20XX苏教版版六年级数学下册解答应用题训练50综合练习带答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX苏教版版六年级数学下册解答应用题训练50综合练习带答案解析
一、苏教小学数学解决问题六年级下册应用题
1.一个圆锥形沙堆,底面周长是12.56米,高1.5米。
将这些沙铺在宽10米的道路上,铺 4厘米厚,可以铺多少米?
2.一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的体积是多少立方厘米?
3.
(1)请你在如图的圆中画一小圆,使得大圆和小圆的面积比是4:1.
(2)如果这个大圆的比例尺是1:200,请测量出所需数据并计算大圆的实际周长.(测量时保留整厘米数)
4.小明调制了两杯蜂蜜水。
第一杯用了30毫升蜂蜜和360毫升水。
第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?
5.在比例尺是1∶3000000的地图上,量得甲、乙两地相距18厘米,客车与货车分别从甲、乙两地同时相向而行,5小时相遇。
已知客车和货车的速度比是5∶4,问客车与货车的速度差是多少?
6.在比例尺是1∶3000000的地图上,量得A、B两地的距离是50cm。
如果甲、乙两辆客车同时从A、B两地相对开出,经过10小时相遇,甲客车每小时行76千米,乙客车每小时行多少千米?
7.在“脑筋急转弯”抢答比赛中,一共有6道题,规定答对1题得5分,答错一题扣8分,不答得0分,欣欣共得了12分,她抢答了几次?答对了几题?答错了几题?
8.一张长方形的铁皮(如图),剪下图中的阴影部分恰好可以做成一个油桶(接头处不算).这个油桶的容积是多少立方分米?
9.一个近似圆锥的,高2.4m,底面周长31.4m,每立方米沙重1.7吨,如果用一辆载重8吨的车运输,多少次可以运完?
10.根据木棒左侧放棋子的数量和位置,想一想,在右侧的什么位置放几个棋子才能保证木棒平衡?共有几种方案?
11.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。
用这堆沙在10m宽的公路上铺2cm 厚的路面,能铺多少米?
12.一堆圆锥形黄沙,底面周长是25.12m,高1.5m,每立方米的黄沙重2t,这堆沙重多少吨?
13.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
①测量出整个瓶子的高度是22厘米;
②测量出瓶子圆柱形部分的内直径是6厘米;
③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;
④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。
(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。
14.学校组织篮球比赛,春明在这场篮球赛中一共投中10个球,因为他投中的球中有2分球,也有3分球,所以得到24分。
春明在这场篮球赛中投中的2分球和3分球各是多少个?
15.一个底面半径是10厘米的圆柱体杯子中装有水,水里浸没一个底面半径是5厘米的圆锥体铅锤。
把铅锤从杯中取出后,杯里的水面下降了1厘米。
圆锥体铅锤的高是多少厘米?
16.一节空心混凝土管道的内直径是60厘米,外直径是80厘米,长300厘米,浇制100节这种管道需要多少立方米的混凝土?
17.自来水管的内直径是2cm,管内水的流速是每秒20cm。
一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上。
大约浪费了多少升水?
18.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
(1)你选择的材料是________号和________号。
(2)你选择的材料做成的水桶最多能装水多少千克?(1升水重1千克)
19.用弹簧秤称物体,称3千克的物体,弹簧长11.5厘米;称4千克的物体,弹簧长12厘米。
称6千克的物体时,弹簧长多少厘米?
20.有一只渔船在“救援中心”东偏北30°方向的180千米处触礁遇险,预计2小时后将沉没。
救援中心有2条搜救船,时速均为80千米/小时。
此时甲搜救船正在“救援中心”北偏东30°方向的120千米处巡逻;乙搜救船在“救援中心”待命……
(1)在上图中按比例画出遇险船和甲搜救船的具体位置。
(2)你认为应该派哪艘船救援?它能否及时赶到遇险地点?(请你在必要的测量后,用计算来表明。
)
21.工地上有一堆圆锥形三合土,底面周长为37.68m,高为5m。
用这堆三合土在15m宽的公路上铺4cm厚的路面,可以铺多少米?
22.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
23.在学校篮球比赛中,李军2分球加3分球共投进8个,共得19分,他2分球和3分球各投进多少个?
24.有40位同学在14张乒乓球桌上同时进行单打或双打比赛(单打一张桌上2个人,双打一张桌上4个人)。
进行单打和双打比赛的乒乓球桌各有几张?
