邱县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邱县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )
A .π1492+
B .π1482+
C .π2492+
D .π2482+
【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.
2. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.
其中正确结论的序号是( ) A .①③
B .①④
C .②③
D .②④
3. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( ) A .1 B
. C

D

4. 设F 1,F 2
为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y
轴上,则
的值为
( ) A

B

C

D

5. 执行如图所示的程序框图,输出的z 值为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .3
B .4
C .5
D .6
6. 下列函数中,a ∀∈R ,都有得()()1f a f a +-=成立的是( )
A .())f x x =
B .2
()cos ()4
f x x π
=-
C .2()1x f x x =+
D .11
()212
x
f x =+-
7. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1
的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
8. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n
D .m ∥α,α∩β=n ,则m ∥n
9. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N == 10.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )
A .3
B .
C .
D .
11.设复数1i z =-(i 是虚数单位),则复数
22
z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 12.如图所示程序框图中,输出S=( )
A .45
B .﹣55
C .﹣66
D .66
二、填空题
13.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .
14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.
15.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .
16.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .
17.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .
18.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]
三、解答题
19.在直接坐标系
中,直线的方程为,曲线的参数方程为(为参数)。

(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为
极轴)中,点的极坐标为(4,),判断点与直线的位置关系; (2)设点是曲线上的一个动点,求它到直线的距离的最小值。

20.(本题满分15分)
设点P 是椭圆14
:221=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,
B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
21.已知函数上为增函数,且
θ∈(0,π),,m ∈R .
(1)求θ的值;
(2)当m=0时,求函数f (x )的单调区间和极值;
(3)若在上至少存在一个x 0,使得f (x 0)>g (x 0)成立,求m 的取值范围.
22.(本小题满分12分)
已知A 、B 、C 、D 为同一平面上的四个点,且满足2AB =,1BC CD DA ===,设BAD θ∠=,ABD ∆的面积为S ,BCD ∆的面积为T .
(1)当3
π
θ=
时,求T 的值;
(2)当S T =时,求cos θ的值;
23.已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值
﹣1的一个特征向量=, =
(Ⅰ)求矩阵M ;
(Ⅱ)求M 5.
24.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
邱县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
2.【答案】C
【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
∵a<b<c,且f(a)=f(b)=f(c)=0.
∴a<1<b<3<c,
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,
∵f(x)=x3﹣6x2+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9,
∴b+c=6﹣a,
∴bc=9﹣a(6﹣a)<,
∴a2﹣4a<0,
∴0<a<4,
∴0<a<1<b<3<c,
∴f(0)<0,f(1)>0,f(3)<0,
∴f(0)f(1)<0,f(0)f(3)>0.
故选:C.
3.【答案】D
【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得
=
当时,y′<0,函数在上为单调减函数,
当时,y′>0,函数在上为单调增函数
所以当时,所设函数的最小值为
所求t的值为
故选D
【点评】可以结合两个函数的草图,发现在(0,+∞)上x 2
>lnx 恒成立,问题转化为求两个函数差的最小值
对应的自变量x 的值.
4. 【答案】C
【解析】解:F 1,F 2
为椭圆
=1的两个焦点,可得F 1
(﹣,0),F 2
().a=2,b=1.
点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2, |PF 2
|=
=,由勾股定理可得:|PF 1
|=
=.
=
=.
故选:C .
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
5. 【答案】D
【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20
,a=1,
当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21
,a=2 当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23
,a=3 当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26
,a=4 当S=26
,a=4,满足退出循环的条件,

z=
=6
故输出结果为6 故选:D
【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.
6. 【答案】B
【解析】选项A .()()0f a f a +-=,排除;
选项B .1cos(2)
112()sin 2222
x f x x π
+-=
=+, ∴()()1sin 2sin(2)1f a f a x x +-=++-=,故选B .
7. 【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
8. 【答案】D 【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;
B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;
C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;
D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.
故选D .
【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.
9. 【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 10.【答案】B
【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,
则F (,0),
依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|, 则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|=
=

