《高等数学教学资料》第七章(1)-PPT课件

合集下载

高等数学 上册 第7章 微分方程

高等数学 上册 第7章 微分方程

形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)

两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x

5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2

假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程

dx
y x1 3

由①得
( C为任意常数)

高数课件1-7PPT课件

高数课件1-7PPT课件
2
作单位圆的切线,得ACO .
扇形OAB的圆心角为x , OAB的高为BD,
于是有 sin x BD, x 弧 AB, tan x AC ,
函数与极限
8
sin x x tan x, 即 cos x sin x 1,
x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
x0
lim cos x 1, 又lim1 1, lim sin x 1.
x0
x0
x0 x
函数与极限
9
例3

lim
x0
1
cos x2
x
.

2sin2 x
原式 lim x0
2 x2
1
lim
sin 2
x 2
2 x0 ( x)2
lim (1 1 )x e.
x
x
函数与极限
13
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
x
x
t
t
t t 1
lim (1 1 )t1(1 1 ) e.
t t 1
t 1
lim(1 1 )x e
x
x
令t 1, x
lim(1
1
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
xn是有界的;
lim n
xn
存在.

高等数学教学资料-第七章

高等数学教学资料-第七章

kx3 k2 x6
1
k k
2
,
y 0
ykx3
其值随k的不同而变化,
故极限不存在.
确定极限不存在的方法:
( 1 ) 令 P (x ,y ) 沿 y k 趋 向 x 于 P 0 (x 0 ,y 0 ), 若 极 限 值 与 k 有 关 , 则 可 断 言 极 限 不 存 在 ;
(2)找两种不同趋近方式,使limf(x,y)存在, xx0 yy0 但两者不相等,此时也可断言f(x,y)在点 P0(x0,y0)处极限不存在.
内点一定是聚点; 边界点可能是聚点;
例 {x ( ,y )|0 x 2 y 2 1 }
(0,0)既是边界点也是聚点.
点集E的聚点可以属于E,也可以不属于E.
例如, {x ( ,y )|0 x 2 y 2 1 }
(0,0) 是聚点但不属于集合.
例如, {x (,y)|x2y21 }
边界上的点都是聚点也都属于集合.
x x0 y y0
(或 f ( x, y) A ( 0)这里 | PP0 |).
说明:
(1)定义中PP0 的方式是任意的;
(2)二元函数的极限也叫二重极限 limf (x, y); xx0 yy0
(3)二元函数的极限运算法则与一元函数类似.
例2 求证lx i0m (x2y2)sin x2 1y20 y 0
正 数 , 总 存 在 正 数 , 使 得 对 于 适 合 不 等 式 0 | PP0 | ( x x0 )2 ( y y0 )2 的 一 切 点,都有| f ( x , y ) A | 成立,则称 A 为函数
z f ( x, y)当 x x0, y y0 时的极限, 记为 lim f ( x, y) A

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

(3)求出 x S(t)dt 的幂级数形式,并求其收敛域. 0
解:(1)显 然 该 幂 级 数 的 收 敛 域为 ( 1,1] ;
(2)S'(x)
n1
(1)n1 n
xn
n1
(1)n1 n
xn
(1)n1 xn1, 收敛域为( 1,1);
n1
(3)
x
S(t)dt
0
x 0 n1
bn1 2 bn
an 2 an1
32
5
2
5
3
©
三、幂级数的性质
1. 代数运算性质
设 an xn和 bn xn 的收敛半径各为R1和R2 ,
n0
n0
R minR1, R2
(1) 加减法
an xn bn xn
n0
n0
x (R, R)
©
(2) 乘法 (类似于多形式的乘法)
令余项 则在收敛域上有
例如, 等比级数 它的收敛域是
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
级数发散 ;
幂级数
s( x) u1( x) u2( x) un( x) 定义域
s(x) 的定义域就是 级数的收敛域.
(函余数项,1)项一rn级般((1x数,考)的虑)s部函,(但x分数)只和1有s1ns(在nxx(时)xD),,它ln(i的m1定,s1n)义上( x域,)它是才s(是x)
x
S(t) dt
0
an
n0
x 0
tn
dt
an n0n 1
x n 1 ,
x (R, R )

