实验十二_基于Multisim的逻辑电平测试器设计
低频电子线路 软件实验报告 基于Multisim的逻辑电平测试器设计
实验十二基于Multisim 的逻辑电平测试器设计一、实验目的1. 理解逻辑电平测试器的工作原理及应用。
2. 掌握用集成运放和555定时器构建逻辑电平测试器的方法。
3. 掌握逻辑电平测试器的调整和主要性能指标的测试方法。
二、实验原理:电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。
原理框图如图所示:技术指标要求:测量范围:低电平V V L 8.0<,高电平V V H 5.3> 用1kHz 的音响表示被测信号为高电平; 用500kHz 的音响表示被测信号为低电平;当被测信号在0.8V ~3.5V 之间时,不发出音响;输入电阻大于20k Ώ。
输入和逻辑状态判断电路要求用集成运算放大器设计,音响声调产生电路要求用555定时器构成的振荡器设计。
三、实验内容:1. 输入和逻辑状态判断电路测试(1) 调节逻辑电平测试器的被测电压(输入直流电压)为低电平(V V L 8.0<),用数字万用表测逻辑状态判断电路的输出电平。
(2) 调节逻辑电平测试器的被测电压(输入直流电压)为高电平(V V H 5.3>),用数字万用表测逻辑状态判断电路的输出电平。
按设计好的电路连接电路,如下图:图12. 音响声调产生电路(1) 逻辑电平测试器的被测电压为低电平(V V L 8.0<),用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f0(2) 逻辑电平测试器的被测电压为高电平(V V H 5.3>),用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f0(3) 逻辑电平测试器的被测电压(0.8V ~3.5V ),用示波器观察、记录音响声调产生电路输出波形。
连接电路图如下:图2四、实验结果:1.输入3.6V直流电压,由数字万用表可测得逻辑状态判断电路的输出U为高1电平5V,U为低电平0V,音响声调产生电路输出的振荡频率为1.02kHz。
基于multisim仿真电路的设计与分析
基于multisim仿真电路的设计与分析
Multisim是一种电路仿真软件,可用于设计、验证、测试电路、系统,以及进行以及抗干扰性分析。
多西姆允许用户模拟几乎所有类型的器件,从单个P型半导体到功率调制器,而且还可以快速分析仿真结果。
首先,用户可以使用Multisim设计和模拟他们需要的电路。
用户可以使用基于PCB 的图形用户界面来构建电路,并选择多种不同的器件进行模拟,还可以使用贴片微电子器件实现更精确的模拟效果。
其次,用户可以使用Multisim验证设计的电路,比如测量器件的电压和电流,计算电感和电容的时间常数,以及检测电路的故障和短路情况等等。
这可以帮助用户确保设计的电路是否按他们希望的方式正常运行,也可以帮助用户更好地理解复杂的电路结构与特性之间的关系。
最后,用户还可以利用Multisim对电路进行抗干扰性分析,测量系统的信号完整性和可靠性,以及对抗外界的干扰因素的敏感程度等等。
这对于确保电路和系统具有良好的可靠性和性能是至关重要的,这也是Multisim非常强大的一个特性。
总之,Multisim是一款全面功能强大的仿真软件,可用于设计、验证、测试电路和系统,以及对抗干扰性分析等等,它可以帮助用户找出电路存在的问题或弱点,确保系统具有良好的可靠性和性能。
数字逻辑实验指导书(multisim)
实验一集成电路的逻辑功能测试一、实验目的1、掌握Multisim软件的使用方法。
2、掌握集成逻辑门的逻辑功能。
3、掌握集成与非门的测试方法。
二、实验原理TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic )简称TTL电路。
54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。
所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。
74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55—±1250C,电源电压工作范围为5V±10%V。
54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。