25.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?
26.小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各多少枚?
27.(如图所示)一个棱长6cm的正方体,从正方体的底面向内挖去一个最大的圆锥体,这个圆锥的体积是多少cm3?
28.把一个底面半径是2厘米的圆柱体,沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,(如图)已知拼成后长方体表面积比原来圆柱表面积增加了60平方厘米,这个长方体的体积是多少?
29.甲、乙两个车间工人的工作时间和耗电量如下表。
工作时间/时123456
甲车间耗电量/千瓦∙时40 80 120 160 200 240
乙车间耗电量/千瓦∙时4085 130170 205 260
(2)根据表中的数据,在下图中描出甲车间工人的工作时间与耗电量所对应的点,再把它
们按顺序连接起来。
(3)根据图像估计,甲车间工人工作2.5小时,耗电量大约是________千瓦・时。
30.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
31.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
每种小虫各有几只?
32.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…
.
(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
33.我们都知道:圆的周长与直径的比值就是圆周率。
它是一个无限不循环小数,用字母π表示。
但你未必知道“圆方率”,就让我们一起来探索吧!
【探索】把一个棱长a厘米的正方体削成一个最大的圆柱体。
求这个圆柱体与正方体体积和表面积比。
(计算涉及圆周率,直接用π表示)
34.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
35.六年的小学生活即将结束,婷婷计划星期天请5名同学到家商量去养老院参加义务劳动的事,家中只有一盒长方体饮料(如下图),假如用来招待同学,给每位同学倒上满满一杯(如下图)后,她自己还有饮料吗?(请写出计算过程,盒子、杯子的厚度均勿略不计)(单位:厘米)
36.一个工厂运来一批煤,计划每天烧8吨,可以烧45天。
实际每天节约用煤10%,这样可以多烧多少天?
37.学校要修建一个圆柱形的水池,在比例尺是1:200的设计图纸上,水池的半径为3厘米,深为2厘米。
(1)按图施工,这个水池的实际应该挖多少米深?
(2)按图施工,这个水池的能装下多少立方米的水?
(3)为了加固和美观,施工时给水池底部和水池壁都铺了水泥,且平均厚度是10厘米,然后再用油漆将新铺水泥的表面粉刷一遍,请问粉刷部分的面积是多少平方米?(结果保
留一位小数)
38.圆柱形的无盖水桶,底面直径30厘米,高50厘米。
(1)做这个水桶至少需要用多少平方分米的铁皮?(得数保留两位小数)
(2)如果在这个水桶中先倒入14.13升的水,再把几条鱼放入水中,这时量的桶内的水深是21厘米,这几条鱼的体积一共是多少?
39.—个棱长是6分米的正方体。
(1)它的表面积是多少?
(2)如果把它削成一个最大的圆柱体,圆柱体的体积是多少?
(3)如果把它削成一个最大的圆锥体,削去的体积是多少立方分米?
40.下图中A、B、C表示三个城市的车站位置。
根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。
照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题六年级下册应用题
1.解:半径:12.56÷3.14÷2
=4÷2
=2(米)
体积: ×3.14×22 ×1.5
=×3.14×4×1.5
=3.14×4×0.5
=12.56×0.5
=6.28(立方米)
4cm=0.04m
可以铺:
6.28÷10÷0.04
=0.628÷0.04
=15.7(米)
答:可以铺15.7米。
【解析】【分析】已知圆锥的底面周长,可以求出圆锥的底面半径,C÷π÷2=r,然后求出圆
锥的体积,V=πr2h,最后用圆锥沙堆的体积÷铺的宽度÷铺的厚度=铺的长度,据此列式解答。
2.高:31.4÷6.28=5(厘米)
底面半径:6.28÷3.14÷2=1(厘米)