高等数学(工科类)第七章

高等数学(工科类)第七章

a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
称为算术级数.
1
(2)等比数列各项的和

a1 a1q a1q2 a1qn1

称为等比级数,也称为几何级数.
级 数
(3)调和级数为
1 1 1 1 1 .
1 5

1 6

1 7

1 8
1
1 2

1 4

1 4

1 8

1 8

1 8

1 8
数 的 基
1 3. 2
本 概

高等数学
数项级数
数项级数的审敛法
函数项级数与幂级数
函数展开成幂级数
第二章
第一节
第 12 页
一般地,对任意正整数k,有
Sk
1
1 2


1 3

1 4



1 5


1 8



1 9


1 16



1

1 2k 1 1

1 2k 1
2


1 2k

1
1 2

1 2

1 2

1 2

1 1 k.
数 项
2
2级
由于k可以任意大,所以数列Sk 无界,从而部分和数列Sn 也无界,
高等数学(工科类)
高 等 数 学 第 七 章
高等数学
数项级数

高等数学上册第七章课件.ppt

高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程

解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]

《高等数学教案》课件

《高等数学教案》课件

《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。

第七章-微分方程1

第七章-微分方程1
* y 其中 为非齐次方程的特解,可设 0 非根 * k x y x e Qm ( x ) k 1 单根 2 重根
( 复 习 )
Y 为对应齐次方程的通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张 下一张 返 回
高 等 数 学 ( 下 )
例11 解
求 y '' 5 y' 6 y xe 2 x 通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张
下一张
返 回
高 等 数 学 ( 下 )
二、一阶线性微分方程
一阶线性微分方程的标准形式:
dy P ( x ) y Q( x ) dx
当Q( x ) 0, 上面方程称为齐次的.
( 复 习 )
当Q( x ) 0, 上面方程称为非齐次的.
华侨大学 厦门工学院 高等数学教学系 制作
*
1 b0 , b1 1 2
2x
( 复 习 )
y xe
原方程的通解为
1 ( x 1) 2
3x
y c1e
2x
c2 e
xe
2x
1 ( x 1) 2
上一张 下一张 返 回
华侨大学 厦门工学院 高等数学教学系 制作
高 等 数 学 ( 下 )
例12 解
求y '' 3 y' 2 y 3 xe x 通解
高 等 数 学 ( 下 )
一、可分离变量的微分方程
g ( y )dy f ( x )dx
可分离变量的微分方程.
4 4 dy 例如 2 x 2 y 5 y 5 d y 2 x 2d x , dx 解法 设函数 g( y ) 和 f ( x ) 是连续的,

《高等数学(下册)》课件 高等数学 第7章

《高等数学(下册)》课件 高等数学  第7章
列条件:
0) 满足下
(1)un1 un (n 1,2 ,3, ) ;(2)lnim un 0 , 则级数收敛,且其和 S u1 。
例2 判别以下级数的敛散性:
(1) (1)n
n 1
1 n
;(2)
n 1
(1)n1
n 2n 1


(1)该级数为交错级数。因为
un1
1 n 1
1 n
un
,且
lim
un
1 3n 2
1 3n
1
,而级数
是发散的,由比较审
n1 3n
敛法可知,级数 1 发散。
n1 3n 2
(2)因为
un
1 n2n
1 2n
,而几何级数
1 2n
n 1
是收敛的,由比
较审敛法可知,级数
1 n1 n2n
收敛。
1
1
(3)因为 un (n 1)(n 3) n2
1
,而
p-
级数
1 5
1 8
1 9
1 16
1 2k 1
1
1 2k 1
2
1 2k
1
1 2
1 2
1 2
1 2
1 1 k . 22
由于k可以任意大,所以数列Sk 无界,从而部分和数列Sk 也
无界,因此调和级数 1 是发散的。
n1 n
定理1
对于 p- 级数
1 np
n 1
( p 0),当
p 1
,1 3
,由性质2可知,
级数
1
发散。
n1 n 3
性质3(级数收敛的必要条件) 若级数 un 收敛,则它的一般项 n 1

《高等数学》 第七章

《高等数学》 第七章

C

第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1

求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.