在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。
TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL 电路比较合适。
因此,本实训教材大多采用74LS(或74)系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。
它们的逻辑表达式分别为:图1.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。
图1.1 TTL 基本逻辑门电路与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。
三、实验设备1、硬件:计算机2、软件:Multisim四、实验内容及实验步骤1、基本集成门逻辑电路测试 (1)测试与门逻辑功能74LS08是四个2输入端与门集成电路(见附录1),请按下图搭建电路,再检测与门的逻辑功能,结果填入下表中。
multisim使用及电路仿真实验报告_范文模板及概述
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
在软件multisim上设计逻辑电平信号检测电路word精品
逻辑电平信号检测电路实验报告技术指标:测量范围:低电平V L<0.8V,高电平V H>3.5V用1kHZ的音响表示被测信号为高电平;用800kHZ的音响表示被测信号为低电平;当被测信号在0.8~3.5V之间时,不发出音响;输入电阻大于20K Q。
实验目的:逻辑电平测试器综合了数字电路和低频电路两门课的知识要求学生自己设计,并在Multisim 电子工作平台上进行仿真。
培养学生的综合能力,培养学生利用先进工具进行工程设计的能力。
1、理解逻辑电平测试器的工作原理及应用2、掌握用集成运放和555定时器构建逻辑电平测试的方法。
3、掌握逻辑电平测试器的调整和主要性能指标的测试方法。
实验原理:电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。
原理框图如图所示图2-1测试器的工作原理框图*以上工作原理框图可使用与不同标准的电平的测试,现在以 3.5V的电平为例作介绍,高电平为大于3.5V,低电平为小于0.8V。
实验仪器:Multisim虚拟仪器中的数字运算放大器、555计时器、电阻、电容、示波器、频率计等。
实验内容:vcc图2音调产生电路原理图将图1和图2的U A、U B对应连接在一起即组成完整实验原理图。
实验总结:输入不同检测信号U1 时仿真结果分别如下图3、4、5、6。
(1)U1=0.5V(<0.8V)时仿真结果如下图 3(2)U1=4V(>3.5V)时仿真结果如下图 4(3)U1=2V(0.8V~3.5V之间)时仿真结果如下图 5 ( 4) 无检测信号输入时仿真结果如下图6。
multisim仿真电路
1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v)用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v)用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v)用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
四、实验内容及步骤
1.场效应管共源放大器的调试
(1)连接电路。按图1连接好电路,场效应管选用N沟道消耗型2N3370,静态工作点的设置方式为自偏压式。直流稳压电源调至12V。
图1
2.测量静态工作点
将输入端短接(图2),并测量此时的 Vg、Vs、VD、 ,填入下表1
静态工作点:
1.006V
39.355nV
1)输入电阻测量:先闭合开关S1(R2=0),输入信号电压Vs,测出对应的输出电压 ,然后断开S1,测出对应的输出电压 ,因为两次测量中和是基本不变的,所以
,测得 =134.137mV, =67.074mV,
仿真结果如下图4:
2)输出电阻测量:在放大器输入端加入一个固定信号电压Vs,分别测量当已知负载RL断开和接上的输出电压 和 。则 ,由于本实验所用的场效应管必须接入很大的负载才能达到放大效果,因此此方法不适合用来测量本实验输出电阻效果不太好,仿真结果如下图5 =66.8mV, =125mV .
