中考数学易错题专题训练-锐角三角函数练习题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学易错题专题训练-锐角三角函数练习题附答案
一、锐角三角函数
1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?
【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.
【解析】
试题分析:(1)通过解直角三角形即可得到结果;
(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得
BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.
试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,
∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,
∠CAO′=30°,
∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴显示屏的顶部B′比原来升高了(36﹣12)cm;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,
理由:∵显示屏O′B与水平线的夹角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴显示屏O′B′应绕点O′按顺时针方向旋转30°.
考点:解直角三角形的应用;旋转的性质.
2.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数
3.如图,在△ABC中,AB=7.5,AC=9,S△ABC=81
4
.动点P从A点出发,沿AB方向以每秒
5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM (P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;
(2)当△PQM 与△QCN 的面积满足S △PQM =95S △QCN 时,求t 的值; (3)当t 为何值时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.
【答案】(1)coaA=45;(2)当t=35时,满足S △PQM =95
S △QCN ;(3)当t=2733-s 或2733+s 时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上. 【解析】
分析:(1)如图1中,作BE ⊥AC 于E .利用三角形的面积公式求出BE ,利用勾股定理求出AE 即可解决问题;
(2)如图2中,作PH ⊥AC 于H .利用S △PQM =95
S △QCN 构建方程即可解决问题; (3)分两种情形①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .②如图4中,当点M 在CQ 上时,作PH ⊥AC 于H .分别构建方程求解即可;
详解:(1)如图1中,作BE ⊥AC 于E .
∵S △ABC =
12•AC•BE=814, ∴BE=92
, 在Rt △ABE 中,22=6AB BE -, ∴coaA=647.55
AE AB ==. (2)如图2中,作PH ⊥AC 于H .
∵PA=5t,PH=3t,AH=4t,HQ=AC-AH-CQ=9-9t,∴PQ2=PH2+HQ2=9t2+(9-9t)2,
∵S△PQM=9
5
S△QCN,
∴3•PQ2=93
5
⨯•CQ2,
∴9t2+(9-9t)2=9
5
×(5t)2,
整理得:5t2-18t+9=0,
解得t=3(舍弃)或3
5
.
∴当t=3
5时,满足S△PQM=
9
5
S△QCN.
(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.
易知:PM∥AC,
∴∠MPQ=∠PQH=60°,
∴3,
∴39-9t),
∴2733
-.
②如图4中,当点M在CQ上时,作PH⊥AC于H.
同法可得PH=3QH , ∴3t=3(9t-9),
∴t=27+33, 综上所述,当t=2733 s 或27+3326
s 时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.
点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.
4.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP .
(1)求证:直线CP 是⊙O 的切线.
(2)若BC=2,sin ∠BCP=,求点B 到AC 的距离.
(3)在第(2)的条件下,求△ACP 的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB ,∠CAB=2∠BCP 判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB ,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,
∴
∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
5.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.
【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .
【解析】
试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出
∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;
(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;
(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
试题解析:(1)如图1,连接OG.
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由为连接GD,如图2所示.
∵KG2=KD•GE,即,
∴,
又∵∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,
又∵∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如图3所示,
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
∵sinE=sin∠ACH=
,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,
∴CK=AC=5t,
∴HK=CK-CH=t.
在Rt △AHK 中,根据勾股定理得AH 2+HK 2=AK 2,
即(3t )2+t 2=(2 )2,解得t= .
设⊙O 半径为r ,在Rt △OCH 中,OC=r ,OH=r-3t ,CH=4t ,
由勾股定理得:OH 2+CH 2=OC 2,
即(r-3t )2+(4t )2=r 2,解得r= t=.
∵EF 为切线,
∴△OGF 为直角三角形,
在Rt △OGF 中,OG=r=,tan ∠OFG=tan ∠CAH= , ∴FG=
【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
6.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .
(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;
(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .
①求证BDE DBA ∆≅∆;
②求点H 的坐标.
(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).
【答案】(Ⅰ)点D 的坐标为5472(
,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.
【解析】
【分析】
(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明
△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.
【详解】
(Ⅰ)∵点()30A ,
,点()04C ,, ∴3,4OA OC ==.
∵四边形OABC 是矩形,
∴AB=OC=4,
∵矩形DAFE 是由矩形AOBC 旋转得到的
∴3AD AO ==.
