤4.变式迁移1 ⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π,k ∈Z 解析 由题意得⎩⎪⎨⎪⎧1-2cos x≥02sin x -1>0⇒⎩⎪⎨⎪⎧cos x≤12sin x>12,解得⎩⎪⎨⎪⎧π3+2k π≤x≤5π3+2k π,k ∈Z π6+2k π<x<5π6+2k π,k ∈Z ,即x ∈⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π,k ∈Z .例2 解题导引 求形如y =Asin(ωx +φ)或y =Acos(ωx +φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx +φ (ω>0)”视为一个“整体”;②A>0 (A<0)时,所列不等式的方向与y =sin x(x ∈R ),y =cos x(x ∈R )的单调区间对应的不等式方向相同(反).解 y =2sin ⎝ ⎛⎭⎪⎫π4-x 可看作是由y =2sin u 与u =π4-x 复合而成的. 又∵u =π4-x 为减函数,∴由2k π-π2≤u≤2k π+π2(k ∈Z ),即2k π-π2≤π4-x≤2k π+π2 (k ∈Z ),得-2k π-π4≤x≤-2k π+3π4 (k ∈Z ),即⎣⎢⎡⎦⎥⎤-2k π-π4,-2k π+3π4(k ∈Z )为 y =2sin ⎝ ⎛⎭⎪⎫π4-x 的递减区间. 由2k π+π2≤u≤2k π+3π2 (k ∈Z ),即2k π+π2≤π4-x≤2k π+3π2 (k ∈Z ),得-2k π-5π4≤x≤-2k π-π4 (k ∈Z ),即⎣⎢⎡⎦⎥⎤-2k π-5π4,-2k π-π4(k ∈Z )为 y =2sin ⎝ ⎛⎭⎪⎫π4-x 的递增区间. 综上可知,y =2sin ⎝ ⎛⎭⎪⎫π4-x 的递增区间为 ⎣⎢⎡⎦⎥⎤-2k π-5π4,-2k π-π4(k ∈Z ); 递减区间为⎣⎢⎡⎦⎥⎤-2k π-π4,-2k π+3π4 (k ∈Z ). 变式迁移2 解 (1)由y =sin ⎝ ⎛⎭⎪⎫π3-2x , 得y =-sin ⎝⎛⎭⎪⎫2x -π3, 由-π2+2k π≤2x-π3≤π2+2k π,得-π12+k π≤x≤5π12+k π,k ∈Z ,又x ∈[-π,π],∴-π≤x≤-712π,-π12≤x≤512π,1112π≤x≤π.∴函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,x ∈[-π,π]的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-712π,⎣⎢⎡⎦⎥⎤-π12,512π,⎣⎢⎡⎦⎥⎤1112π,π. (2)函数y =3tan ⎝ ⎛⎭⎪⎫π6-x 4的周期 T =π⎪⎪⎪⎪⎪⎪-14=4π. 由y =3tan ⎝ ⎛⎭⎪⎫π6-x 4得y =-3tan ⎝ ⎛⎭⎪⎫x 4-π6, 由-π2+k π<x 4-π6<π2+k π得-43π+4k π<x<83π+4k π,k ∈Z , ∴函数y =3tan ⎝ ⎛⎭⎪⎫π6-x 4的单调递减区间为⎝ ⎛⎭⎪⎫-43π+4k π,83π+4k π (k ∈Z ). 例3 解题导引 解决此类问题,首先利用正弦函数、余弦函数的有界性或单调性求出y =Asin(ωx +φ)或y =Acos(ωx +φ)的最值,再由方程的思想解决问题.解 ∵0≤x≤π2,∴-π3≤2x-π3≤23π,∴-32≤sin(2x-π3)≤1, 若a>0,则⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123;若a<0,则⎩⎨⎧2a +b =-5-3a +b =1,解得⎩⎨⎧a =-12+63b =19-123.综上可知,a =12-63,b =-23+12 3 或a =-12+63,b =19-12 3. 变式迁移3 解 ∵x ∈R , ∴cos x ∈[-1,1],若a>0,则⎩⎪⎨⎪⎧a +b =1-a +b =-3,解得⎩⎪⎨⎪⎧ a =2b =-1;若a<0,则⎩⎪⎨⎪⎧a +b =-3-a +b =1,解得⎩⎪⎨⎪⎧a =-2b =-1.