205.北师大版九年级数学上册4.4 第3课时 利用三边判定三角形相似-教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.4探索三角形相似的条件
第3课时利用三边判定三角形相似
教学目标
1.掌握相似三角形的判定定理3;
2.能熟练运用相似三角形的判定定理
3.
教学重难点
【教学重点】
判定定理3
【教学难点】
判定定理3的应用
课前准备
课件.
教学过程
一、情景导入
如图,如果要判定△ABC与△A′B′C′相似,是不是一定需要一一验证所有的对应角和对应边的关系?
可否用类似于判定三角形全等的SSS方法,通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
二、合作探究
探究点一:三边成比例的两个三角形相似
已知△ABC的三边长分别为1,2,5,△DEF的三边长分别为10,2,2,试判断△ABC与△DEF是否相似.
解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.
解:因为1
2
=
2
2=
5
10
,
所以△ABC与△DEF相似.
方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.
探究点二:相似三角形的判定定理3的应用
如图所示,在△ABC中,点D、E分别是△ABC的边AB,AC上的点,AD=3,AE=6,DE=5,BD=15,CE=3,BC=15.根据以上条件,你认为∠B=∠AED吗?并说明理由.
解析:要说明∠B=∠AED,只需要得到△ABC∽△AED,根据三边成比例的两个三角形相似可证得△ABC∽△AED.
解:∠B=∠AED.
理由如下:由题意,得
AB=AD+BD=3+15=18,
AC=AE+CE=6+3=9,
AC AD=9
3=3,
AB
AE=
18
6=3,
CB
DE=
15
5=3,
所以AC
AD=AB
AE=
CB
DE,故△ABC∽△AED,
所以∠B=∠AED.
方法总结:证明两角相等,可通过证明对应的两个三角形相似而得到,给出的已知条件以边为主时,首先考虑使用“三边成比例”的判定条件.
如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC相似的是哪一个图形?
解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC是否相似.
解:由甲图可知AC=12+12=2,BC=2,AB=12+33=10.
同理,图①中,三角形的三边长分别为1,5,22;
同理,图②中,三角形的三边长分别为1,2,5;
同理,图③中,三角形的三边长分别为2,5,3;
同理,图④中,三角形的三边长分别为2,5,13.
∵
2
1=
2
2
=
10
5
=2,
∴图②中的三角形与△ABC相似.
方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.
三、板书设计
相似三角形的判定定理3:三边成比例的两个三角形相似.
四、教学反思
从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.
初中数学公式大全
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180 °
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20平行四边形判定定理1两组对角分别相等的四边形是平行四边形
21平行四边形判定定理2两组对边分别相等的四边形是平行四边形
22平行四边形判定定理3对角线互相平分的四边形是平行四边形
23平行四边形判定定理4一组对边平行相等的四边形是平行四边形
24矩形性质定理1矩形的四个角都是直角
25矩形性质定理2矩形的对角线相等
26矩形判定定理1有三个角是直角的四边形是矩形
27矩形判定定理2对角线相等的平行四边形是矩形
28菱形性质定理1菱形的四条边都相等
29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
30菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31菱形判定定理1四边都相等的四边形是菱形
32菱形判定定理2对角线互相垂直的平行四边形是菱形
33正方形性质定理1正方形的四个角都是直角,四条边都相等
34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35定理1关于中心对称的两个图形是全等的
36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38等腰梯形性质定理等腰梯形在同一底上的两个角相等。