人教版数学八年级上册 全册全套试卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册
全册全套试卷(Word 版 含解析)
一、八年级数学三角形填空题(难)
1.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______.
【答案】
1722
m << 【解析】
【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.
【详解】
解:如图,延长AD 到E ,使DE=AD ,连接CE ,
∵AD 是△ABC 的中线,
∴BD=CD ,
在△ABD 和△ECD 中,
AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABD ≌△ECD (SAS ),
∴CE=AB ,
∵AB=3,AC=4,
∴4-3<AE <4+3, 即1<AE <7,
∴1722
m <<. 故答案为:
1722m <<. 【点睛】
本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.
2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
【答案】30°
【解析】
【分析】
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF
,故DE=DF,过D点作DG⊥AC于G点,可得出
△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.
【详解】
解:
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
ABD CBD
BD BD
AED DFC
∠=∠


=

⎪∠=∠


∴△BDE≌△BDF(ASA),
∴DE=DF,
又∵∠BAD+∠CAD=180°
∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,
过D点作DG⊥AC于G点,
在Rt△ADE与Rt△ADG中,
AD AD
DE DG
=


=


∴△ADE≌△ADG(HL),
∴DE=DG,
∴DG=DF.
在Rt△CDG与Rt△CDF中,
CD CD DG DF
=


=


∴Rt△CDG≌Rt△CDF(HL),
∴CD为∠ACF的平分线,
∠ACB=74°,
∴∠DCA=53°,
∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.
故答案为:30°
【点睛】
本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
3.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是
__________ .
【答案】γ=2α+β.
【解析】
【分析】
根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠B DA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故答案为:γ=2α+β.
【点睛】
此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
4.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
【答案】2
【解析】
由D是AC的中点且S△ABC=12,可得
11
126
22
ABD ABC
S S
∆∆
==⨯=;同理EC=2BE即
EC=1
3
BC,可得
1
124
3
ABE
S

=⨯=,又,
ABE ABF BEF ABD ABF ADF
S S S S S S
∆∆∆∆∆∆
-=-=等量
代换可知S△ADF-S△BEF=2
5.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角
∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
6.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.
【答案】74°
【解析】
【分析】
【详解】
试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.
∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,
∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣
∴∠ACE=1
2
∠CDA=50°.
∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣
∠DCF=75°.
考点:三角形内角和定理.
二、八年级数学三角形选择题(难)
的度数7.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3
等于()
A .50°
B .30°
C .20°
D .15°
【答案】C
【解析】
【分析】
根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.
【详解】 如图所示,
∵AB∥CD
∴∠2=∠4=∠1+∠3=50°,
∴∠3=∠4-30°=20°,
故选C.
8.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )
A .60︒
B .65︒
C .70︒
D .75︒
【答案】C
【解析】
【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.
【详解】
设直线n 与AB 的交点为E 。

∵AED ∠是BED ∆的一个外角,
∴1AED B ∠=∠+∠,
∵45B ∠=︒,125∠=︒,
∴452570AED ∠=︒+︒=︒,
∵m n ,
∴270AED ∠=∠=︒.
故选C .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
9.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为 ( )
A .9
B .4
C .5
D .13 【答案】A
【解析】
【分析】
首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.
【详解】
设这个三角形的第三边为x .
根据三角形的三边关系定理,得:9-4<x <9+4,
解得5<x <13.
故选A .
【点睛】
本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.
10.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A=50°,则∠D=( )
A .15°
B .20°
C .25°
D .30°
【答案】C
【解析】
根据角平分线的定义和三角形的外角的性质即可得到∠D=
12
∠A . 解:∵∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,
∴∠1=12∠ACE ,∠2=12∠ABC ,
又∠D=∠1﹣∠2,∠A=∠ACE ﹣∠ABC ,
∴∠D=
12
∠A=25°. 故选C .
11.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )
A .10BC 13<<
B .4B
C 12<< C .3BC 8<<
D .2BC 8<<
【答案】D
【解析】
【分析】
已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.
【详解】
∵AB=3,AC=5,
∴5-3<BC<5+3,即2<BC<8,
故选D.
【点睛】
考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.
12.一个多边形的每个内角均为108º,则这个多边形是( )
A .七边形
B .六边形
C .五边形
D .四边形
【答案】C
【解析】
试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360
÷72=5(边).
考点:⒈多边形的内角和;⒉多边形的外角和.
三、八年级数学全等三角形填空题(难)
13.在Rt △ABC 中,∠BAC=90°AB=AC ,分别过点B 、C 做经过点A 的直线的垂线BD 、CE ,若BD=14cm ,CE=3cm ,则DE=_____
【答案】11cm 或17cm
【解析】
【分析】
分两种情形画出图形,利用全等三角形的性质分别求解即可.
【详解】
解:如图,当D,E在BC的同侧时,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵BD⊥DE,
∴∠BDA=90°,
∴∠BAD+∠DBA=90°,
∴∠DBA=∠CAE,
∵CE⊥DE,
∴∠E=90°,
在△BDA和△AEC中,
ABD CAE
D E
AB AC
∠=∠