在Rt OAB ∆中,5OB =,
过A D 、分别作B,DN OA AM O ⊥⊥
在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠=
==, ∴9OM 5
= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5
==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠=
=,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25
=. ∴点D 的坐标为5472,2525⎛⎫
⎪⎝⎭.
(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,
∴OA AD 3,ADE 90,DE AB 4∠===︒==.
∴OD AD =.
∴
DOA ODA ∠∠=.
又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒
∴ABD BDE ∠∠=. 又∵BD BD =,
∴ΔBDE ΔDBA ≅.
②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,
又∵BHE DHA ∠∠=,
∴ΔBHE ΔDHA ≅.
∴DH=BH ,
设AH x =,则DH BH 4x ==-,
在Rt ΔADH 中,222AH AD DH =+,
即()222x 34x =+-,得25x 8=
, ∴25AH 8
=. ∴点H 的坐标为253,
8⎛
⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,
当0<α≤180°时,
∵点B 与点F 是对应点,A 为旋转中心,
∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,
∵FA=FB ,FO ⊥AB ,
∴OA=12
AB=2, ∴cos ∠BAF=
OA AF =12
, ∴∠BAF=60°,即α=60°,
当180°<α<360°时,
同理解得:∠BAF′=60°,
∴旋转角α=360°-60°=300°.
综上所述:α60=︒或300︒.
【点睛】
本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.
7.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.
(1)求k 的值;
(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);
(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.
【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .
【解析】
【分析】
(1)先求出A 的坐标,然后利用待定系数法求出k 的值;
(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证
POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;
(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.
【详解】
解:(1)把0x =代入4y kx =+,4y =,
∴4BO =,
又∵
4ABO S ∆=, ∴142
AO BO ⋅=,4AO =, ∴(4,0)A -,
把4x =-,0y =代入4y kx =+,
得044k =-+,
解得1k =.
故答案为1;
(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +
如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,
∴90PDO CEO ∠=∠=︒,
∴90POD OPD ∠+∠=︒,
∵线段OP 绕点O 顺时针旋转90°至线段OC ,
∴90POC ∠=︒,OP OC =,
∴90POD EOC ∠+∠=︒,
∴OPD EOC ∠=∠,
∴POD OCE ∆≅∆,
∴OE PD =,
4m t =+.
故答案为4m t =+.
(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,
由(1)知,4AO BO ==,90BOA ∠=︒,
∴ABO ∆为等腰直角三角形,
∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,
∴BT TO =,
∵90BTO ∠=︒,
∴90TPO TOP ∠+∠=︒,
∵PO BM ⊥,
∴90BNO ∠=︒,
∴BQT TPO ∠=∠,
∴QTB PTO ∆≅∆,
∴QT TP =,PO BQ =,
∴PQT QPT ∠=∠,
∵PO PK KB =+,
∴QB PK KB =+,QK KP =,
∴KQP KPQ ∠=∠,
∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,
∴KPB BPN ∠=∠,
设KPB x ∠=︒,
∴BPN x ∠=︒,
∵2PMB KPB ∠=∠,
∴2PMB x ∠=︒,
45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,
∴PO PM =,
过点P 作PD x ⊥轴,垂足为点D ,
∴22OM OD t ==,
9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,
tan tan OPD BMO ∠=∠,
OD BO PD MO =,442t t t
=+, 14t =,22t =-(舍)
∴8OM =,由(2)知,48m t OM =+==,
∴CM y P 轴,
∵90PNM POC ∠=∠=︒,
∴BM OC P ,
∴四边形BOCM 是平行四边形,
∴4832BOCM S BO OM =⨯=⨯=Y .
故答案为32.
【点睛】
本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.
8.如图,在平面直角坐标系xOy 中,点P 是⊙C 外一点,连接CP 交⊙C 于点Q ,点P 关于点Q 的对称点为P ′,当点P ′在线段CQ 上时,称点P 为⊙C “友好点”.已知A (1,0),B (0,2),C (3,3)
(1)当⊙O 的半径为1时,
①点A ,B ,C 中是⊙O “友好点”的是 ;
②已知点M 在直线y +2 上,且点M 是⊙O “友好点”,求点M 的横坐标m 的取值范围;
(2)已知点D 0),连接BC ,BD ,CD ,⊙T 的圆心为T (t ,﹣1),半径为1,若在△BCD 上存在一点N ,使点N 是⊙T “友好点”,求圆心T 的横坐标t 的取值范围.
