民胜实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

民胜实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列各组数中,是方程2x-y=8的解的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.
故答案为:C.
【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。

2、(2分)不等式的解集,在数轴上表示正确的是()
A.
B.
C.
D.
【答案】C
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:由得:1+2x≥5
x≥2,
因此在数轴上可表示为:
故答案为:C.
【分析】先解一元一次不等式(两边同乘以5去分母,移项,合并同类项,系数化为1),求出不等式的解集,再把不等式的解集表示在数轴上即可(x≥2在2的右边包括2,应用实心的圆点表示)。

3、(2分)若a>b,则下列不等式一定成立的是()
A. a+b>b
B. >1
C. ac2>bc2
D. b-a<0
【答案】D
【考点】不等式及其性质,有理数的加法,有理数的减法,有理数的除法
【解析】【解答】解:A、当b<a<0,则a+b<b,故此选项不符合题意;
B、当a>0,b<0,<,1故此选项不符合题意;
C、当c=0,ac2>bc2,故此选项不符合题意;
D、当a>b,b-a<0,故此选项符合题意;
故本题选D
【分析】根据有理数的加法,减法,除法法则,及不等式的性质,用举例子即可一一作出判断。

4、(2分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是()
A. 该班总人数为50人
B. 骑车人数占总人数的20%
C. 步行人数为30人
D. 乘车人数是骑车人数的2.5倍
【答案】C
【考点】频数(率)分布直方图,扇形统计图
【解析】【解答】解:由条形图中可知乘车的人有25人,骑车的人有10人,
在扇形图中分析可知,乘车的占总数的50%,所以总数有25÷50%=50人,所以骑车人数占总人数的20%;步行人数为30%×50=15人;乘车人数是骑车人数的2.5倍.
故答案为:C
【分析】根据直方图和扇形统计图对应的乘车人数与百分比可得某班的人数,即可判断A,根据扇形统计图可得骑车人数的百分比,即可判断B,根据总人数减去乘车人数再减去骑车人数即可得出步行人数,从而判断C,最后根据直方图的乘车人数与骑车人数即可判断D.
5、(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:
①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有
这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.
其中正确的个数是()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】实数在数轴上的表示,无理数的认识
【解析】【解答】①任何无理数都是无限不循环小数,故①正确;
②实数与数轴上的点一一对应,故②错误;
③在1和3之间的无理数有无数个,故③错误;
④是无理数,故④错误;
⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;
故答案为:B.
【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。

6、(2分)满足方程组的解x与y之和为2,则a的值为()
A. ﹣4
B. 4
C. 0
D. 任意数
【答案】B
【考点】三元一次方程组解法及应用
【解析】【解答】解:根据题意可列出方程组,
(1 )﹣(2)得x+2y=2,
代入(3)得y=0,
则x=2,
把y=0,x=2代入(1)得:a+2=6,
∴a=4.
故答案为:B.
【分析】根据题意建立三元一次方程组,观察系数的特点,两个方程中含有a,且a的系数是1,因此利用加减消元消去a后的方程与x+y=2,建立二元一次方程组,求出x、y的值,就可求出a的值。

7、(2分)如图,在数轴上表示无理数的点落在()
A.线段AB上
B.线段BC上
C.线段CD上
D.线段DE上
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵=2≈2×1.414≈2.828,
∴2.8<2.828<2.9,
∴在线段CD上.
故答案为:C.
【分析】根据无理数大概的范围,即可得出答案.
8、(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
9、(2分)如果方程组的解中与的值相等,那么的值是()
A.1
B.2
C.3
D.4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:∵方程组的解中与的值相等,
∴x=y
∴3x+7x=10
解之:x=1
∴y=1
∴a+a-1=5
解之:a=3
故答案为:C
【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。

10、(2分)关于x的不等式-x+a≥1的解集如图所示,则a的值为()
A.-1
B.0
C.1
D.2
【答案】D
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:解不等式得:,由图形可知,不等式的解集为,,则得:
a=2.
故答案为:D.
【分析】先用a表示出不等式的解集,在根据数轴上x的取值范围可得关于a的方程,解方程即可求出答案。

11、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()
A. ∠1=∠2
B. ∠2=∠4
C. ∠3=∠4
D. ∠1+∠4=180°
【答案】D
【考点】平行线的判定
【解析】【解答】解:A.∠1=∠2无法进行判断;
B.∠2和∠4是同位角,但是不能判断a∥b;
C.∠3和∠4没有关系,不能判断a∥b;
D.∠1的对顶角与∠4的和是180°,能判断a∥b,故答案为:D
【分析】解本题的关键在于找到同位角、内错角与同旁内角.
12、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()
A. 150°
B. 135°
C. 120°
D. 90°
【答案】D
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:连接BD,
∵BC⊥CD,
∴∠C=90∘,
∴∠CBD+∠CDB=180∘−90∘=90∘
∵AB∥DE,
∴∠ABD+∠EDB=180∘,
∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘
故选D.
【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.
二、填空题
13、(1分)如图,要从小河引水到村庄A,最短路线是过A作垂直于河岸的垂线段AD(不考虑其他因素),理由是:________.
【答案】在连接直线外一点与直线上各点的线段中,垂线段最短
【考点】垂线段最短
【解析】【解答】解:如图
∵AD⊥BD于点D
∴AD最短(在连接直线外一点与直线上各点的线段中,垂线段最短)
故答案为:在连接直线外一点与直线上各点的线段中,垂线段最短【分析】根据垂线段最短,解答此题。