∠=∠

⎪=


∴△BDA≌△AEC(AAS),
∴DA=CE=3,AE=DB=14,
∴ED
=DA+AE=17cm.
如图,当D,E在BC的两侧时,
同法可证:BD=CE+DE,可得DE=11cm,
故答案为:11cm或17cm.
【点睛】
此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.
14.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,BF=2,则EF=__.
【答案】6
【解析】
【分析】
由于AB//CD、AE/CF,根据平行线的性质可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知条件就可以证明△AEF≌△CFD,最后利用全等三角形的性质和已知条件即可求解.【详解】
解:∵AB//CD、AE/CF,
∴∠B=∠D,∠AEF=∠CFD,而AE=CF,
∴△AEF≌△CFD,
∴DF=EB,
∴DE=BF,
∴EF=BD-2BF=6.
故答案为:6.
【点睛】
本题主要考查了全等三角形的性质与判定,解题时首先利用平行线的性质构造全等条件证明三角形全等,然后利用全等三角形的性质即可解决问题.
15.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.
【答案】16
【解析】
时,四边形FBCD周长最小为5+6+5=16
四边形FBCD周长=BC+AC+DF;当DF BC
16.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:
①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与
A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③
【解析】
【分析】
根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴∠EAP=1
2
∠BAC=45°,AP=
1
2
BC=CP.
①在△AEP与△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正确;
②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;
③∵△AEP≌△CFP,同理可证△APF≌△BPE.
∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=1
2
S△ABC,即2S四边形AEPF=S△ABC;正确;
④根据等腰直角三角形的性质,EF=2PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;
故答案为:①③.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.
17.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.
【答案】7
【解析】
只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.
解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,
所以一共能作出7个.
故答案为7
18.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.
【答案】6
【解析】
根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得
DE=AE-AD=6.
故答案为:6.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
四、八年级数学全等三角形选择题(难)
19.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是
()
A.AB﹣AD>CB﹣CD B.AB﹣AD=CB﹣CD
C.AB﹣AD<CB﹣CD D.AB﹣AD与CB﹣CD的大小关系不确定
【答案】A
【解析】
如图,在AB上截取AE=AD,连接CE.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又AC是公共边,
∴△AEC≌△ADC(SAS),
∴AE=AD,CE=CD,
∴AB-AD=AB-AE=BE,BC-CD=BC-CE,
∵在△BCE中,BE>BC-CE,
∴AB-AD>CB-CD.
故选A.
20.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE
=AB,连接EC,则∠DCE的度数为()
A.80°B.70°C.60°D.45°
【答案】B
【解析】
【分析】
连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,
∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】
如图所示,连接AE.
∵AB=DE,AD=BC
∵DE∥BC,
∴∠ADE=∠B,可得AE=DE
∵AB=AC,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE与△CBA中,
DAE ACB
AD BC
ADE B
∠∠



⎪∠∠





∴△ADE≌△CBA(ASA),
∴AE=AC,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE是等边三角形,
∴CE=AC=AE=DE,∠AEC=∠ACE=60°,
∴△DCE是等腰三角形,
∴∠CDE=∠DCE,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B.
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
21.如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰 Rt△ABE,连接 ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;
④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.②③④
【答案】C
【解析】
【分析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.
【详解】
∵AD为△ABC的高线,
∴∠CBE+∠ABE+∠BAD=90°,
∵Rt△ABE是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE,
在△DAE和△CBE中,
AE BE
DAE CBE
AD BC
=


