压汞法测定材料孔结构的误差分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25卷第4期 硅 酸 盐 通 报 Vol .25 No .4 2006年8月 BULLETI N OF T HE CH I N ESE CERAM I C S OC I ETY August,2006 
压汞法测定材料孔结构的误差分析
陈 悦, 李东旭
(南京工业大学材料科学与工程学院,南京 210009)
摘要:根据压汞法测量材料孔结构的基本原理分析了可能引起误差的来源。

压汞法测定材料的孔径分布依据的是W ashburn 方程,基本的理论模型是圆柱孔模型,实际样品中的孔隙均存在异形孔,这给测量带来误差。

汞的表面张力和汞与材料表面的接触角直接影响测量结果。

关键词:压汞法;孔径分布;误差分析
Ana lysis of Error for Pore Structure of Porous M a ter i a ls M ea sured by M I P
CHEN Yue,L I D ong 2xu
(College of Materials Science and Engineering,Nanjing University of Technol ogy,Nanjing 210009)
Abstract:The origins of err or of experi m ental results f or pore structure measured by M I P (mercury intrusi on por osi m etry )were discussed on the basis of the funda mentals of M I P .I n general,the model of cylindrical pores is used for M I P .I n fact,the pores of vari ous materials are of different shapes and their surface is not homogenous physicoche m ically .Consequently,the experi m ental results are affected by the contact angle bet w een mercury and the surface of pores and the surface tensi on of mercury .
Key words:mercury intrusi on pore measure ment;pore size distributi on;err or analysis
作者简介:陈 悦(19682),男,本科,工程师.目前从事分析测试方面的工作. 目前测量材料孔径分布的方法有很多,如压汞法、光学法(或电子光学法)、小角度X 2射线散射法、等温吸附法(N 2吸附法)等。

压汞法测量的基本原理是根据经典的瓦什伯恩(washburn )方程,原理简单,测量时只需记录压力和体积的变化量,通过数学模型即可换算出孔径分布等数据,结果直观、可靠。

该方法测定孔
直径的范围(一般可测量孔直径范围从4nm 到200
μm )比其它的方法要宽很多,可以反映大多数样品孔结构的状况[1~3]。

1 压汞法测量原理
一种液体的表面张力是指液体表面每平方厘米所受到的力。

当毛细孔的半径r 和长度l 给定,则单位体积汞的表面面积由下式决定:
A =2
πrl (1)假设毛细孔是钢性的,则毛细孔壁对水银的压力W 1为:
W 1=22
πrl γcos θ(2)加大压力使水银进入毛细孔中,则外界对水银的压力W 2为:
W 2=P
πr 2l (3)
因为W 1=W 2,所以由方程(2)和(3)可得:
 第4期陈 悦等:压汞法测定材料孔结构的误差分析199
 P r =22
γcos θ(4
)
图1 瓶颈孔示意图
Fig .1 Sche matic dra wing of pore like bottle 这就是著名的瓦什伯恩(washburn )方程,它表
明在θ和γ不变的前提下,随着压力的逐渐增大,
水银将会逐渐进入孔径更小的孔。

这里θ是汞对
固体的接触角,γ是汞的表面张力。

如果压力从
P 1改变到P 2,分别对应孔径r 1、r 2,并设法量测出单位质量试样在两种孔径的孔之间的孔内所压入的
汞体积ΔV ,则在连续改变测孔压力时,就可测出汞
进入不同孔级孔中的汞量,从而得到孔径分布。

2 压汞法测量的误差来源及分析
2.1 样品的特性对测量结果的影响
2.1.1 样品中孔的结构类型
多孔材料中的孔从纳米到数百微米,大小不等,有一定分布范围。

孔的类型也有多种,有开口
的孔,也有封闭的孔。

压汞法测量的只能是开口的孔。

在测量时,直到外压力达到孔隙喉道的毛细管压力阀值时,汞才被注入到孔隙中。

汞的表面张力不会因为固体表面的大小而改变,如果汞压入的孔中途变细,即使再向深处孔隙变大,这部分孔径也只能以细径部分的半径表现出来,也即测量出来的孔径分布将小于实际的孔径分布。

图1所示的这种“瓶颈孔”,孔的喉道比孔洞狭窄,当压力提高到与孔洞相对应的数值时,汞却不能通过狭窄喉道而充满孔洞,一直要到压力继续增加到与喉道相对应的数值,汞才能经过喉道填满空间,相应于这种较高压力的孔隙的体积就会偏高;而当压力逐渐降低时,全部“瓶颈孔”孔洞中的汞被滞留。