将方程化为齐次方程的形式
dy dx
y x
1

高等数学第七章常微分方程

高等数学第七章常微分方程

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
高等数学
第七章 常微分方程
因此y=eλ1x是原方程的解。 函数y=C1eλ1x+C2eλ2x的一阶导数和二阶导数分别为 y′=C1λ1eλ1x+C2λ2eλ2x y″=C1λ12eλ1x+C2λ22eλ2x 代入原方程,则 (C1λ12eλ1x+C2λ22eλ2x)-(λ1+λ2)(C1λ1eλ1x+C2λ2eλ2x)+λ1λ2( C1eλ1x+eλ2x)≡0 说明y=C1eλ1x+C2eλ2x也是原方程的解。
微分方程的概念 一阶微分方程 可降阶的高阶微分方程 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程
第一节 微分方程的概念
一、 微分方程的基本概念
例1 已知一条曲线经过点(2,1),且该曲线上任一点
P(x,y)处切线斜率为x,求该曲线的方程.
解 设所求曲线方程为y=y(x).由导数的概念及几何意义
F(x,f(x),f′(x),…,f(n)(x))≡0 则称y=f(x)为微分方程 (7-1-1) 在区间I上的解。
第一节 微分方程的概念
例2 验证函数y=eλ1x和y=C1eλ1x+C2eλ2x均为方程 y″-(λ1+λ2)y′+λ1λ2y=0的解。
解 y=eλ1x的一阶导数和二阶导数分别为 y′=λ1eλ1x, y″=λ12eλ1x 将y,y′,y″代入原方程中,则 λ12eλ1x-(λ1+λ2)λ1eλ1x+λ1λ2eλ1x≡0
dx

大一高数课件第七章

大一高数课件第七章

微分的概念
总结词
微分是导数的另一种表达方式,也是描 述函数在某一点附近的变化率的重要概 念。
VS
详细描述
微分表示函数在某一点处的增量与自变量 增量的比值当自变量增量趋于0时的极限 ,即函数在该点附近的变化率。微分与导 数的关系是微分等于导数与自变量增量的 乘积加上高阶无穷小量。微分具有线性性 质,即函数的微分满足线性运算规则。
洛必达法则
洛必达法则
如果函数f(x)与g(x)在某点x0的某个领域内 有定义,且f'(x0)=0或f'(x0)不存在,而 g'(x0)≠0,那么当x→x0时,lim (f(x)/g(x))=lim (f'(x0)/g'(x0))。
洛必达法则的应用条件
应用洛必达法则求极限时,需要满足三个条 件:分子和分母的导数都存在且分母的导数 不为零;所求极限的表达式是“0/0”或“ 无穷大/无穷大”的形式;通过等价无穷小 替换或有理化分母等方法将所求极限的表达 式化为“0/0”的形式。
03
导数与微分
导数的定义
总结词
导数是描述函数在某一点附近的变化率的重要概念。
详细描述
导数定义为函数在某一点处的切线的斜率,表示函数在该点附近的变化率。通过求导,可以分析函数 在某一点附近的增减性、极值等性质。
导数的性质
总结词
导数具有一些重要的性质,如可加性、可乘性、链式法则等 。
详细描述
导数具有可加性和可乘性,即对于两个函数的和或乘积求导 ,可以分别对每个函数求导后再进行相应的运算。链式法则 是指对复合函数的导数进行求导时,需要用到外层函数的导 数和内层函数的导数。
应用
微积分基本定理是计算定积分的 基石,通过它可以求出许多复杂 函数的定积分。

高等数学第七章.ppt

高等数学第七章.ppt



a11x1+a12x2+…+a1nxn=b1
(1)

a21x1+a22x2+…+a2nxn=b2
(2)


……

am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为

max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法



线
《经济大词典》定义线性规划:一种

具有确定目标,而实现目标的手段又有

一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。





二、线性规划三要素

高等数学第七章课件.ppt

高等数学第七章课件.ppt

a
(2) 三角形法则
b
向量的加法符合下列运算规律:
((12))交结换合律律::aa
b b
cb
(aa.
b)
c
a
a a
(b
b
c ).
多个向量相加,可以按照三角形法则.
负向量:大小相a 等但方向a相反的向量.
减法:a b a (b)
ab
b
a
ab
特例:a
(a)
0.
b
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
λα
φ1 = φ φ1=π- φ
Prj(λα)= 0 =λPrjlα;
λ<0
(二) 向量的坐标表示
单位向量:模长为1的向量. a0

M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
向量平行 方向相反或者方向b 相同的向量a
a//b
零向量和任何向量都平行.
三、向量的线性运算
(一) 向量的加 减法
加法:a b c
(1) 平行四边形法则
b c
a
b
c
a
(b )
ab
(向(二((123量))))aa向与000,,,量实aaa与数与 与数aa0的2同 的反a乘向乘向法,积,|| 记aa作|||a||12,a规a||a定 | a是一个向量.

