分数除法教学反思12篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法教学反思12篇
(实用版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!
分数除法教学反思12篇
分数除法教学反思1
“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。
借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。
五年级数学下册分数和除法教学反思
验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。
方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4.有3个1/4块饼,即3/4块。
操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。
观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关
系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一、而分数是一种数,相对于自然数、小数而言的另外一种形式的数。
在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。
如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。
板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。
情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。
“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/( )米 23分=( )/( )。
学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。
运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。
直观是学生理解的基础,直观是沟通知识的桥梁。
分数除法教学反思2
教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少
米?学生列出算式后,接着探究算法。
出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。
学生的每种算法把算理都解释得非常清楚。
我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。
学生也被他们自己能够想出多种算法所鼓舞着。
我接着让他们继续计算,使学生·发现上述的方法并不适用于所有的计算题目。
只适合于用乘倒数和商不变的性质解决。
通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。
学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。
下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。
《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。
在以往的教学中,教师往往是代替学生·发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。
久而久之会慢慢抹煞孩子的创新意识。
在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。
在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。
这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。
计算教学要体现学生思维的开放性。
鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思
考的空间留给学生。
在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。
每种方法都可以看作是一种创新意识的体现。
我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。
学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。
同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。
促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。
分数除法教学反思3
《分数除法三》是北师大版小学数学第十册第三单元的内容。
分数应用题的教学是小学数学教学中的一个重点,也是一个难点。
如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。
《国家数学课程标·准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。
”教学一开始我就结合学生的生活实际提出相关的数学问题,例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。
反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
让学生理解题中的数量关系是解决分数除法应用题的关键。
教学中,我通过省略题中的一个已知条件,让学生·发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。
本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。
为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。
在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。
在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。
教学中,给学生提供探究的平台,先让学生独·立思考,探究解题方法,在独·立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。
使学生经历独·立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
分数除法教学反思4
首先通过课前谈话解决了分数除法的意义。
接下去重点来研究第一环节分数除以整数的计算方法,我出示了这样一道例题:城西中心
小学占地约为9/10公顷,如果按面积平均分成三块不同的区域,每块区域占地多少公顷?题目一出,学生马上就把算式列出来了,9/10÷3.怎么计算呢?通过四人小组讨论合作,最终相出了好几种方法。
如9/10÷3=0.9÷3=0.3(公顷)9/10÷3=(9/10X1/(3)÷(3X1/(3)=3/10(公顷)9/10÷3=9/10X1/3=3/10(公顷)(因为把一块地看作一个整体,平均分成三块,其中的一块就占了这块的1/3.所以直接乘以1/(3)等一些方法,通过比较最终得出9/10÷3=9/10X1/3=3/10(公顷)这种方法简便。
接着我把9/10该为10/11.让他们再用自己发现的方法进行计算。
结果学生们发现还是用这种方法简便,10/11÷3=10/11X1/3=10/33(公顷)最后,让他们观察、讨论、交流9/10÷3=9/10X1/3=3/10(公顷)与10/11÷3=10/11X1/3=10/33(公顷)这两题的计算方法,学生们发现除以整数等于乘以整数的倒数。
第二环节解决一个数除以分数的计算方法。
我把例题该为城西中心小学占地约为9/10公顷,如果每块区域占地为3/10公顷,平均分成几块不同的区域?有了第一题的基础,大部分学生马上就想到9/10÷3/10=9/10X10/3=3(块)我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你在把9/10换成10/11的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。
接着我又问如果老师把9/10公顷换成1公顷,你认为又该怎么计算呢?学生们说还是乘以它的倒数。
那么从中你发现了什么?分数除法的计算方法学生们脱口而出。
第三环节,做一些练习。
在整个教学过程中,我是以学生学习的组织者,帮助者,促进者
出现在他们的面前。
这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。
学生学的轻松,教师教的快乐。
分数除法教学反思5
学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。
分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一、为了激发学生主动积极地参与学习的全过程,力戒传统教学中烦琐的分析和教条的死记,引导学生正确理解分数除法应用题的数量。
成功之处:
一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生·发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。
从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中努力体现自主、合作、探究的学习方式。
以前我曾有幸听过几个老教师的分数除法的课,他们对于分数除法应用题教学效率并不是特别高,究其原因,主要是教师教学存在偏差。
教师喜欢重关
键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经
理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。
教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。
另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如是、占、比、相当于后面就是单位1;知1求几用乘法,知几求1用除法等等的做法,要求学生严格按照以下步骤解决此类应用题:
1、找单位1
2、画线段图
3、列等量关系式
4、列方程或数学算式解决。
充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
不足之处:
1、时间掌握不够好,由于前面用的时间较多,导致了后面的练习时间已经不够了。
2、在课堂评价方面还需加以改进,当学生回答正确或解答出现了错误,没有对学生进行评价,而学生很在乎老师的评价,这方面稍微欠缺了一些。
3、整节课,我表现得太多,学生的表现弱了一点,学生的积极性没有完全调动起来。
4、练习设计没有体现较强的针对性和拓展性。
改进:
1、对于学生每次做题的结果应该及时进行评价,让所有的学生感受到成功的喜悦。
特别是在学生自己独·立猜想方法尝试解决了分数除以分数的题目之后,应该重点鼓励,让他们感受快乐,增强信心,以更好的状态投入到下面的学习中去。
2、教学中引导的语言如果能注重一些细节,效果就会更好一些。
在整个教学过程中,我要注意以学生学习的组织者,帮助者,促进者出现在他们的面前。
这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。
学生学的轻松,教师教的快乐。
分数除法教学反思6
今天教学了“分数与除法”这一课,例题3XX我备课时的一个重、难点,因此,在这部分我给了学生充分的探究时间,又组织学生分小组讨论,引导他们按着书上的提示去思考。
我又从意义和算法两方面
入手,分别详细地讲解了每种方法。
一直讲了十多分钟,“明白了吗?”“明白了!”学生点头回答。
我满意的笑了。
接下来的“做一做”中就有类似的题,我让学生自己完成,并说说自己的想法。
心里还不免有些担心,怕他们说不好。
哪知学生一张口竟是“和以前学过的谁是谁的几倍做法一样。
”我一愣,可不是嘛,如果联系以前所学的知识,这个例题十分简单且容易理解,可是竟被我弄的如此复杂。
于是我大大表扬了这个同学一番,“你真会学习,能够联系以前所学的知识进行对比着学,真棒!”