14、(1分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由
,得3a=2b;
⑤由a2=b2,得a=b.其中正确的是________
【答案】①②④
【考点】不等式及其性质
【解析】【解答】解:①由a=b,得5﹣2a=5﹣2b,正确;
②由a=b,得ac=bc,正确;
③由a=b(c≠0),得= ,不正确;
④由,得3a=2b,正确;
⑤由a2=b2,得a=b或a=﹣b,不正确.
故答案为:①②④
【分析】利用等式的性质逐一判断,就可得出正确的序号。

15、(1分)规定[x]表示不超过x的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则y的取值范围是________。

【答案】2≤y<3
【考点】不等式及其性质
【解析】【解答】解:∵[y]表示不超过x的最大整数,[y]=3,
∴且y<4,
即 x<3.故答案为: x<3.
【分析】根据:规定[x]表示不超过x的最大整数,[y]=2,说明y的整数部分不超过2,据此作出判断即可。

16、(1分)用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=________
【答案】25°
【考点】对顶角、邻补角
【解析】【解答】解:由对顶角定义,得∠2=∠1=25°,
故答案为:25°【分析】因为对顶角相等,所以可以求出∠2的度数.
17、(1分)若x,y为实数,且|x+2|+=0,则的值为________.
【答案】-1
【考点】算术平方根,绝对值的非负性
【解析】【解答】解:由题意得:x+2=0,y-2=0,解得:x=﹣2,y=2,所以= =-1.
故答案为:-1.
【分析】绝对值和算术平方根都是非负数,两个非负数相加等于0,则每个非负数都为0;所以x=-2,y=2,再用x、y的值求出结果即可.
18、(1分)如图所示,能与∠1构成同位角的角有________个.
【答案】3
【考点】同位角、内错角、同旁内角
【解析】【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个.
【分析】同位角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的同旁,
三、解答题
19、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

20、(5分)解方程组
【答案】解:①+②得4x+3y=4
得x+5y=1
的17y=0
所以将y=0代入⑤得x=1
将x=1,y=0代入①得z=2
所以原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】采用加减消元法.先由①与②.①与③消去z,得出x,y的二元方程组,解出x,y,再代入得出z.当然也可以先消去x.或者先消去y.一般地,求解一次方程组,都可以通过代人消元法或加减消元法.甚至两种方法一起使用,来解决问题.因此,这两种方法是常用的基本方法.在熟练运用这两种方法的基础上,可以从题目本身的特点出发,巧妙地消元,简化解题过程.
21、(5分)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.
【答案】解:∵∠1=∠2,∴AE∥DC,∴∠CDE=∠E,
∵∠3=∠E,∴∠CDE=∠3,∴DE∥BC,∴∠B=∠ADE,
∵∠ADE=180°﹣∠DAE﹣∠E=50°,
∴∠B=50°
【考点】平行线的判定与性质
【解析】【分析】本题利用∠1=∠2,可得AE//CD ,所以∠3=∠E=∠CDE,得到DE//BC,可知∠B=∠ADE,利用三角形内角和的性质,可求出∠ADE的度数,从而求出∠B的度数.
22、(10分)解方程组
(1)解方程组
(2)解不等式组.
【答案】(1)解:
①×2﹣②,得:3x=6,
解得:x=2,
将x=2代入①,得:4+y=5,
解得:y=1,
则方程组的解为
(2)解:解不等式4(x﹣3)>﹣1,得:x>,
解不等式+3>x,得:x<6,
则不等式组的解集为<x<6
【考点】解二元一次方程组,解一元一次不等式组
【解析】【分析】第一题是解二元一次方程组,可用加减消元法解也可用代入消元法,因为方程(1)中y的系数为1,(2)中x的系数为1.
第二题是不等式组,应先将第一个不等式去括号、合并同类项求出解集,再将第二个去分母,求出解集,即可得到不等式组的解集.
23、(5分)如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG 的度数.
【答案】解:∵直线AB,CD,EF交于点O,∠AOE=70°
∴∠BOF=∠AOE=70°
∵OG平分∠BOF

∵CD⊥EF
∴∠DOF=90°
∴∠DOG=∠DOF-∠FOG=90°-35°=55°
【考点】对顶角、邻补角
【解析】【分析】本题考查的是邻补角和角平分线的性质,因为∠AOE与∠BOF是对顶角,所以它们相等,
又因为CD⊥EF,可知∠DOF=,-∠GOF即可得到∠DOG的度数.
24、(5分)
【答案】解:原方程组变形为:

(1)+(2)得:6x=17,
x=,
将x=代入(2)得:
∴y=,
∴原方程组的解为:.
【考点】解二元一次方程组
【解析】【分析】将(1)+(2)用加法消元将二元一次方程组转化成一元一次方程,解之可得出x的值,再将x的值代入(2)式可得出y值,从而得出原方程组的解.
25、(5分)解关于x的不等式
2mx+3<3x+n.
【答案】解:由原不等式,得(2m-3)x<n-3.
(1 ),即时,解集为
(2 ),即时,解集为
(3 ),即时,又分两种情况
若n-3>0,即n>3,解集为所有数
若n-3≤0,即n 3,原不等式无解
【考点】解一元一次不等式
【解析】【分析】和方程一样,不等式中不是未知数的字母称为参数.解含参数的不等式,也应该对参数进行讨论,首先将m,n作常数,将原不等式化为(2m-3)x<n-3,再根据不等式的性质,不等式两边都除以同一个正数,不等号方向不变,不等式两边都乘以同一个负数,不等号方向改变,然后分2m−3> 0,2m−3<0,2m−3=0与n-3>0,2m−3=0与n-3≤ 0,四种情况得出不等式的解集。

26、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.
由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.。

相关文档
最新文档