高等数学7.1—2章PPT课件

高等数学7.1—2章PPT课件

由初始条件得 C = 1, 故所求特解为
y x2 1 1
.
13
例3. 求下述微分方程的通解:
y sin2 (x y 1) 解: 令 u x y 1, 则
u 1 y
故有
1 u sin2 u

sec2 u du dx
解得
tan u x C
所求通解: tan(x y 1) x C ( C 为任意常数 )
这说明 x C1 cos k t C2 sin k t 是方程的解 . C1 ,C2 是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得: C1 A,C2 0 , 故所求特解为
x Acos k t
.
7
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q
且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
g( (x))(x) dx f (x) dx
两边积分, 得 g( y) dy f (x) dx
则有
G( y)
F ( x)
G(y) F(x) C

当G(y) 与F(x) 可微且 G’(y) =g(y)≠0 时, 上述过程可逆,
说明由②确定的隐函数 y=(x) 是①的解. 同样,当F’(x) = f (x)≠0 时, 由②确定的隐函数 x=(y) 也是①的解.
.
14
例四 求方程 d y ex y 的通解. dx
解法 1 分离变量 e y d y ex dx
ey ex C

(ex C)ey 1 0 ( C < 0 )
解法 2 令u x y, 则u 1 y
故有 积分
u 1 eu
du
1 eu
xC

高等数学PPT课件:数量积向量积

高等数学PPT课件:数量积向量积

ab axbx a yby azbz 0
数量积的物理意义为 力 F推动r 质点从点A
沿直线运动到点B所作的功 W F×AB(即实例)
10
数量积 向量积

已知a
(1,1,4),b
(1,2,2),

(1)
a
b;
(2) a与b的夹角;
(3) a在b上的投影.

(1)
a
b
1
1
1
(2)
(4)
, 求u
2a
3b的模.
注:
|
u|
2
|
a|
3
|
b|
.
3

|
u
|2
|
2a
3b
|2
(2a
3b )
(2a
3b )
分配律
2a
2a
2a
3b
3b
2a
3b
3b
4
|
a|2
12a
b
9
|
b|2
4 52
12 | a||
b|
cos
9 22
76
| u| 76
3
7
数量积 向量积
用向量的数量积,证明恒等式:
此时也称
a与
b
正交.

()
a
b
0,
| a|
0,
| b | 0,
cos 0, , ab.
()
ab,
2
, cos 0,
a
b
|
a||
b|
2
cos
0.

rr r i 、j 、k互相正交
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为二元函数的图形.
(如下页图)
二元函数的图形通常是一张曲面.
例如, zsinxy 图形如右上图.
例如, x2y2z2a2
z
球面.
D {x (,y)x2y2a2}.
o
y
单值分支: z a2x2y2
x
za2x2y2.
二、多元函数的极限
定 义 1 设 函 数 z f (x, y) 的 定 义 域 为 D, P0 ( x0 , y0 ) 是 其 聚 点 , 如 果 对 于 任 意 给 定 的
正 数 , 总 存 在 正 数 , 使 得 对 于 适 合 不 等 式 0 | PP0 | ( x x0 )2 ( y y0 )2 的 一 切 点,都有| f ( x , y ) A | 成立,则称 A 为函数
z f ( x, y)当 x x0, y y0 时的极限, 记为 lim f ( x, y) A
多 元 函 数 中 同 样 有 定 义 域 、 值 域 、 自 变 量 、 因 变 量 等 概 念 .
例1 求 f(x,y)arc3sixn2(y2)的定义域. xy2

