江苏省连云港市九年级上学期期末学情检测数学试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省连云港市九年级上学期期末学情检测数学试题(含答案)
一、选择题
1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )
A .1a =
B .1a =-
C .1a ≠-
D .1a ≠
2.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )
A .7 : 12
B .7 : 24
C .13 : 36
D .13 : 72
3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②
B .②③
C .①③
D .①②③
4.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )
A .70°
B .72°
C .74°
D .76° 5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )
A .k >-1
B .k≥-1
C .k <-1
D .k≤-1
6.在△ABC 中,若|sinA ﹣12|+2cosB )2=0,则∠C 的度数是( ) A .45°
B .75°
C .105°
D .120°
7.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .
3
4
B .
14
C .
13
D .
12
8.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到
点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为2
ycm.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:
①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;
②矩形ABCD的两邻边长为BC=6cm,CD=4cm;
③sin∠ABS=
3
2

④点E的运动速度为每秒2cm.其中正确的是()
A.①②③B.①③④C.①②④D.②③④9.下列函数中属于二次函数的是( )
A.y=1
2
x B.y=2x2-1 C.y=23
x D.y=x2+
1
x
+1
10.如果两个相似三角形的周长比是1:2,那么它们的面积比是()
A.1:2 B.1:4 C.1:2D.2:1
11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()
①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
12.二次函数y=x2﹣2x+1与x轴的交点个数是()
A.0 B.1 C.2 D.3
13.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()
A.开口向上B.对称轴是y轴
C.有最低点D.在对称轴右侧的部分从左往右是下降的14.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC 的度数等于()
A .50°
B .49°
C .48°
D .47° 15.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )
A .a <2
B .a >2
C .a <﹣2
D .a >﹣2
二、填空题
16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.
17.若
a b b -=23,则a
b
的值为________. 18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .
19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.
20.抛物线2
(-1)3y x =+的顶点坐标是______. 21.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半
径是______.
22.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.
23.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.
24.二次函数2
y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取
值范围是_______.
25.如图,直线y=
1
2
x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =5
2
,则k 的值为________.
26.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.
27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.
28.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.
29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2
S 甲、2
S 乙,且
22S S >甲乙,则队员身高比较整齐的球队是_____.
30.若二次函数2
4y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________
三、解答题
31.已知二次函数2
16y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.
32.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;
(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.
33.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率.
34.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
35.已知二次函数y =x 2+bx +c 的函数值y 与自变量x 之间的对应数据如表: x … ﹣1 0 1 2 3 4 … y

10
5
2
1
2
5

(1)求b 、c 的值;
(2)当x 取何值时,该二次函数有最小值,最小值是多少?
四、压轴题
36.如图,在平面直角坐标系中,直线l:y=﹣1
3
x+2与x轴交于点B,与y轴交于点A,
以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作
CE⊥x轴于点E,连接ED并延长交y轴于点F.
(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
37.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.
(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.
(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.
38.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作
BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3
.....)
①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与
..
抛物线在
............(.包括边界
....).时,求t的取值范围.(直接写出答案即可)....x.轴上方的部分围成的图形中
39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.
(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;
(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;
(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=
4
5
,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;
(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);
(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
由函数是二次函数得到a-1≠0即可解题. 【详解】
解:∵2
(1)y a x bx c =-++是二次函数,
∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】
本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.
2.B
解析:B 【解析】 【分析】
根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】
解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,1
2
BG BE DG AD ==, ∴
1
3DH BG BD BD ==, ∴BG=GH=DH ,
∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,
∴1
2EF BD =, ∴
1
4
EFC BCDD S S =, ∴
18EFC
ABCD
S S =
四边形, ∴
1176824
AGH
EFC
ABCD
S
S
S +=
+=四边形=7∶24, 故选B. 【点睛】
本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.
3.C
解析:C 【解析】
【分析】
①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;
③利用抛物线与直线y=-2有两个交点进行判断. 【详解】
解:∵a <0<b ,∴二次函数的对称轴为x=2b
a
->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;
根据二次函数的系数,可得图像大致如下, 由于对称轴x=2b
a
-
的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;
由图像可知,y==ax 2+bx +c ≤0,
∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】
本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.
4.D
解析:D 【解析】 【分析】
连接OC ,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解. 【详解】 解:连接OC
∵OA=OC,OB=OC
∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°
∴∠ACB=∠OCB-∠OCA=54°-16°=38°
∴∠AOB=2∠ACB=76°
故选:D
【点睛】
本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.
5.C
解析:C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当
时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
6.C
解析:C
【解析】
【分析】
根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.
【详解】
由题意得,sinA-1
2
=0,
2
2
-cosB=0,
即sinA=1
2
2