圆柱体的体积:3.14×1×1×5=15.7(立方厘米)
答:这个圆柱体的体积是15.7立方厘米。
【解析】【分析】圆柱体的侧面积÷底面周长=圆柱的高;圆柱的底面周长÷3.14÷2=圆柱的底面半径;π×底面半径的平方=圆柱的底面积;圆柱的底面积×圆柱的高=圆柱的体积。
3.(1)解:量得大圆的半径为2厘米,则小圆的半径为2÷2=1厘米,
如此小圆和大圆的面积比就为12:22=1:4,据此画图如下:
(2)解:量得大圆的半径为2厘米,则其实际长度为:
2÷ =400(厘米)=4(米)
所以大圆的实际周长为3.14×4×2=25.12(米)
答:大圆的实际周长为25.12米。
【解析】【分析】(1)两个圆的面积之比等于半径的平方之比,据此作答即可;
(2)大圆实际的半径=大圆的图上半径÷比例尺,所以大圆的之际周长=π×r×2。
4.解:设第二杯应加入蜂蜜x毫升。
30:360=x:500
360x=30×500
360x=15000
x=15000÷360
x≈41.7
答:第二杯应加入蜂蜜41.7毫升。
【解析】【分析】第一杯中蜂蜜质量:水的质量=第二杯中蜂蜜质量:水质量,据此列比
例,然后根据比例的基本性质和等式性质解比例。
5.解:18×3000000÷100000= 540千米
540÷5×( - )
= 108×
=12(千米)
答:客车与货车的速度差是12千米。
【解析】【分析】实际距离=图上距离×比例尺的倒数÷进率,客车与货车的速度差=速度和×(客车速度占比-货车速度占比),速度和=距离÷相遇时间。
6.解:50÷ = 150000000 ( cm )
150000000cm = 1500km
1500÷10- 76
=150-76
=74 ( km )
答:乙客车每小时行74km。
【解析】【分析】已知图上距离和比例尺,可以求出实际距离,图上距离÷比例尺=实际距离,然后用实际距离÷相遇时间-甲车的速度=乙车的速度,据此列式解答。
7.解:(5×5-12)÷(8+5)
=13÷13
=1(道)
5-1=4(道)
答:她抢答了5次,答对了4题,答错了1题。
【解析】【分析】因为最后得分是12分,所以可以判断他不会6道题都答对,我们可以理解为抢答了5次;
按鸡兔同笼理解,五次全部答对,得了25分,先计算出与实际得分的差,再算出答对和答错的分差,差÷差=答错的题数,5题-答错的题数=答对的题数。
8.解:设阴影部分中圆的直径为x分米,
x+x+3.14x=20.56
5.14x=20.56
x=4
阴影部分圆的半径为:4÷2=2(分米)
圆柱形油桶的容积为:3.14×22×4
=12.56×4
=50.24(立方分米)
答:做成油桶的容积是50.24立方分米。
【解析】【分析】观察图可知,小长方形的长是圆柱的底面周长,设阴影部分中圆的直径为x分米,则长方形的长是3.14x分米,长方形的长+两个圆的直径=20.56,据此列方程可
以求出圆的直径,也是圆柱的高,要求圆柱的容积,依据公式:V=πr2h,据此列式解答。
9.解:×3.14×(31.4÷3.14÷2)2×2.4×1.7÷8
=×3.14×25×2.4×1.7÷8
=62.8×1.7÷8
=106.76÷8
=13(次)……2.76(吨)
所以需要13+1=14(次)。
答:如果用一辆载重8吨的车运输,14次可以运完。
【解析】【分析】圆锥的体积=×π×底面半径(底面周长÷π÷2)的平方×圆锥的高,再用圆锥的体积×每立方米沙重的吨数求出沙的总吨数,最后用沙的总吨数÷每辆车载沙的吨数,若商为整数则商为总共运送的次数;若有余数,则商+1为总共运送的吨数。
10.解:方案一:右侧位置1处放18个棋子;方案二:右侧位置2处放9个棋子;方案三:右侧位置3处放6个棋子;方案四:右侧位置6处放3个棋子;方案五:右侧位置9处放2个棋子;方案六:右侧位置18处放1个棋子。
共6种方案。
【解析】【分析】左边放棋子的个数×格数=右边放棋子的个数×格数。
6×3=18,那么右边放棋子的个数与格数的乘积是18,这样列举出所有方案即可。
11.解:2cm=0.02m
28.26×2.5×÷10÷0.02
=22.5÷10÷0.02
=112.5(米)
答:能铺112.5米。
【解析】【分析】沙堆的体积是不变的,因此根据圆锥的体积公式计算出圆锥形沙堆的体积,然后用沙堆的体积除以公路的宽,再除以铺的厚度即可求出铺的长度。
12.解:25.12÷3.14÷2=4(米)
3.14×4×4×1.5÷3=25.12(立方米)
25.12×2=50.24(吨)
答:这堆沙重50.24吨。