【答案】(1)①B;②0≤m≤3;(2)﹣4+33≤t<33.
【解析】
【分析】
(1))①根据“友好点”的定义,OB=<2r=2,所以点B是⊙O“友好点”;
②设M(m,﹣3
m+2 ),根据“友好点”的定义,OM=
2
2
3
22
2
m m
⎛⎫
+-+≤
⎪
⎪
⎝⎭
,由此
求解即可;
(2)B(0,2),C(3,3),D(23,0),⊙T的圆心为T(t,﹣1),点N是⊙T“友好点”,NT≤2r=2,所以点N只能在线段BD上运动,过点T作TN⊥BD于N,作TH∥y轴,与BD交于点
H.易知∠BDO=30°,∠OBD=60°,NT=3
HT,直线BD:y=﹣
3
x+2,可知H(t,﹣
3
t+2),继而可得NT=﹣1
2
t+
33
,由此可得关于t的不等式,解出t的范围即可.
【详解】
(1)①∵r=1,
∴根据“友好点”的定义,OB=<2r=2,
∴点B是⊙O“友好点”,
∵OC=22
33
+=32>2r=2,∴点C不是⊙O“友好点”,A(1,0)在⊙O上,不是⊙O“友好点”,
故答案为B;
②如图,
设M (m ,﹣33m +2 ),根据“友好点”的定义, ∴OM =22322
2m m ⎛⎫+-+≤ ⎪ ⎪⎝⎭
, 整理,得2m 2﹣23m ≤0,
解得0≤m ≤3;
∴点M 的横坐标m 的取值范围:0≤m ≤3;
(2)∵B (0,2),C (3,3),D (23,0),⊙T 的圆心为T (t ,﹣1),点N 是⊙T “友好点”, ∴NT ≤2r =2,
∴点N 只能在线段BD 上运动,过点T 作TN ⊥BD 于N ,作TH ∥y 轴,与BD 交于点H .
∵tan ∠BDO =323OB OD == ∴∠BDO=30°,
∴∠OBD =60°,
∴∠THN=∠OBD=60°,
∴NT =HT•sin ∠THN=32
HT , ∵B (0,2),D 30),
∴直线BD :y 3+2, ∵H 点BD 上,
∵H (t ,﹣
33t +2), ∴HT 3+2﹣(﹣1)3+3,
∴NT=3
2HT=
3
2
(﹣
3
3
t+3)=﹣
1
2
t+
33
2
,
∴﹣1
2t+
33
≤2,
∴t≥﹣4+33,
当H与点D重合时,点T的横坐标等于点D的横坐标,即t=33,
此时点N不是“友好点”,
∴t<33,
故圆心T的横坐标t的取值范围:﹣4+33≤t<33.
【点睛】
本题是圆的综合题,正确理解“友好点”的意义,熟练运用相似三角形的性质与特殊三角函数是解题的关键.
9.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.
(1)若c=63+2,
①BC=,¶DE的长为;
②当CP=62时,判断CP与⊙A的位置关系,井加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)
【答案】(1)①12,π;②详见解析;(2)①6
5
;②
6
5
(3)答案见详解
【解析】
【分析】
(1)①先求出AB,AC,进而求出BC和∠ABC,最后用弧长公式即可得出结论;②判断出△APC是直角三角形,即可得出结论;
(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;
(3)画图图形,同(2)的方法即可得出结论.
【详解】
(1)①如图1,
∵c =3+2,
∴OC =3,
∴AC =3﹣2=3
∵AB =6,
在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC AB 3 ∴∠ABC =60°,
∵AE =AB ,
∴△ABE 是等边三角形,
∴∠BAE =60°,
∴∠DAE =30°, ∴»DE 的长为306180
π⨯=π, 故答案为12,π;
②CP 与⊙A 相切. 证明:∵AP =AB =6,AC =OC ﹣OA =3 ∴AP 2+CP 2=108,
又AC 2=(32=108,
∴AP 2+PC 2=AC 2.
∴∠APC =90°,即:CP ⊥AP .
而AP 是半径,
∴CP 与⊙A 相切.
(2)若c =10,即AC =10﹣2=8,则BC =10.