图2是某种陶粒的压汞、退汞曲线,图中我们可以看出,退汞曲线明显滞后且终点没有回到零点,说明该样品中存在着大量的“瓶颈孔”。

图3是退汞以后的样品第2次压汞、退汞曲线,终点几乎回到零点,但退汞过程仍然存在滞后的现象。

因为第1次高压实验时,汞滞留在孔洞中,而第2次压汞时,汞只被压入管形孔中,退汞时,被压入的汞又从管形孔中退出,所以再次高压实验中,被压入的汞的体积小于第1次。

由于汞完全从管形孔中退出存在滞后现象,所以严格地说,
通过压汞和退汞曲线来计算瓶颈孔的孔喉比的方法不太精确。

图2 陶粒的第1次压汞、退汞曲线
Fig .2 Curves of first intrusi on and extrusi
on 图3 陶粒的第2次压汞、退汞曲线Fig .3 Curves of second intrusi on and extrusi on
2.1.2 样品颗粒大小
汞压入样品时首先进入和外表面连通的孔道,实际上样品中仅有部分孔和外表面直接相连,其余的内部孔隙是通过一系列不同形状和大小的中间孔和外界相通。

根据上述讨论,直到外压力达到和外表面相通的毛细管压力阀值时,汞才被注入到孔隙中,如果样品中存在“瓶颈孔”,会使测量的孔径分布比实际值小。

对于相同质量的样品,颗粒越小,和外界汞接触的表面积增大,可以让更多的孔直接和外界的汞相通。

 试验与技术硅酸盐通报 第25卷200
选择孔径分布较窄的陶瓷样品进行试验,分别将陶瓷样品敲成8mm和2mm左右的颗粒,在相同的测量条件下,2种颗粒的样品测量出的最可几孔径分别为55.1μm和56.3μm。

2.1.3 材料的硬度
W ashburn方程的理论模型要求测试的材料必须是刚性的,对于大部分材料,在高压下可能被压缩,破坏了材料的结构。

谢依金等[4]确定,当压力为140MPa时,混凝土的体积减小2%。

在高压测试中,这部分被压缩的体积被计算成孔的体积,导致相应的孔径体积偏大。

因此,对于压缩量大的样品,可以采用一定方法测量出样品的压缩量。

例如对于缩聚聚丙烯样品,在高压下压缩量很大,测试时可以采用一些填料充满孔隙,采用同样的方法测量在高压下体积变化量。

以此作为空白,在样品测量时扣除。

2.1.4 样品的制备
压汞法测量时需要样品管的真空度很高,一般要达到6.67Pa以下,所以要求样品干燥,孔隙中不含可挥发水分,而对于有些样品烘干的过程中有可能引起结构不可逆的变化。

例如水泥混凝土中含有许多凝胶孔,孔内含有结构水,在干燥时,部分可蒸发的结构水逸出产生凝胶微晶孔。

对于水泥样品取样后要立即中止水化,然后进行低温干燥。

2.2 仪器测量参数对结果的影响
2.2.1 起始压力对孔隙率的影响
低压测试时,样品管装入膨胀计中,抽真空后即在较低压力下进行充汞,当汞进入膨胀计并包裹整个样品时,汞与膨胀计相连的电极接触,此时的充汞压力称为接触压力。

由于样品表面糙粗和汞表面张力大,因此汞并不能完全填满样品表面的空隙。

另外,装样品的膨胀计壁与样品间隙有时很小,样品颗粒之间也能形成很小的间隙。

在不大的压力下,汞有时不能完全充满这些间隙,随着外加压力的升高,汞才逐渐挤满这些间隙。

这一现象被王允诚等教授称作汞封闭间隙[5],并论述“汞封闭间隙是指残留在岩样粗糙表面与外包非润湿性汞之间的空隙体积,当压力增高时汞就完全地充填了这一空间”。

为了消除这些封闭间隙给实验结果带来的误差,需要在接触压力的基础上增加一点压力,使汞尽可能填充这些空隙。

增加以后的压力作为起始压力,体积测量系统校零开始测量。

但增加压力以后,汞在填充这些孔隙的同时也会进入样品表面较大孔径的孔。

为了考察起始压力对实验结果的影响,用相同的样品管分别对陶瓷和水泥砂浆进行实验,在接触压力基础上分别加上0.1PSI、0.3PSI、0.5PSI作为起始压力。

测量得到的孔隙率见表1:
表1 不同的起始压力所得孔隙率
Tab.1 The porosity i n d i fferen t st art pressure
起始压力样品名称孔隙率/%样品名称孔隙率/%
+0.1PSI陶瓷38.49水泥砂浆29.38
+0.3PSI陶瓷38.37水泥砂浆28.70
+0.5PSI陶瓷38.22水泥砂浆28.22陶瓷样品和水泥样品的表面截然不一样,陶瓷样品表面比较光滑,孔径较小(平均孔径约5μm)且分布较窄,水泥砂浆表面粗造,其孔径分布呈连续状。