【解析】【分析】底面周长÷3.14÷2=底面半径;3.14×底面半径的平方×高÷3=圆锥体积;圆锥体积×2=这堆沙的重量。
13.(1)②③④
(2)3.14×()2×(5+12)
=28.26×17
=480.42(立方厘米)
=480.42(ml)
答:这个瓶子的容积为480.42ml。
【解析】【分析】(1)因为要求的是瓶子的容积,而瓶子上面部分不是圆柱体部分,所以不需要直到整个瓶子的高度,而剩下的几个条件都需要;
(2)瓶子的容积=πr2×(正放水的高度+倒放无水部分的高度),据此代入数据作答即可。
14.解:设投中3分球x个,则2分球有(10-x)个。
3x+2(10-x)=24
3x+20-2x=24
x=24-20
x=4
10-4=6(个)
答:春明在这场篮球赛中投中的2分球有6个,3分球有4个。
【解析】【分析】此题属于鸡兔同笼问题,设投中3分球x个,则2分球有(10-x)个,根据得分是24分列出方程,解方程求出3分球的个数,进而求出2分球的个数即可。
15.解:3.14×102×1÷÷(3.14×52)
=3.14×300÷3.14÷25
=300÷25
=12(厘米)
答:圆锥体的高是12厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆柱的体积公式计算出1
厘米高水的体积,也就是圆锥铅锤的体积。
圆锥的高=体积÷÷底面积,根据公式计算圆锥的高即可。
16. 300厘米=3米
60÷2=30(厘米)=0.3(米)
80÷2=40(厘米)=0.4(米)
3.14×(0.4×0.4-0.3×0.3)×3×100=3.14×0.07×300=65.94(立方米)
答:浇制100节这种管道需要65.94立方米的混凝土。
【解析】【分析】空心混凝土管道的底面积×高=一节的体积;一节的体积×100节=浇制100节这种管道需要的混凝土体积。
17.内半径:2÷2=1(厘米)
1秒流出的水:3.14×1×1×20=62.8(毫升)
5分钟流出的水:62.8×5×60=62.8×300=18840(毫升)=18.84(升)
答:大约浪费了18.84升水。
【解析】【分析】流出的水是圆柱,圆柱体积=底面积×高,据此先求出1秒流出了多少水,再求出5分流出了多少水,最后毫升化为升。
18.(1)2;3
(2)解:我选择2号与3号,制作成水桶的底面直径是4分米,高是5分米,
3.14×(4÷2)²×5
=3.14×2²×5
=3.14×4×5
=12.56×5
=62.8(立方分米)
62.8立方分米=62.8升
62.8×1=62.8(千克)
答:我选择的材料做成的水桶最多能装水62.8千克。
【解析】【解答】解:(1)2号的周长:3.14×4=12.56(分米);4号的周长:3.14×3=9.42(分米),所以可以选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶。
【分析】(1)圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由此可以判断选择2号与3号、或者1号与4号,可以制作一个无盖圆柱形水桶;
(2)圆柱的体积=底面积×高,然后把立方分米换算成升,最后圆柱的容积×平均每升水的质量=做成的水桶最多能装水的质量。
19.解:弹簧原长x厘米。
解得x=10
6×(11.5-10)÷3=3(厘米)
3+10=13(厘米)
答:弹簧长13厘米。
【解析】【分析】设弹簧原长x厘米,根据等量关系,第一次称的物体质量:(第一次弹簧长-弹簧原长)=第二次称的物体质量:(第二次弹簧长-弹簧原长);称6千克物体时弹簧长=物体质量×(第一次弹簧长-弹簧原长)÷第一次称的物体质量。
20.(1)解:180千米=18000000厘米,图上距离:18000000×=4.5(厘米),如图:
(2)解:120千米=12000000厘米,12000000÷4000000=3(厘米),
甲船的位置:
经测量,甲搜救船到渔船的图上距离是2.5厘米,2.5<4.5,所以应该派甲搜救船救援,2.5×4000000=10000000(厘米)=100(千米)
100÷80=1.25(小时)
答:我认为应该派甲搜救船救援,它能及时赶到遇险地点。
【解析】【分析】(1)先把实际距离换算成厘米,然后用实际距离除以4000000求出图上距离,然后根据图上的方向、夹角的度数和图上距离确定渔船的位置并画出图形;(2)先确定甲搜救船的位置,然后测量出甲船与渔船的图上距离,比较后确定派出甲搜救船,用图上距离乘4000000求出实际距离,然后用实际距离除以搜救船的速度求出救援时间,比较后判断能否及时赶到即可。
