logistic回归模型的一般形式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

logistic回归模型的一般形式
logistic回归模型是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。

其一般形式可表达为:logit(p) = α+β1*X1+β2*X2+β3*X3+.....+βk*Xk。

其中,logit(p)表示Y的对数发生比,p为Y事件发生的概率;α为常数项,βi(i=1,2,3,...,k)为自变量Xi的回归系数。

与传统的线性回归模型不同,logistic 模型中的因变量是分类变量而不是连续变量。

它反映了自变量对因变量的线性影响,常用于探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。

在实际应用中,logistic 回归模型的形式可能会根据具体问题和数据特点进行调整和扩展。

相关文档
最新文档