∠=∠

⎪=

∴△ADE≌△BCE(SAS);
故①正确;
②∵△ADE ≌△BCE ,
∴∠EDA=∠ECB ,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE ⊥DE ;
故②正确;
③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,
∴∠BDE=∠AFE ,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF ,
在△AEF 和△BED 中,
BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩
===
∴△AEF ≌△BED (AAS ),
∴BD=AF ;
故③正确;
④∵AD=BC ,BD=AF ,
∴CD=DF ,
∵AD ⊥BC ,
∴△FDC 是等腰直角三角形,
∵DE ⊥CE ,
∴EF=CE ,
∴S △AEF =S △ACE ,
∵△AEF ≌△BED ,
∴S △AEF =S △BED ,
∴S △BDE =S △ACE .
故④正确;
综上①②③④都正确,故选:C .
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE ≌△CDE 是解题的关键.
22.如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为( )
A .2
B .3
C .4
D .5
【答案】C
【解析】
【分析】 可延长DE 至F ,使EF=BC ,利用SAS 可证明△ABC ≌△AEF ,连AC ,AD ,AF ,再利用SSS 证明△ACD ≌△AFD ,可将五边形ABCDE 的面积转化为两个△ADF 的面积,进而求解即可.
【详解】
延长DE 至F ,使EF=BC ,连AC ,AD ,
AF ,
在△ABC 与△AEF 中,
0=90AB AE ABC AEF BC EF ⎧⎪∠∠⎨⎪⎩
=== , ∴△ABC ≌△AEF (SAS ),
∴AC=AF ,
∵AB=CD=AE=BC+DE ,∠ABC=∠AED=90°,
∴CD=EF+DE=DF ,
在△ACD 与△AFD 中,
AC AF CD DF AD AD ⎧⎪⎨⎪⎩
=== , ∴△ACD ≌△AFD (SSS ),
∴五边形ABCDE 的面积是:S=2S △ADF =2×12•DF•AE=2×
12×2×2=4. 故选C.
【点睛】
本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE 的面积转化为两个△ADF 的面积是解决问题的关键.
23.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【详解】 ①正确.作EM ∥AB 交AC 于M .
∵CA=CB ,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=
12
∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则2,
∴tan ∠CAE=212CE AC a a
==+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.
④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP ,
∴CP=CE ,故④正确,
⑤错误.∵△APC ≌△APF ,
∴S △APC =S △APF ,
假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,
∴S △ACD =S △AEF ,
∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12
S △ABC , ∴矛盾,假设不成立.
故⑤错误.
.
故选D.
24.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N ,
∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE ,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF,
由勾股定理得:AF=AH,

2
,2 AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++
====,
∴AC+AB=2AF,
AC+AB=2AC+2CF,
AB-AC=2CF,
∵AC=CB,
∴AB-CB=2CF,
∴④正确.
故选D
五、八年级数学轴对称三角形填空题(难)
25.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.
【答案】AD的中点
【解析】
【分析】
【详解】
分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出
AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.
详解:如图,过AD作C点的对称点C′,
根据轴对称的性质可得:PC=PC′,CD=C′D
∵四边形ABCD是矩形
∴AB=CD
∴△ABP≌△DC′P
∴AP=PD
即P为AD的中点.
故答案为P为AB的中点.
点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
26.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.
【答案】5
【解析】
【分析】
作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.
【详解】
如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.
∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).
∵AB=5,∠BAC=45°,∴BH==5.
∵BM+MN的最小值是BM+MN=BM+MH=BH=5.
故答案为5.
【点睛】
本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
27.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .
【答案】128︒
【解析】
【分析】
连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,
ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则
∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.
【详解】
连接CE ,
∵线段AB ,DE 的垂直平分线交于点C ,
∴CA=CB ,CE=CD ,
∵72ABC EDC ∠=∠=︒=∠DEC ,
∴∠ACB=∠ECD=36°,
∴∠ACE=∠BCD ,
在∆ACE 与∆BCD 中,