表1的测量结果表明,对于表面光滑的陶瓷样品,起始压力增大对孔隙率几乎没有影响。

水泥砂浆表面粗造,分布很宽,汞填充这些孔隙的同时也会进入样品表面较大孔径的孔,导致测量的孔隙率偏低。

所以,压汞测量得出的孔隙率数据是相对的,在给出孔隙率数据的同时需要注明测量压力(也即孔径)的范围。

为了测量数据的完整性,对于表面光滑,样品颗粒较大的样品,起始压力可以较低。

需要说明的是,起始压力不同不会影响孔径的分布。

2.3 汞的物化参数对结果的影响
由W ashburn方程表明了汞的表面张力γ和汞对固体的接触角θ是影响压汞法测量结果的主要因素,其压力和孔半径的关系是建立在圆柱型孔隙模型基础上的,对于符合圆柱型模型的多孔体系,可以用该方程计算孔隙直径。

 第4期陈 悦等:压汞法测定材料孔结构的误差分析201
 2.3.1 汞对固体物质的接触角
汞和固体表面的真实接触角取决于许多因素。

除了汞的洁净度外,还包括固体表面的化学性质、洁净度
和粗糙度[6]。

在实际测量中接触角一般选用平均接触角140°,这是基于理想的圆柱型模型,并假设多孔体表面各处是均匀的,实际上多孔材料的孔道均呈异性孔,表面各不均匀。

表2计算了不同的压力下不同接触角计算出的等效孔半径的关系:从表2列出的数据可以看出,对于实际值为110°或179.9°的接触角,如选用140°时可造成实际孔径的相对误差分别达到56%和25%。

由W ashburn 方程,对接触角微商,接触角变化△θ引起的孔径偏差为:
△r/r =2△θtan θ,当θ=140°时,若△θ=1°,△r/r =1.47%。

当θ<140°时,误差较大。

因此,如果需要得
到准确的结果,汞对固体样品的接触角要以实测值为准。

表2 不同外加压力下接触角与计算的孔直径的关系
Tab .2 The rel a ti on sh i p between con t act angle and ca lcul a ted d i a m eter i n d i fferen t pressure
压力/MPa
孔直径/nm 110°130°140°160°179.9°0.1
6624.2412449.5114836.7518199.9719367.9710
66.24124.49148.36181.99193.67100
6.6212.4414.8318.1919.36400 1.65 3.11 3.70 4.54 4.84
注:25℃时汞的表面张力为484.2MPa ・nm
2.3.2 汞的表面张力
当孔为圆柱型模型时,汞与孔截面上的接触才为一个常数。

温度、汞中的杂质对表面张力有一定的影
响。

对于某一孔径较小(平均孔径约5μm )且呈正态分布的陶瓷材料,当接触角取140°,其测量结果在表面
张力分别取475MPa ・nm 、480MPa ・nm 、485MPa ・n m 时,分别计算出的最可几孔径分别为5.17
μm 、
5.22μm 、5.27
μm ,因此,表面张力对孔结构测量影响不大。

2.3.3 汞的可压缩性
图4 汞的压汞曲线Fig .4 I ntrusi on curve of mercury
实际上,压汞法测试中所得到的体积变化,有压
入材料内的,也有汞在高压下被压缩部分。

用空白样
品管充汞后做高压实验,实验结果如下图4:
如图4所示,随着压力的升高,样品管内汞的体积
逐渐缩小,在50000PSI 压力下,即344.75MPa 压力
下汞体积变化量为1.6×1024mL /mL 。

实际上,空白测
试记录的体积变化也包括在高压状态下样品管的膨
胀。

为了提高实验结果的准确性,可以将空样品管的
高压曲线作为空白,在测试样品时同步扣除。

3 结 论
(1)用压汞法测量材料的孔径分布是非常有效和
实用的方法,但该方法的测量结果受到很多因素的影响。

(2)试样要有代表性。

在不影响材料孔结构的情况下,试样尽可能小一些,一般3~4mm 。

对于水泥样品,取样后立即中止水化,在低温(60℃)下真空干燥。

(3)汞的纯度不仅影响汞和试样表面的接触角,也同时影响汞的表面张力,在实验中必须保持汞的洁净。

接触角的大小还受试样表面化学成分和粗造程度的影响,采用140°接触角有时会造成较大的误差。

(4)实验的起始压力会影响孔隙率结果,但不会影响孔径分布的结果,在给出孔隙率数据的同时需要注
明测量压力(也即孔径)的范围。

(下转第207页)
 第4期毛爱霞等:利用水热法和添加籽晶制备纳米A l O OH粉体207
3 结 论
(1)不加籽晶时水热反应的温度越高,所得纳米A l O OH粉体的晶粒形貌越规则,且粒径较小。