所以g(x)=-sin(2x +π3)或g(x)=-sin(-2x +π3),周期为π.课后练习区1.A [画出函数y =sin x 的草图(图略),分析知b -a 的取值范围为[2π3,4π3],故选A.]2.B [由题意知,函数的最小正周期为π,则ω=1, 故f(x)=3sin ωx -cos ωx=2sin ⎝ ⎛⎭⎪⎫x -π6的单调增区间满足:2k π-π2≤x-π6≤2k π+π2(k ∈Z )解得2k π-π3≤x≤2k π+2π3.]3.A 4.D5.D [因为y =sin x -cos x =2sin(x -π4),-π2≤x-π4≤π2,即-π4≤x≤3π4,满足题意,所以函数f(x)可以是-cos x .]6.π2解析 依题意得T 4=π8,所以最小正周期T =π2.7.4π解析 由f(x 1)≤f(x)≤f(x 2)知,f(x 1)、f(x 2)分别为f(x)的最小值和最大值,而当x4=2k π-π2,即x =8k π-2π (k ∈Z )时,f(x)取最小值;而x 4=2k π+π2,即x =8k π+2π (k∈Z )时,f(x)取最大值,∴|x 1-x 2|的最小值为4π. 8.23解析 线段P 1P 2的长即为sin x 的值,且其中的x 满足6cos x =5tan x ,x ∈⎝⎛⎭⎪⎫0,π2,解得sin x =23.所以线段P 1P 2的长为23.9.解 由题意知cos 2x≠0,得2x≠k π+π2,解得x≠k π2+π4(k ∈Z ).∴f(x)的定义域为{x|x ∈R ,且x≠k π2+π4,k ∈Z }.……………………………………………………………………………………………(3分)又f(x)=2cos 4x -3cos 2x +1cos 2x= 2cos 2x -1 cos 2x -1 2cos 2x -1 =cos 2x -1=-sin 2x ,……………………………………………………………………(6分)又∵定义域关于原点对称,∴f(x)是偶函数.…………………………………………………………………………(8分)显然-sin 2x ∈[-1,0],又∵x≠k π2+π4,k ∈Z ,∴-sin 2x≠-12.∴原函数的值域为 ⎩⎨⎧⎭⎬⎫y|-1≤y<-12或-12<y ≤0.……………………………………………………………(12分)10.解 (1)∵f(x)和g(x)的对称轴完全相同,∴二者的周期相同,即ω=2,f(x)=2sin(2x +π6)+a(3分)∴f(x)的最小正周期T =2π2=π.…………………………………………………………(4分)(2)当2k π+π2≤2x+π6≤2k π+3π2,k ∈Z ,即k π+π6≤x≤k π+2π3(k ∈Z )时,函数f(x)单调递减,故函数f(x)的单调递减区间为[k π+π6,k π+2π3](k ∈Z ).…………………………………………………………………(8分)(3)当x ∈[0,π2]时,2x +π6∈[π6,7π6],…………………………………………………(10分)∴2sin(2·π2+π6)+a =-2,∴a =-1.………………………………………………………………………………(12分)11.解 f(x)=2sin xcos x +23sin 2x - 3=sin 2x +23·1-cos 2x2- 3=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.………………………………………………………(4分)(1)令2k π+π2≤2x-π3≤2k π+3π2,k ∈Z ,解得单调递减区间是⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z . ……………………………………………………………………………………………(8分)(2)f(x +θ)=2sin ⎝⎛⎭⎪⎫2x +2θ-π3. 根据三角函数图象性质可知,y =f(x +θ) ⎝⎛⎭⎪⎫0<θ<π2在x =0处取最值, ∴sin ⎝⎛⎭⎪⎫2θ-π3=±1, ∴2θ-π3=k π+π2,θ=k π2+5π12,k ∈Z .……………………………………………………(12分)又0<θ<π2,解得θ=5π12.…………………………………………………………………(14分)。