21.解:圆锥的底面半径=37.68÷3.14÷2
=12÷2
=6(米)
圆锥的体积=3.14×62×5×
=3.14×36×5×
=113.04×5×
=565.2×
=188.4(立方米)
可以铺的长度=188.4÷15÷(4÷100)
=12.56÷0.04
=314(米)
答:可以铺314米。
【解析】【分析】圆锥的底面周长=π×底面半径×2,即可得出圆锥的底面半径=圆锥底面周
长÷π÷2;圆锥的体积=π×圆锥的底面半径的平方×圆锥的高×计算出土堆的体积,接下来根据长方体的长=土堆的体积÷长方体的宽÷长方体的高(铺土的厚度,注意单位化成m),计算即可得出答案。
22.解:625mL=625cm3
625÷(10+2.5)×10
=625÷12.5×10
=50×10
=500(cm3)
500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。
23.解:2分球:(3×8-19)÷(3-2)=5(个)
3分球:8-5=3(个)
答:2分球投进5个,3分球投进3个。
【解析】【分析】本题先假设全是3分球,然后根据出现的分数差,可推算出2分球的个数。
2分球的个数=(共投进8个×3-实际得分)÷分数差,3分球的个数=共投进8个-2分球的个数。
24.解:双打:(40-14×2)÷(4-2)=6(张)
单打:14-6=8(张)
答:进行单打乒乓球桌有6张,进行双打比赛的乒乓球桌有8张。
【解析】【分析】这是一道鸡兔同笼问题,解答此类问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
本题先假设全是单打,双打桌数=(总人数-单打一张桌上2个人×总桌数)÷一桌单双打人数的差,据此解答即可。
25.解:圆柱形玻璃水杯的底面半径是:25.12÷3.14÷2=4(厘米)
圆柱形玻璃水杯的底面积:3.14×4×4=50.24(平方厘米)
水的体积:50.24×10=502.4(立方厘米)
水增加的体积:50.24×(12-10)=100.48(立方厘米)
答:这只乌龟的体积大约是100.48立方厘米。
【解析】【分析】底面周长÷π÷2=底面半径;底面积=π×底面半径的平方;水的体积=底面积×高;水增加的体积=底面积×水增加的高度;水增加的体积就是这只乌龟的体积。
26.解:5.1元=51角
设5角的有x枚,则1角的就是(27﹣x)枚。
5x+(27﹣x)×1=51
5x+27﹣x=51
4x=51-27
x=24÷4
x=6
27﹣6=21(枚)
答:5角的有6枚,1角的是21枚。
【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。
设5角的有x枚,则1角的就是(27﹣x)枚。
根据价值是5.1元列出方程,解方程求出5角的枚数,进而求出1角的枚数即可。
27.解:底面半径:6÷2=3(厘米)
3.14×3×3×6÷3
=28.26×6÷3
=169.56÷3
=56.52(立方厘米)
答:这个圆锥的体积是56.52立方厘米。
【解析】【分析】圆锥体的底面直径是6厘米,高是6厘米,圆锥体积=π×半径的平方×高÷3,据此解答。
28.解:圆柱的高=60÷2÷2=15(厘米)
长方体的长=3.14×2=6.28(厘米)
长方体的宽=2厘米,长方体的宽=圆柱的高=15厘米,
所以长方体的体积=6.28×2×15
=12.56×15
=188.4(立方厘米)
答:这个长方体的体积是188.4立方厘米。
【解析】【分析】圆柱沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,表面积增加的是2个圆柱的底面半径×圆柱的高的长方形,代入数值即可计算出圆柱的高,这个长方形的长为圆柱底面周长的一半即π×半径,长方体的宽为圆柱底面半径,长方体的高为
圆柱的高,最后根据长方体的体积=长×宽×高,计算即可得出答案。
29.(1)甲
(2)
(3)100
【解析】【解答】解:(1)甲车间工人的工作时间和耗电量的比值一定,所以他们之间成正比例。
(3)2.5×(40÷1)=100,所以耗电量大约是100千瓦·时。
【分析】(1)=k(k是常数,x,y不等于0),所以x和y成正比例;
(2)根据表中的数据作图即可;
(3)耗电量=甲车间工作的时间×(甲车间工作1小时的耗电量÷1),据此代入数据作答即可。
30.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