(2)在水热反应中加籽晶比不加籽晶所得晶粒粒径小且分布均匀。

加纳米Ti O
2
作籽晶在360℃水热反应8h,成份为A l O OH,形貌近似正方形薄片,粒径非常均匀,平均边长90nm,厚度约30n m,结晶完好,无台阶。

(3)通过SE M和粒度分析表明,在反应条件完全一致的情况下,加纳米Ti O
2作籽晶比加纳米α2A l
2
O3
作籽晶所得纳米A l O OH粉体的粒径小。

参考文献
[1] 苗建国,李小斌,龚辉辉.多品种氧化铝的研究进展[J].轻金属,1997,8:12216.
[2] 刘昌华,廖海达,龙翔云.So2Gel水热偶合法制备纳米A l O OH的晶相转变[J].中南民族大学学报(自然科学版),2004,23(1):18220.
[3] 王秀峰,王永兰,金志浩.水热法制备陶瓷材料研究进展[J].硅酸盐通报,1995,3:25230.
[4] 李继光,孙旭东,茹红强,等.湿化学法合成α2A l2O3纳米粉[J].材料研究学报,1998,12(1):1052107.
[5] 许珂敬.籽晶在湿化学法制备α2A l2O3微粉过程中的作用[J].过程工程学报,2003,3(2):1862191.
[6] 余忠清,赵秦生,张启修.溶胶2凝胶法制备超细球形氧化铝粉末[J].无机材料学报,1994,9(4):4752479.
[7] 丁安平,饶拴民.“纳米氧化铝”的用途和制备方法初探[J].有色冶炼,2001,30(3):629.
[8] 付高峰,毕诗文,孙旭东,等.超细氧化铝粉末制备技术[J].有色矿冶,2000,16(1):39241.
[9] Cheng Hum in,MaJi m ing,ZhuB in,et al.Reacti on mechanis m s in the f or mati on of lead zirconate s olid s oluti on under hydr other malconditi ons[J].
Ja m Cera m Soc,1993,76:6252629.
[10] 赖振宇,徐光亮,陈 其.水热法制备氧化锌陶瓷粉料[J].佛山陶瓷,2004,2(85):11213.
[11] 陈之战,施尔畏,元如林,等.水热条件下晶粒的聚集生长(Ⅱ):氧化亚铜晶粒生长形态及其稳定能计算[J].中国科学(E辑),2003,7
(33):5892591.
[12] 卢 瑶,尹衍升,陈守刚.水热法制备纳米氧化锆晶体[J].江苏陶瓷,2005,38(1):13214.
[13] 吴东辉,施新宇,章忠秀,等.水热法制备均分散α2Fe2O3纳米粒子[J].硅酸盐通报,2004(5):24228.
[14] 钟永科,唐国凤,朱万强,等.水热法合成锐钛型纳米Ti O2的研究[J].功能材料,2003,34(1):86290.
[15] 崔国文.表面与界面[M].北京:清华大学出版社,1990.
[16] H iemenz P C.胶体与表面化学原理[M].北京:北京大学出版社,1986.
[17] 卢红霞,毛爱霞,郝好山,等.利用纳米铝和沉淀法制备纳米α2A l2O3粉体[J].郑州大学学报(工学版),2005,26(1):83285.
[18] 施尔畏,夏长泰,王步国,等.水热法制备的陶瓷粉体晶粒粒度[J].硅酸盐学报,1997,25(3):2882292.
[19] 刘维良,喻佑华.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004,8:1202121.
(上接第201页)
参考文献
[1] 廉慧珍,童 良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.1052113.
[2] 唐 明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报,2001,17(4):2722275.
[3] 刘玉新.颗粒材料孔结构形态的测量和表征[J].中国粉体技术,2000,4(6):21224.
[4] 谢依金A E.水泥混凝土的结构与性能[M].北京:中国建筑工业出版社,1984.11213.
[5] 张志勇,廖光伦,唐桂宾,等.压汞仪数据处理中消除汞封闭间隙体积的量化方法[J].矿物岩石,1997,3(17):49252.
[6] 谈慕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985.56259.。

相关文档
最新文档