铁岭市一中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁岭市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移
4
π
个单位长度,所得的图象经过点 )0,43(
π
,则ω的最小值是( ) A .31 B . C .35
D .
2. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )
A .
B .
C .
D .
3. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )
A .﹣i
B .﹣﹣i
C . +i
D .﹣ +i
4. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D ) 8
π 5. 已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )
A .
B .
C .
D .
6. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:
0.7,则这组样本数据的回归直线方程是( )
A . =0.7x+0.35
B . =0.7x+1
C . =0.7x+2.05
D . =0.7x+0.45
7. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 8. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
9. 某三棱锥的三视图如图所示,该三棱锥的表面积是
A 、28+
B 、30+
C 、56+
D 、 60+
10.设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
11.如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,
),则f (x )的图象的一个对
称中心是( )
A .(﹣,0)
B .(﹣,0)
C .(,0)
D .(,0)
12.执行如图所以的程序框图,如果输入a=5,那么输出n=( )
A .2
B .3
C .4
D .5
二、填空题
13.数列{a n }是等差数列,a 4=7,S 7= .
14.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则
k= .
15.已知f (x )=,则f (﹣)+f ()等于 .
16.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .
17.已知数列的前项和是, 则数列的通项__________
18.已知平面向量a ,b 的夹角为
3π
,6=-b a
,向量c a -,c b -的夹角为23
π,23c a -=,则a 与c
的夹角为__________,a c ⋅的最大值为 .
【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.
三、解答题
19.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x
x i1234 5
y i5753403010
(1
(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,
(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,
对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为
(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)
20.已知函数f(x)=lnx+ax2+b(a,b∈R).
(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;
(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;
(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.
21.
设函数()x
f x e =,()ln
g x x =.
(Ⅰ)证明:()2e g x x
≥-
; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.
22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()323
1312
f x x k x kx =-+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
23.24.(本小题满分10分)选修4-5:不等式选讲.
已知函数f(x)=|x+1|+2|x-a2|(a∈R).
(1)若函数f(x)的最小值为3,求a的值;
(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.
24.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,
求出的长,若不存在,请说明理由.
铁岭市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
考
点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 2. 【答案】C
【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1, 故平面AA 1O 1⊥面AB 1D 1,交线为AO 1,在面AA 1O 1内过B 1作B 1H ⊥AO 1于H , 则易知A
1H 的长即是点A 1到截面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=,
AO 1=3,由A 1O 1•A 1A=h •AO 1,可得A 1H=
,
故选:C .
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
3. 【答案】C
【解析】解:∵z==
,
∴=.
故选:C .
【点评】本题考查了复数代数形式的乘除运算,是基础题.
4. 【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移
8
π
个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4
π
,故选B .
5. 【答案】B
【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2
),
则由于指数函数是单调函数,则有a >1,
由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确.
故选B .
6. 【答案】A
【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.
因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.
故选A .
【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.
7. 【答案】D 【
解
析
】
考
点:命题的真假. 8. 【答案】A
【解析】解:由奇函数的定义可知:若f (x )为奇函数, 则任意x 都有f (﹣x )=﹣f (x ),取x=0,可得f (0)=0;
而仅由f (0)=0不能推得f (x )为奇函数,比如f (x )=x 2
,
显然满足f (0)=0,但f (x )为偶函数.
由充要条件的定义可得:“函数f (x )是奇函数”是“f (0)=0””的充分不必要条件. 故选:A .
9. 【答案】B
【解析】从所给的三视图可以得到该几何体为三棱锥, 所求表面积为三棱锥四个面的面积之和。
利用垂直关系和三角形面积公式,可得:
10,10,10,S S S S ====后右左底
因此该几何体表面积30S =+,故选B . 10.【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A.
11.【答案】 B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sin φ=,即sin φ=
,由于|φ|<
,
解得:φ=
,
即有:f (x )=2sin (2x+).
由2x+
=k π,k ∈Z 可解得:x=
,k ∈Z ,
故f (x )的图象的对称中心是:(,0),k ∈Z
当k=0时,f (x )的图象的对称中心是:(,0),
故选:B .