解得,∠A=30°,∠B=45°,
∴∠C=180°-∠A-∠B=105°,
故选C .
【点睛】
本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.
7.B
解析:B
【解析】
试题解析:可能出现的结果
的结果有1种,
则所求概率1.4
P =
故选B.
点睛:求概率可以用列表法或者画树状图的方法. 8.C
解析:C
【解析】
【分析】
①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53
BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.
【详解】
解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.
设AB CD acm ==,BC AD bcm ==,
由题意,1··( 2.5)721·(4)42
a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46
a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,
2.5BS k =, 1.5SD k =, ∴53
BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,
2224(63)(5)x x ∴+-=,
解得1x =或134
-(舍), 5BS ∴=,3SD =,3AS =,
3sin 5
AS ABS BS ∴∠=
=故③错误, 5BS =,
5 2.5k ∴=, 2/k cm s ∴=,故④正确,
故选:C .
【点睛】
本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.
9.B
解析:B
【解析】
【分析】
根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.
【详解】
解:A. y =
12
x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意;
C. y
D. y =x 2+1x
+1不是二次函数,不符合题意. 故选:B .
【点睛】
本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.
10.B
解析:B
【解析】
【分析】
直接根据相似三角形的性质即可得出结论.
【详解】
解:∵两个相似三角形的周长比是1:2,
∴它们的面积比是:1:4.
故选:B.
【点睛】
本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.
11.C
解析:C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;
由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.
故选:C.
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
12.B
解析:B
【解析】
由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.
13.D
解析:D
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:∵二次函数y=﹣x2+x=﹣(x
1
2
-)2+
1
4

∴a=﹣1,该函数的图象开口向下,故选项A错误;
对称轴是直线x=1
2
,故选项B错误;
当x=1
2
时取得最大值
1
4
,该函数有最高点,故选项C错误;
在对称轴右侧的部分从左往右是下降的,故选项D正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.
14.A
解析:A
【解析】
【分析】
连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.
【详解】
连接OC,
由题意得,OB=OC=BC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∵∠AOB=40°,
∴∠AOC=100°,
由圆周角定理得,∠ADC=∠AOC=50°,
故选:A.
【点睛】
本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
15.B
解析:B
【解析】
【分析】
根据题意得根的判别式0
<,即可得出关于a的一元一次不等式,解之即可得出结论.
【详解】 ∵1a =,2b =-,1c a =-,
由题意可知:
()()2
2424110b ac a =-=--⨯⨯-<⊿,
∴a >2,
故选:B .
【点睛】
本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 二、填空题
16.12
【解析】
【分析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF 、AG 的长度,由CG∥AB、AB=2CG 可得出CG 为△E
解析:12
【解析】
【分析】
根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD
==2,结合FG =2可求出AF 、AG 的长度,由CG ∥AB 、AB =2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.
【详解】
∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD
==2,∴AF =2GF =4,∴AG =6. ∵CG ∥AB ,AB =2CG ,∴CG 为△EAB 的中位线,∴AE =2AG =12.
故答案为:12.
【点睛】
本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.
17.【解析】
【分析】
根据条件可知a与b的数量关系,然后代入原式即可求出答案.
【详解】
∵=,
∴b=a,
∴=,
故答案为:.
【点睛】
本题考查了分式,解题的关键是熟练运用分式的运算法则.
解析:5 3
【解析】
【分析】
根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】
∵a b
b
-

2
3

∴b=3
5 a,
∴a
b
=
5
33
5
a
a
=
,
故答案为:5 3 .
【点睛】
本题考查了分式,解题的关键是熟练运用分式的运算法则.
18.15
【解析】
【分析】
由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.
【详解】
解:∵比例尺为1:500000,量得两地的距离
解析:15
【解析】
【分析】
由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.
【详解】
解:∵比例尺为1:500000,量得两地的距离是3厘米,
∴A、B两地的实际距离3×500000=1500000cm=15km,
故答案为15.
【点睛】
此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.
19.【解析】
【分析】
由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.
【详解】
如图所示:设BC=x,则CE=1﹣x,
∵AB∥EF,
∴△ABC∽△
解析:1 6
【解析】
【分析】
由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.
【详解】
如图所示:设BC=x,则CE=1﹣x,
∵AB∥EF,
∴△ABC∽△FEC
∴AB
EF