CA CB
ACE BCD
CE CD
=


∠=∠

⎪=


∴∆ACE≅∆BCD(SAS),
∴∠AEC=∠BDC,
设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,
∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,
∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.
故答案是:128︒.
【点睛】
本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.
28.如图,将ABC
∆沿着过AB中点D的直线折叠,使点A落在BC边上的
1
A处,称为第1次操作,折痕DE到BC的距离记为1h,还原纸片后,再将ADE
∆沿着过AD中点1
D的直线折叠,使点A落在DE边上的
2
A处,称为第2次操作,折痕
11
D E到BC的距离记为2h,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019
D E到BC的距离记为2020
h,若
1
1
h=,则
2020
h的值为______.
【答案】2019122-
【解析】
【分析】 根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得
AA ₁⊥BC,AA ₁=2,由此发现规律:01
2122h =-=-₁同理21122h =-32
11122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,
又∵∠ADA ₁ =2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA ₁⊥BC ,
∵h ₁=1
∴AA ₁ =2,
∴01
2122h =-=-₁ 同理:21122
h =-; 3211122222
h =-⨯=-; …
∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离11
22
n n h -=-
∴20202019122h =-
【点睛】 本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
29.在△ABC 中,∠ACB =90º,D 、E 分别在 AC 、AB 边上,把△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形, 则∠BAC 的度数为_________.
【答案】45°或60°
【解析】
【分析】
根据题意画出图形,设∠BAC 的度数为x ,则∠B=90°-x ,∠EFB =135°-x ,∠BEF=2x-45°,
当△BFE 都是等腰三角形,分三种情况讨论,即可求解.
【详解】
∵∠ACB =90º,△CFD 是等腰三角形,
∴∠CDF=∠CFD=45°,
设∠BAC 的度数为x ,
∴∠B=90°-x ,
∵△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,
∴∠DFE=∠BAC=x ,
∴∠EFB=180°-45°-x=135°-x ,
∵∠ADE=∠FDE ,
∴∠ADE=(180°-45°)÷2=67.5°,
∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x ,
∴∠DEF=∠AED=112.5°-x ,
∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x )-(112.5°-x )=2x-45°,
∵△BFE 都是等腰三角形,分三种情况讨论:
①当FE=FB 时,如图1,
则∠BEF=∠B ,
∴90-x=2x-45,解得:x=45;
②当BF=BE 时,
则∠EFB=∠BEF ,
∴135-x=2x-45,
解得:x=60,
③当EB=EF 时,如图2,
则∠B=∠EFB ,
∴135-x=90-x ,无解,
∴这种情况不存在.
综上所述:∠BAC 的度数为:45°或60°.
故答案是:45°或60°.
图1 图2
【点睛】
本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.
30.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

连接EC,过点 E 作 EF⊥EC 交射线 BA 于点 F,EF、AC 交于点 G。

若 DE=3,△EGC 与△AFG 面积的差是 2,则 BD=_____.
【答案】5
【解析】
【分析】
在DC上取点M,使DM=DE,连接EM,通过证明∆FAE≅∆EMC,根据△EGC 与△AFG 面积的差是 2,推出△EAC 与△EMC 面积的差是 2,然后设MC=x,则AE=x,AD=x+3,利用面积差即可求出x,即可求出BD.
【详解】
解:在DC上取点M,使DM=DE,连接EM
∵Rt △ABC ,AB=AC ,AD ⊥ BC
∴BD=CD=AD ,∠EAF=135°
同理∠EMC=135°
∴AE=CM
∠AEF+∠CED=∠ECM+∠CED=90°
∴∠AEF=∠ECM
∴∆FAE ≅∆EMC
∵S △EGC -S △AFG =2
∴S △EAC -S △FAE =2
∴S △EAC -S △EMC =2
设MC=x ,则AE=x ,AD=x+3
∵S △EAC =
()132x x ⋅⋅+ ,S △MEC =132x ⋅⋅ ∴()132x x ⋅⋅+-132
x ⋅⋅=2 解得x=2(x>0,负值舍去),
∴AD=2+3=5
∴BD=AD=5
故答案为:5.
【点睛】
本题主要考查了三角形全等的性质与判定,等腰直角三角形的性质以及三角形面积计算,熟练掌握各知识点,学会综合应用,正确添加辅助线是关键.
六、八年级数学轴对称三角形选择题(难)
31.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )
A .511a 32⨯
() B .511a 23⨯() C .611a 32⨯() D .611a 23
⨯() 【答案】A
【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出
EF=ZN=
13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以
13
即可得出第六个正六边形的边长. 连接AD 、DF 、DB .
∵六边形ABCDEF 是正六边形, ∴∠ABC=∠BAF=∠AFE ,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD ,
∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt △ABD 和RtAFD 中
AF=AB {AD=AD
∴Rt △ABD ≌Rt △AFD (HL ),
∴∠BAD=∠FAD=12
×120°=60°, ∴∠FAD+∠AFE=60°+120°=180°,
∴AD ∥EF ,
∵G 、I 分别为AF 、DE 中点,
∴GI ∥EF ∥AD ,
∴∠FGI=∠FAD=60°,
∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等边三角形QKM的边长是a,
∴第一个正六边形ABCDEF的边长是1
3a,即等边三角形QKM的边长的
1
3