即有当M ,P ,F 三点共线时,取得最小值,为.
故选:B . 【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思
想.
11.【答案】A 【



12.【答案】B
【解析】解:由程序框图知,第一次运行T=(﹣1)2•12
=1,S=0+1=1,n=1+1=2;
第二次运行T=(﹣1)3•22
=﹣4,S=1﹣4=﹣3,n=2+1=3;
第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4;

直到n=9+1=10时,满足条件n>9,运行终止,此时T=(﹣1)10•92,
S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.
故选:B.
【点评】本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.
二、填空题
13.【答案】m>1.
【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,
则命题“∀x∈R,x2﹣2x+m>0”是真命题,
即判别式△=4﹣4m<0,
解得m>1,
故答案为:m>1
14.【答案】120
【解析】
考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
A B C=,根据正弦定理,可设3,5,7
sin:sin:sin3:5:7
a b
===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键.
15.【答案】[0,2].
【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,
故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,
求得0≤m≤2,
故答案为:[0,2].
【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.
16.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C是最大角
根据余弦定理,得cosC==>0
∵C∈(0,π),∴角C是锐角,
由此可得A、B也是锐角,所以△ABC是锐角三角形
故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
17.【答案】25
【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,
由正弦定理可得AC==25km,
故答案为:25.
【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.
-
18.【答案】[]1,1
【解析】
考点:函数的定义域.
三、解答题
19.【答案】(1)点P在直线上
(2)
【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。

因为点P的直角坐标(0,4)满足直线的方程,
所以点P在直线上,
(2)因为点Q在曲线C上,故可设点Q的坐标为,
从而点Q到直线的距离为

20.【答案】(1)详见解析;(2)详见解析.
∴点P 为线段AB 中点,PB PA =;…………7分
(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,
故122
-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212
+-+=-+=k t k x x k AB ,…………11分
点O 到直线AB 的距离2
22
1141k
k k
m d ++=
+=,…………13分
∴122
1
2-=⋅=
∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 21.【答案】
【解析】解:(1)∵
函数上为
增函数, ∴g ′(x )=

+
≥0在,mx

≤0,﹣2lnx

<0,
∴在上不存在一个x 0,使得f (x 0)>g (x 0)成立. ②当m >0时,F ′(x )
=m+

=,
∵x ∈,∴2e ﹣2x ≥0,mx 2
+m >0,
∴F ′(x )>0在恒成立. 故F (x )在上单调递增, F (x ) max=F (e )=me

﹣4,
只要me ﹣﹣4>0,解得m >

故m 的取值范围是(
,+∞)
【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
22.【答案】
【解析】(1)在ABC ∆中,由余弦定理得
2222cos BD AB AD AB AD θ=+-⋅
221
1221232
=+-⨯⨯⨯=,
在BCD ∆中,由余弦定理得
222
cos 2BC CD BD BCD BC CD
+-∠=⋅
12
==-,
∵(0,180)BCD ∠∈,∴cos 60BCD ∠=.
∴11sin 1122T BC CD BCD =⋅∠=⨯⨯=
(2)1
sin sin 2
S AD AB BCD θ=⋅∠=.
2222cos 54cos BD AB AD AB AD θθ=+-⋅=-,
2224cos 3
cos 22
BC CD BD BCD BC CD θ+--∠==⋅,
11
sin sin 22
T BC CD BCD BCD =⋅∠=∠,
∵S T =,∴1
sin sin 2
BCD θ=∠,
∴222
4cos 34sin sin 1cos 1(
)2
BCD BCD θθ-=∠=-∠=-, ∴7
cos 8
θ=.
23.【答案】
【解析】解:(Ⅰ)设M=
则=4
=,∴


=(﹣1)
=,∴

由①②可得a=1,b=2,c=3,d=2,∴M=;
(Ⅱ)易知
=0•+(﹣1),
∴M
5=(﹣1)6
=

【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.
24.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,
∴ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2
∴)29427(4152
+⨯=PA ,解得4
315=PA .……………………10分。

相关文档
最新文档