BC
CE

∴1
2

x
1x
解得x =13
, ∴阴影部分面积为:S △ABC =
12×13×1=16, 故答案为:
16
. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.
20.(1,3)
【解析】
【分析】
根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.
【详解】
解:由顶点式可知:的顶点坐标为:(1,3).
故答案为(1,3).
【点睛】
此题考查的是求顶点坐标,
解析:(1,3)
【解析】
【分析】
根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.
【详解】
解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).
故答案为(1,3).
【点睛】
此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决
此题的关键.
21.3
【解析】
【分析】
由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.
【详解】
解:连接OA ,
∵PA 切⊙O 于点A ,
∴OA
解析:3
【解析】
【分析】
由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.
【详解】
解:连接OA,
∵PA切⊙O于点A,
∴OA⊥PA,
∴∠OAP=90°,
∵∠APO=45°,
∴OA=PA=3,
故答案为:3.
【点睛】
本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.
22.【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数
k<
解析:3
【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.
【详解】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.
=方程有两个不相等的实数根,
a,23
1
b=-,c k
241240
∴∆=-=->,
b a
c k
∴<.
k
3
k<.
故答案为:3
本题考查了根的判别式.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
23.2
【解析】
【分析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求
解析:2
【解析】
【分析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=1
2
CK,BF=
1
2
BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,
∴KO=OF=1
2
CF=
1
2
BF,
在Rt△PBF中,tan∠BOF=BF
OF
=2,
∵∠AOD=∠BOF,∴tan∠AOD=2.
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
24.【解析】
【分析】
根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.
【详解】
根据二次函数的图象可知:
对称轴为,已知一个点为,
根据抛物线的对称性,则点关于对称性对称
解析:20x -<<
【解析】
【分析】
根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.
【详解】
根据二次函数的图象可知:
对称轴为1x =-,已知一个点为()03,
, 根据抛物线的对称性,则点()03,
关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.
故答案为:20x -<<.
【点睛】
本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对
称轴求出点()03,
的对称点是解题的关键. 25.【解析】
【分析】
【详解】
试题分析:把x=2代入y=x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D
解析:【解析】
【分析】
【详解】
试题分析:把x=2代入y=1
2
x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得
出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.
解:∵点C在直线AB上,即在直线y=1
2
x﹣2上,C的横坐标是2,
∴代入得:y=1
2
×2﹣2=﹣1,即C(2,﹣1),∴OM=2,
∵CD∥y轴,S△OCD=5
2

∴1
2CD×OM=
5
2

∴CD=5
2

∴MD=5
2﹣1=
3
2

即D的坐标是(2,3
2
),
∵D在双曲线y=k
x
上,
∴代入得:k=2×3
2
=3.
故答案为3.
考点:反比例函数与一次函数的交点问题.
点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.
26.3000(1+ x)2=4320
【解析】
【分析】
设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为
3000(1+x)(1+x)m2,然后可得方程.
【详解】
解析:3000(1+ x)2=4320
【解析】
【分析】
设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000
(1+x)(1+x)m2,然后可得方程.
【详解】
解:设增长率为x,由题意得:
3000(1+x)2=4320,
故答案为:3000(1+x)2=4320.
【点睛】
本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.
27.【解析】
【分析】
作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案
解析:24 5
【解析】
【分析】
作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.
【详解】
作BM⊥AC于M,交AD于F,
∵AB=AC=5,BC=6,AD是BC边上的中线,
∴BD=DC=3,AD⊥BC,AD平分∠BAC,
∴B、C关于AD对称,
∴BF=CF,
根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,
即CF +EF ≥BM ,
∵S △ABC =
12×BC ×AD =12×AC ×BM , ∴BM =642455
BC AD AC , 即CF +EF 的最小值是
245, 故答案为:
245
. 【点睛】 本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.
28.【解析】
【分析】
根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,
△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23
【解析】
【分析】
根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.
【详解】
解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,
∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,
∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,
∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,
∴112331==3PB BB A B BB ,112221==2
QB BB A B BB , ∴1231=3PB A B ,1221=2
QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=
13A 2B 3∶12A 2 B 2=2:3. 故答案为:
23
. 【点睛】
本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.
29.乙
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵,
∴队员身
解析:乙
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵22S S >甲乙,
∴队员身高比较整齐的球队是乙,
故答案为:乙.
【点睛】
本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量
30.【解析】
【分析】
当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图
解析:18b -<<
【解析】
【分析】
当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.
【详解】
解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,。

相关文档
最新文档