【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
12.【答案】B
【解析】解:a=5,进入循环后各参数对应值变化如下表:
p 15 20 结束 q 5 25 n 2 3 ∴结束运行的时候n=3.
故选:B .
【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.
二、填空题
13.【答案】49
【解析】解:
=
=7a4
=49.
故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.
14.【答案】﹣1或0.
【解析】解:满足约束条件的可行域如下图阴影部分所示:
kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)
由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,
可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1
综上k=﹣1或0
故答案为:﹣1或0
【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.
15.【答案】4.
【解析】解:由分段函数可知f ()=2×=.
f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,
∴f ()+f (﹣)=+
.
故答案为:4.
16.【答案】 ③ .
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误; ②经过空间不共线三点有且只有一个平面,故错误; ③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误, 故正确命题的序号是③, 故答案为:③
17.【答案】
【解析】 当时,
当
时,
,
两式相减得:
令得
,所以
答案:
18.【答案】6
π
,18+ 【解析】
三、解答题
19.【答案】
【解析】解:(1)
根据散点图可知,x与y是负相关.
(2)根据提供的数据,先求数据(ω1,y1),(ω2,y2),(ω3,y3),(ω4,y4),(ω5,y5)的回归直线方程,y=cω+d,
=-811
374
≈-2.17,
a
^=y-c^ω=38-(-2.17)×11=61.87.
∴数据(ωi,y i)(i=1,2,3,4,5)的回归直线方程为y=-2.17ω+61.87,又ωi=x2i,
∴y关于x的回归方程为y=-2.17x2+61.87.
(3)当y=0时,x=61.87
2.17=6187
217
≈5.3.估计最多用5.3千克水.
20.【答案】
【解析】解:(Ⅰ)由已知得解得…
此时,(x>0).
f'x=0x=1f x f'x
(Ⅱ)(x>0).
(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…
(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:
)
所以函数f(x)的增区间为(0,),减区间为(,+∞).…
要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.
所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…
(Ⅲ)存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0).…
证明如下:令g (x )=lnx ﹣x+1(x >0),则
,
易得g (x )在x=1处取到最大值,且最大值g (1)=0,即g (x )≤0,从而得lnx ≤x ﹣1. (*)…
由,得
.…
令,
,则p (x ),q (x )在区间[x 1,x 2]上单调递
增.
且
,
,
结合(*)式可得,
,
.
令h (x )=p (x )+q (x ),由以上证明可得,h (x )在区间[x 1,x 2]上单调递增,且h (x 1)<0,h (x 2)>0,… 所以函数h (x )在区间(x 1,x 2)上存在唯一的零点x 0,
即
成立,从而命题成立.…
(注:在(Ⅰ)中,未计算b 的值不扣分.)
【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.
21.【答案】
【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,2
21e e ()x F x x x x -'∴=-
=
由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,
∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e
()2g x x
≥-成立. …… 5分
(Ⅱ) 记()()()x
x
h x f x f x ax e e
ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,
()e x x
h x e
a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,
∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,
即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 22.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()3
2
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--'
令()0f x '=得121,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减
所以()()()min 28613213f x f k k ==-++⋅+= 符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(]
,2k 单调递增 所以()()()322min 3
13132
f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥ 23.【答案】
【解析】解:(1)f (x )=|x +1|+2|x -a 2|
=⎩⎪⎨⎪
⎧-3x +2a 2-1,x ≤-1,
-x +2a 2
+1,-1<x <a 2
,3x -2a 2
+1,x ≥a 2
,
当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2,
当x ≥a 2,f (x )≥f (a 2)=a 2+1,
所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )= ⎩⎪⎨⎪
⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,
由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积
最大,此时面积为1
2
×|3-(-1)|×|6-3|=
6.
24.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为
的中点,
平面
平面
,
是交线,
平面
平面
. (Ⅱ)取的中点,
底面
是正方形,
,
两两垂直.
分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,
则
,
,
,
设平面的法向量为
,
,
,
,
平面
的法向量即为平面
的法向量
.
由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与所在平面成角,
平面的法向量为,,
,解得,适合
在线段上存在点,当线段时,与所在平面成角.。