课后我反思,其实很多时候我们老师备课备的还远远不够。
我们往往只备教材,却忘了备学生,忽略了学生已有的知识水平和能力。
有时又只从本节课出发,却忘了应将旧知与新知联系起来进行系统的学习。
如果我们每次备课都充分考虑到了这些,恐怕会少走很多弯路吧!
分数除法教学反思7
分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。
一、成功之处
1.恰当铺垫,有利于分散难点。
为有效地分散算理,教学中设置的教学情境,以比较简单的题目
形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?。
在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4.也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生更好地认识分数与除法的联系。
2.实际操作,感悟新知识。
《数学课程标·准》指出:“数学教学,要让学生亲身经历数学知识的形成过程。
”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。
在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。
学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三、也可以说是3张饼的四分之一。
通过这样两次动手操作的过程,学生充分理解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。
3.鼓励发现,探索分数与除法的关系。
探索是学生亲自经历和体验的学习过程,引导学生观察1÷3=1/3 3÷4=3/4这两道算式,鼓励他们想一想:①两个(非0)自然数相除,
在不能得到整数商的情况下还可以用什么数表示?②用分数表示商时,除式里的被除数,除数分别是分数里的什么?③分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。
二、改进之处
1.分数与除法的区别没有理解透彻。
虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有学生自己总结出来,剩下的时间比较仓促,只能由我帮助引导学生总结出两者的区别,即:除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。
这部分内容下一节课应予以强调。
2.小组操作参差不齐。
在小组合作进行把3块饼平均分给4个人时,有的小组合作的效果较好,但有的小组并没有领会3/4块是怎么得到的,3个1/4块是3/4块,3块的1/4是3/4块,分数的这两种意义个别学生没有理解透彻。
针对本课的不足之处,下一节课将进一步弥补,期待学生将分数与除法的联系和区别掌握牢固。
分数除法教学反思8
本节课的内容是在学生学习整数除法、分数乘法的计算和倒数的基础上进行教学的。
本节课的重点是理解分数除法的意义,掌握分数除法的计算方法。
成功之处:
1.找准学生的最近发展区,降低学生学习难度,注重数学思想方法的渗透。
在教学中,我通过板书课题:分数除法,让学生进行猜想今天所学的知识与前面所学的知识有什么联系,通过学生的回答,得出与整数除法、分数乘法和倒数有联系。
然后在新课的教学中,通过例1学生非常轻易的得出分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
在例2的教学中,通过折纸过程的演示学生可以清楚的看出:4/5÷2=4/5X1/2=2/5.发现分数除法与分数乘法、倒数之间的联系,从而得出分数除以整数等于分数乘这个整数的倒数。
这样通过建立最近发展区,学生丝毫没有感到新知识有多难,而是比较轻松愉快地获得新知识,同时注重了对数学转化思想的渗透,使学生充分感受到在学习中,原来泾渭分明的两种运算,居然可以转化,计算方法的每一步,其实就是新旧知识、方法的转化。
2.重视算法的探索过程,让学生不仅知其然,还要知其所以然。
在例2的教学中,以折纸实验为载体,让学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,诱导学生经历由特殊到一般的探索过程,从中悟出把一个数平均分成几份,就是求这个数的几分之一是多少。
在例3的教学中,通过画线段图来验证学生的猜想,从而得出除以一个不为0的数等于乘这个数的倒数。
不足之处:
由于教学了三个例题,内容较多,导致练习的的时间较少,学生
对于分数除法的计算不够熟练。
再教设计:
调整教学环节时间的分配,缩短对分数除法意义的教学,整合例2与例3的教学内容,使例3不仅仅通过线段图得出,也可以通过商不变规律、等式的基本性质等不同方法进行验证。
分数除法教学反思9
本节课是在学生学习了分数除法(一)的内容,即除数是整数的除法的基础上进行教学的。
这节课的教学重点是使学生理解一个数除以分数的意义及计算方法,教学难点是使学生理解一个数除以分数的意义和基本算理。
教学中,首先设计了“分一分”活动,从整数除以整数到整数除以分数,借助除法的意义和图形语言,使学生初步体会“除以一个分数”与“乘这个分数的倒数”之间的关系;接下来的“画一画”活动,指导学生利用图示分析数量关系,进一步体会分数除法的意义和算法,体现数形结合的思想;最后的“填一填,想一想”中,通过对前面问题思考过程的整理,使学生进一步理解分数除法的意义,让学生在观察、比较、分析中发现问题中蕴含的规律。
课中采用让学生通过观察、比较与思考,发现知识间的内在联系,主要是教会学生一种学习方法,即分数除法的意义可联系整数除法的意义进行学习。
课上完后,效果并没有我想象中那么好,有许多不尽人意的地方,最主要是时间安排不当,有点前松后紧,致使后面布置的进一步练习没有当堂去做而改成课后完成,造成缺憾。
改进方法:在经历知识的。