31.解:蜘蛛:(118-18×6)÷(8-6)=5(只)
蝉:[(18-5)×2-20]÷(2-1)=6(只)
蜻蜓:18-5-6=7(只)
答:蝉6只,蜻蜓7只。
【解析】【分析】解答鸡兔问题一般采用假设法。
先假设全是蜻蜓和蝉,蜘蛛只数=(总腿数-总头数×6)÷腿数差;
再假设全部是蜻蜓,蝉的只数=(蜻蜓和蝉总数×每只蜻蜓翅膀数-实有翅膀数)÷翅膀差;
蜻蜓数量=总数-蜘蛛只数-蝉的只数。
32.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。
故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。
【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。
33.解:体积:圆柱体的体积:π∙()2·a=πa3;正方体的体积:a3;
圆柱体与正方体的体积比:πa3:a3=π:4。
表面积:圆柱体的表面积:2∙π∙ ·a+π∙()2×2=πa2,正方体的表面积:6a2
圆柱体与正方体的表面积比:πa2:6a2=π:4。
答:这个圆柱体和正方体体积和表面积的比都是π:4。
【解析】【分析】圆柱的底面直径与正方体的棱长相等。
圆柱的表面积=底面积×2+侧面
积,圆柱的体积=底面积×高,正方体表面积=棱长×棱长×6,正方体体积=棱长×棱长×棱长,根据公式分别用字母表示,然后写出相应的比并化成最简整数比即可。
34.解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。
35.解:长方体容积:20×10×8=200×8=1600(毫升)
5个圆柱容积:3.14× ×10×5=3.14×9×50=3.14×450=1413(毫升)
饮料剩余:1600-1413=187(毫升)
答:有。
【解析】【分析】长方体的体积=长×宽×高;圆柱的体积=底面积×高,饮料剩余=长方体容积-5个圆柱容积;据此解答即可。
36.解:8×45÷[8×(1-10%)]
=360÷[8×0.9]
=360÷7.2
=50(天)
50-45=5(天)
答:这样可以多烧5天。
【解析】【分析】煤总数=计划每天烧的数量×计划天数,实际每天烧的数量=计划每天烧的数量×(1-10%)
实际天数=煤总数÷实际每天烧的数量,多烧天数=实际天数-计划天数。
37.(1)解:2÷ =400(厘米)=4(米)
答:这个水池实际应该挖4米深。
(2)解:r=3÷ =600(厘米)=6(米)
V = 3.14×6²×4=452.16(立方米)
答:这个水池能装下452.16立方米的水。
(3)解:10cm=0.1m
r=6-0.1=5.9(米), h=4-0.1=3.9(米)
3.14×5.9×2×3.9+3.14×5.9×5.9
=3.14×46.02+3.14×34.81
=3.14×80.83
≈253.8(平方米)
答:粉刷部分的面积是253.8平方米。
【解析】【分析】(1)用图上距离除以比例尺即可求出实际距离,然后换算成米即可;(2)先求出实际的半径长度,然后用底面积乘高求出能装下水的体积即可;
(3)先把10cm换算成0.1m,则实际的半径长度减少了0.1m,实际高度减少了0.1米,先计算出实际半径和实际高度。
然后用底面积加上侧面积即可求出需要粉刷部分的面积。
38.(1)解:30厘米=3分米,50厘米=5分米
(3÷2)2×3.14+3×3.14×5=54.165≈54.17(平方分米)
答:做这个水桶至少需要用54.17平方分米的铁皮。
(2)解:14.13÷(3÷2)2÷3.14=2(分米)
21厘米=2.1分米
2.1-2=0.1(分米)
(3÷2)2×3.14×0.1=0.7065(立方分米)
答:这几条鱼的体积一共是0.7065立方分米。
【解析】【分析】(1)先把单位进行换算,即30厘米=3分米,50厘米=5分米,那么做这个水桶至少需要铁皮的平方分米数=侧面积+底面积,其中底面积=π×(直径÷2)2,侧面积=πdh;
(2)倒入水后水的高度=水的容积÷π÷(直径÷2)2,那么这几条鱼的体积=水面身高的高度×π×(直径÷2)2。
39.(1)解:6×6×6
=36×6
=216(平方分米)
答:它的表面积是216平方分米。
(2)解:3.14×(6÷2)²×6
=3.14×9×6
=28.26×6
=169.56(立方分米)
答:圆柱体的体积是169.56立方分米。
(3)解:圆锥的体积:。