①若点P 在»BE
上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,
S △ABC =
12AB ×AC =1
2BC ×AF , ∴AF =AB AC BC ⋅=24
5
,
∴PF =AP ﹣AF =6
5
;
②如图3,若点P 在»DE
上,作PG ⊥BC 于点G ,
当点P 与点D 重合时,PG 最大. 此时,sin ∠ACB =PG AB CP BC
=, 即PG =
AB CP BC ⋅=6
5
∴若c =10,点P 与BC 距离的最大值是6
5
; (3)当c =1时,如图4,
过点P 作PM ⊥BC ,sin ∠BCP =AB PM
BC CD
= ∴PM =
3737AB CD BC ⋅===4237
37
; 当c =6时,如图5,同c =10的①情况,PF =6131213
613
-,
当c=9时,如图6,同c=10的①情况,PF=
4285
6
85 ,
当c=11时,如图7,
点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG 18117
.
【点睛】
此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.
10.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点
A的坐标为(4,0),点D在边AB上,且tan∠AOD=1
2
,点E是射线OB上一动点,
EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.
(1)求B,D两点的坐标;
(2)当点E在线段OB上运动时,求∠HDA的大小;
(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.
【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣
2,8﹣2)或(2,2)或42164216++⎝⎭或16421642,77⎛-- ⎝⎭
,理由见解析 【解析】 【分析】
(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 1
2
得AD=
1
2
OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=1
2
OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=
1
2
EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;
(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】
解:(1)∵A (4,0), ∴OA =4,
∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),
在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12
, ∴AD =
12OA =1
2
×4=2, ∴D (4,2);
(2)如图1,在Rt△OFG中,∠OFG=90°
∴tan∠GOF=GF
OF =
1
2
,即GF=
1
2
OF,
∵四边形OABC为正方形,
∴∠AOB=∠ABO=45°,
∴OF=EF,
∴GF=1
2
EF,
∴G为EF的中点,
∵GH∥x轴交AE于H,
∴H为AE的中点,
∵B(4,4),D(4,2),
∴D为AB的中点,
∴DH是△ABE的中位线,
∴HD∥BE,
∴∠HDA=∠ABO=45°.
(3)①若⊙G与对角线OB相切,
如图2,当点E在线段OB上时,
过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,
∵OA=4,
∴AF=4﹣2,
∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,
∴GH=1
2AF=
1
2
×(4﹣22x)=2﹣2x,
则x=2﹣2x,
解得:x=22﹣2,
∴E(8﹣42,8﹣42),
如图3,当点E在线段OB的延长线上时,
x=2x﹣2,
解得:x=2+2,
∴E(8+42,8+42);
②若⊙G与对角线AC相切,
如图4,当点E在线段BM上时,对角线AC,OB相交于点M,
过点G作GP⊥OB于点P,设PG=x,可得PE=x,
EG=FG2,
OF=EF=2x,
∵OA=4,
∴AF=4﹣2,
∵G为EF的中点,H为AE的中点,
∴GH为△AFE的中位线,
∴GH =
12AF =1
2
×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴422
7
x +=
, ∴42164216,77E ⎛⎫++ ⎪ ⎪⎝⎭
; 如图5,当点E 在线段OM 上时,
GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得422
7
x -=
, ∴16421642,77E ⎛⎫
-- ⎪ ⎪⎝⎭
; 如图6,当点E 在线段OB 的延长线上时,
3x ﹣22x ﹣2, 解得:422
7
x =
(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或
42164216,⎛⎫++ ⎪ ⎪⎝⎭或16421642,⎛⎫
-- ⎪ ⎪⎝⎭
. 【点睛】
本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.
11.
如图,△ABC 中,AC =BC =10,cosC =
3
5
,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.
(2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.
(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.
【答案】(1)409R =;(2)25880320
x
y x x x =
-++(3)505- 【解析】 【分析】
(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC =3
5
,则sinC =
45,sinC =HP CP =10R R -=45
,即可求解; (2)首先证明PD ∥BE ,则EB BF
PD PF
=,即:202
4588x y x x
x -+--=,即可求解;
(3)证明四边形PDBE 为平行四边形,则AG =EP =BD ,即:AB =DB+AD =AG+AD =
5
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=3
5
,则sinC=
4
5
,
sinC=HP
CP
=
10
R
R
-
=
4
5
,解得:R=
40
9
;
(2)在△ABC中,AC=BC=10,cosC=3
5
,
设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH=ACsinC=8,
同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=22
8+(4)
x-=2880
x x
-+,
DA=25
x,则BD=45﹣25x,
如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则cosβ=
5
,sinβ=
5
, EB =BDcosβ=(45﹣25
x )×5=4﹣25
x ,
∴PD ∥BE ,
∴EB BF
PD PF
=,即:202
4588x y x x
x -+--=,
整理得:y =
25x
x 8x 803x 20
-++;
(3)以EP 为直径作圆Q 如下图所示,
两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,
由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,
∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中, AD =2rcosβ5DG 5
AG =2r , 5=52r 51
+, 则:DG 5
50﹣5 相交所得的公共弦的长为50﹣5 【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
12.已知抛物线y=﹣1
6
x2﹣
2
3
x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对
称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.