3 x2 y2 1
x y2 0
2 x2 y2 4
x

y2
所求定义域为 D { x ,y ( ) |2 x 2 y 2 4 ,x y 2 }.
边界上的点都是聚点也都属于集合.
(4)n维空间
设 n为取定的一个自然数,我们称 n元数组 (x1, x2 ,L , xn ) 的全体为n维空间,而每个n元数 组 (x1, x2 ,L , xn ) 称为 n维空间中的一个点,数 xi 称为该点的第i 个坐标.
说明:
n维空间的记号为R n ;
n维空间中两点间距离公式
x x0 y y0
(或 f ( x, y) A ( 0)这里 | PP0 |).
说明:
(1)定义中PP0 的方式是任意的;
(2)二元函数的极限也叫二重极限 limf (x, y); xx0 yy0
(3)二元函数的极限运算法则与一元函数类似.
例2 求证lx i0m (x2y2)sin x2 1y20 y 0
内点一定是聚点; 边界点可能是聚点;
例 {x ( ,y )|0 x 2 y 2 1 }
(0,0)既是边界点也是聚点.
点集E的聚点可以属于E,也可以不属于E.
例如, {x ( ,y )|0 x 2 y 2 1 }
(0,0) 是聚点但不属于集合.
例如, {x (,y)|x2y21 }
第七章 多元函数微分学
一、多元函数的概念
(1)邻域
设P0(x0,y0)是xo平 y面上的一个点, 是某 一正数,与点P0(x0,y0)距离小于 的点P(x,y) 的全体,称为点P0的 邻域,记为U(P0,),
U(P0,) P |P0| P
P 0
( x , y ) |( x x 0 ) 2 ( y y 0 ) 2 .
内点、边界点、区域、聚点等概念也可定义.
(5)二元函数的定义
设D是平面上的一个点集,如果对于每个点
P(x,y)D,变量z按照一定的法则总有确定的 值和它对应,则称z是变量x,y的二元函数,记为 zf(x,y)(或记为zf(P)).
类似地可定义三元及三元以上函数.
当 n 2 时 , n 元 函 数 统 称 为 多 元 函 数 .
o
x
开 区 域 连 同 它 的 边 界 一 起 称 为 闭 区 域 . y
例如,{x (,y)|1x 2y24 }.
o
x
对于点集E 如果存在正K数,使一切点 PE 与 某 一 定 点 A间 的 距 离AP不 超 过K ,
即 AP K
对一切PE 成立,则称 E 为有界点集,否 则称为无界点集 例如.,
(2)区域
设E是平面上的一P个 是点 平集 面, 上的 一个点.如果 P的 存某 在一 点邻 U(P域 )E, 则称 P为E的内.点 E的内点属E于.
如果点集 E的点都是内点,
则称E为开集 .
P
例如,E 1 {x ( ,y )1 x 2 y 2 4 }
即为开集.
E
如果P点的任一个邻域内 于E既 的有 点属 ,
(6) 二元函数zf(x,y) 的图形
设函数z f (x, y)的定义域为D ,对于任意 取定的P(x, y)D,对应的函数值为 z f (x, y),这样,以x 为横坐标、y 为纵坐 标、z为竖坐标在空间就确定一点M(x, y,z), 当x取遍D 上一切点时,得一个空间点集 {(x, y,z)| z f (x, y),(x, y)D},这个点集称
y
{x ( ,y )|1 x 2 y 2 4 }
有界闭区域;o来自x {x ,(y )|x y 0 }
无界开区域.
(3)聚点
设 E 是 平 面 上 的 一 个 点 集 , P 是 平 面 上 的 一 个 点 , 如 果 点 P的 任 何 一 个 邻 域 内 总 有 无 限 多 个 点 属 于 点 集 E , 则 称 P为 E 的 聚 点 . 说明:
证 (x2y2)sinx2 1y20 x2y2sinx2 1y2 x2 y2
设两点为 P(x1,x2,L,xn), Q(y1,y2,L,yn),
|P Q |(y 1 x 1 )2 (y 2 x 2 )2 L (y n x n )2 .
特殊地当 n1,2,3 时,便为数轴、平面、
空间两点间的距离.
n维空间中邻域、区域等概念
邻域: U ( P 0 ,) P |P 0 | , P P R n
也有不属 E的 于点(P点 本身可以E属 ,于 也
可以不属 E) 于,则P称 为E的边界点.
E的边界点的全体 E的 称边 为界.
P
设 D是开集.如果对于 D内
任何两点,都可用折连线结起来, E
且该折线上的点都属D于,则称 开集D 是连通的.

连通的开集称为区域或开区域.
y
例如,{x (,y)|1x 2y24 }.
相关文档
最新文档