过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,
∵EF∥GI,
∴四边形FZNE是平行四边形,
∴EF=ZN=1
3
a,
∵GF=1
2AF=
1
2
×
1
3
a=
1
6
a,∠FGI=60°(已证),
∴∠GFZ=30°,
∴GZ=1
2GF=
1
12
a,
同理IN=
1
12
a,
∴GI=
1
12
a+
1
3
a+
1
12
a=
1
2
a,即第二个等边三角形的边长是
1
2
a,与上面求出的第一个正六
边形的边长的方法类似,可求出第二个正六边形的边长是1
3
×
1
2
a;
同理第第三个等边三角形的边长是1
2
×
1
2
a,与上面求出的第一个正六边形的边长的方法类
似,可求出第三个正六边形的边长是1
3
×
1
2
×
1
2
a;
同理第四个等边三角形的边长是1
2
×
1
2
×
1
2
a,第四个正六边形的边长是
1
3
×
1
2
×
1
2
×
1
2
a;
第五个等边三角形的边长是1
2
×
1
2
×
1
2
×
1
2
a,第五个正六边形的边长是
13×12×12×12×12
a ; 第六个等边三角形的边长是12×12×12×12×12
a ,第六个正六边形的边长是13×12×12×12×12×12
a , 即第六个正六边形的边长是
13×512
()a , 故选A .
32.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )
A .1个
B .2个
C .3个
D .无数个
【答案】D
【解析】
【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.
【详解】
解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.
∵OP 平分∠AOB ,120AOB ∠=︒,
∴∠EOP=∠POF=60°,
∵OE=OF=OP ,
∴△OPE ,△OPF 是等边三角形,
∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN ,
在△PEM 和△PON 中,
PEM PON PE PO
EPM OPN ∠⎪∠⎧⎩
∠⎪∠⎨=== ∴△PEM ≌△PON (ASA ).
∴PM=PN ,
∵∠MPN=60°,
∴△PNM 是等边三角形,
∴只要∠MPN=60°,△PMN 就是等边三角形,
故这样的三角形有无数个.
故选:D .
【点睛】
本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.
33.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )
A .1个
B .4个
C .7个
D .10个
【答案】D
【解析】
试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.
解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,
可知P 点为等边△ABC 的垂心;
因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D .
点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.
34.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为
( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.
【详解】
①正确:∵ABC △是等边三角形,
∴60BAC ︒∠=,∴CA AB =.
∵ABD △是等腰直角三角形,∴DA AB =.
又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,
∴DA CA =,∴()
1180150152ADC ACD ︒︒︒∠=∠=
-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴AF≠AG
③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,
∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.
又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,
在DAF △和ABH 中 ()AFD BHA DAF ABH
AAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌ABH .∴DF AH =.
⑤正确:∵150CAD ︒∠=,AH CD ⊥,
∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=
又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
35.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )
(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)
CH EH AC +=
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】
(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;
(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得
2AB HM =;
(4)结合(1)(2)的结论,
BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.
【详解】
解:
①延长AB 取BD=BE ,连接DE ,
∴∠D=∠BED ,∠ABC=∠D+∠BED=2∠D,
∵2ABC C ∠=∠,∴∠D=∠C ,
在△ADE 和△ACE 中,
DAE
CAE D C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴ADE ACE ≌
∴AC=AD=AB+BE ,故(1)正确;
②在HC 上截取HF=BH,连接AF ,
∵AH BC ⊥,∴△ABF 为等腰三角形,
∴AB=AF ,∠ABF=∠AFB ,
∵2ABC C ∠=∠,∴∠AFB=2∠C=∠C+∠CAF ,
∴FC=AF=AB ,
∴FC+BH+HF=AB+2BH=BC ,
故(2)正确;

∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,
由②可知BC-2BH=AB ,
∴2AB HM =

根据①②结论,可得:
BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,
故(4)正确;
故选D.
【点睛】
本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.
36.如图,O 是正三角形ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④S 四边形
AOBO′=6+33;⑤S △AOC +S △AOB =6+934
.其中正确的结论是( )
A .①②③⑤
B .①③④
C .②③④⑤
D .①②⑤
【答案】A
【解析】 试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;
如图①,连接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等边三角形,
∴OO′=OB=4.
故结论②正确;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故结论③正确;
S四边形AOBO′=S△AOO′+S△OBO′=1
2
×3×4+
3
4
×42=6+43,
故结论④错误;
如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,
则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=1
2
3293

故结论⑤正确.
综上所述,正确的结论为:①②③⑤.故选A.。

相关文档
最新文档