(1)求直线AC的解析式;
(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.
(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.
【答案】(1) y=1
3
x+2;(2) 点M坐标为(﹣2,
5
3
)时,四边形AOCP的面积最大,此时
|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(
3
5
-,
19
5
).
【解析】
【分析】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;
(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.
【详解】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,
2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,8
3
),C点坐标为(0,2),则过点C
的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k
1
3
=,则:直线AC的表达式
为:y
1
3
=x+2;
(2)如图,过点P作x轴的垂线交AC于点H.
四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP
的面积最大即可,设点P坐标为(m,
1
6
-m2
2
3
-m+2),则点G坐标为(m,
1
3
m+2),
S△ACP
1
2
=PG•OA
1
2
=•(
1
6
-m2
2
3
-m+2
1
3
-m﹣2)•6
1
2
=-m2﹣3m,当m=﹣3时,上式
取得最大值,则点P坐标为(﹣3,5
2
).连接OP交对称轴于点M,此时,|PM﹣OM|有
最大值,直线OP的表达式为:y
5
6
=-x,当x=﹣2时,y
5
3
=,即:点M坐标为(﹣2,
5 3),|PM﹣OM|的最大值为:2222
555
(32)()2()
233
-++--+=61.
(3)存在.
∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=
DC2+MD2,即:(6﹣a)2=22+a2,解得:a
8
3
=,则:MC
10
3
=,过点D作x轴的垂线交x
轴于点N,交EC于点H.在Rt△DMC中,1
2
DH•MC
1
2
=MD•DC,即:DH
108
33
⨯=⨯2,
则:DH
8
5
=,HC22
6
5
DC DH
=-=,即:点D的坐标为(
618
55
-,);
设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣6
1010
,D′坐标
为(
618
55
1010
,
-++),而点E坐标为(﹣6,2),则
2''
A D =22618(6)()55-++=36,2'A E =22()(2)1010+-=2410m -+,2'ED =22248()()551010+++=2128510
m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E =2
'ED 时,36+2410m -+=2128510m ++,解得:m =210,此时D ′(618551010
,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m ++=2410
m -+,解得:m =810-,此时D ′(618551010,-++)为(-6,2); ③当2'A E +2'ED =2''A D 时,2410m -
++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35-,195). 综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-
,195). 【点睛】
本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.
13.已知:如图,直线y =-x +12分别交x 轴、y 轴于A 、B 点,将△AOB 折叠,使A 点恰好落在OB 的中点C 处,折痕为DE .
(1)求AE 的长及sin ∠BEC 的值;
(2)求△CDE 的面积.
【答案】(1)2,sin ∠BEC=
35;(2)754
【解析】
【分析】 (1)如图,作CF ⊥BE 于F 点,由函数解析式可得点B ,点A 坐标,继而可得
∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,
解得:x=52,
故可得sin∠BEC=
3
5
CF
CE
,AE=52;
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
2
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=15
2
,即AD=
15
2
,
故S△CDE=S△AED=
2
4
AD×AE=
75
4
.
【点睛】
本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.
14.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).
【答案】拦截点D处到公路的距离是(500+500)米.
【解析】
试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离
DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出
CF=CD=500米,则DA=BE+CF=(500+500)米.
试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.
在Rt△BCE中,∵∠E=90°,∠CBE=60°,
∴∠BCE=30°,
∴BE=BC=×1000=500米;
在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,
∴CF=CD=500米,
∴DA=BE+CF=(500+500)米,
故拦截点D处到公路的距离是(500+500)米.
考点:解直角三角形的应用-方向角问题.
15.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)
【答案】潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用
BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD=
tan AD ACD
=
tan30
x
3x
在Rt△BCD中,BD=CD•tan68°,
∴325+x=3x•tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频。