38.328
43.36
35
40
45
50
55
60
65
47.847
51.875
55.507
逻辑信号电平测试器的设计
毕业设计说明书(论文)中文摘要逻辑信号电平测试器的设计摘要本文介绍了一个逻辑信号电平测试器,它可以方便快捷的测量某一点的电位的高低,通过声音的有无和声音的频率来判定被测电位的电平范围,从而能解决平常对电路中某点的逻辑电平进行测试其高低电平时,采用很不方便的万用表或示波器等仪器仪表的麻烦。
该电路主要包括三部分电路:输入电路、逻辑状态识别电路和音响声调产生电路。
其主要应用了集成运放的非线性电路特性,开环增益很大,从而可以制作成双限比较器;用555定时器构成的多谐振荡器作为音响产生电路,利用对电容的充放电,得到一定频率的信号。
输入的逻辑信号电平大于或小于所设定的高低电平电位,则音响电路发声,如若在高低电平之间,则音响电路不发声。
利用这种方式设计电路,计算元器件参数,选择成本合适的器件,确定电路形式并进行仿真实验验证,最后做出符合全部要求的实物。
关键词逻辑信号;电平测试;高电平;低电平毕业设计说明书(论文)外文摘要Logic-level test signal designAbstractThis paper, a logic level signal tester, it can be a convenient measurement that the level of potential through the availability of voice and sound frequencies to determine the level of the measured potential range. Thus can solve common circuit at some point in the logic level test its height electricity at ordinary times, it is not convenient by the multimeter or oscillograph instrument, etc .The design of the circuit mainly includes three parts: input circuit, the logic of the state of voice recognition and audio circuits have circuit. The main application of an integrated circuit operational amplifier nonlinear characteristics of a large open-loop gain, which can limit the production of dual comparators; used consisting of 555 timer Multivibrator circuit as a sound generated by the charging and discharging of the capacitor , a certain frequency signal. The logic input signal level is greater than or less than the high-low set potential, the audible sound circuit, if in between the high-low, the sound is not audible circuit. In this way the use of circuit design, component parameters of the calculation, select the appropriate cost of the device torequirements.and circuit simulation, and finally to meet all physical requirements. Keyword:s logic signal, level testing, high, lowKeywords logic signal, level testing, high, low目录1 绪论 (1)1.1课题研究及其意义 (1)1.2国内外研究现状及发展趋势 (1)2 逻辑电平信号测试系统简介 (2)2.1 测试电路的设计思路 (2)2.2 测试电路的要求 (3)2.3 测试电路的原理介绍 (3)3 测试电路中所涉及的芯片 (3)3.1 LM311高灵活性的电压比较器芯片介绍 (4)3.1.1 典型的比较设计配置 (4)3.1.2 LM311性能参数 (5)3.2 555定时器芯片电路 (7)3.2.1 芯片简介 (7)3.2.2 电路结构和控制特性 (8)3.2.3 555定时器构成的多谐振荡器 (10)4 整体电路的设计 (12)4.1 输入电路 (13)4.2逻辑信号判断短路 (13)4.3 声响部分的电路图设计和工作原理 (14)5 电路的仿真 (15)5.1 protues仿真软件的概述 (15)5.1.1 protues的功能特点 (16)5.1.2 电路功能仿真 (16)5.2 模拟逻辑信号的仿真 (17)5.3 比较电压仿真 (17)5.4 声响波形仿真 (18)5.4.1 高电平信号输入仿真 (18)5.4.2 无电平信号输入仿真 (19)5.4.3低电平信号输入仿真 (20)5.5 仿真结论 (20)总结 (21)参考文献 (22)致谢 (23)附录:完整电路图 (24)逻辑信号电平测试器的设计1 绪论在集成电路中,存在着高电平和低电平两个概念,在数字电路中与传统的模拟电路中有很大的区别:首先,模拟电路和数字电路都属于电子电路,模拟电路要求把握对模拟量变化掌控,这点是其相对于数字电路来讲的难点。
逻辑信号电平测试器
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载逻辑信号电平测试器地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容电子技术课程设计——逻辑信号电平测试器齐齐哈尔大学通信与电子工程学院电子123:XXX指导教师:XXX老师2014年06月23日逻辑信号电平测试器一、设计任务1.设计目的:(1)学习逻辑判断电路的设计方法(2)研究逻辑判断电路的设计方案(3)掌握逻辑判断电路的原理和使用方法(4)进一步熟悉电子线路系统的装调技术2.技术指标:(1)测量范围:低电平UL<0.8V,高电平UH>3.5V(2)被测信号为高电平时,用1KHZ的音响表示,红色指示灯点亮(3)被测信号为低电平时,用500HZ的音响表示,绿色指示灯点亮(4)当被测信号在0.8~3.5V之间时,不发出音响,指示灯不亮(5)输入电阻大于20KΩ(6)工作外接电源为5V,芯片内部供电为12V二、设计方案论证1.设计方案:为了方便进行对某点的逻辑信号电平的测试,设计一个逻辑信号电平测试器。
电路是由输入电路、逻辑状态判断电路、二极管LED指示灯电路、音响电路模块组成。
以逻辑状态判断电路为核心电路,音响电路则利用LM324(或UA741)设计RC震荡电路分别产生1KHZ和500HZ的频率提供给扬声器,能分别发出不同频率的声信号。
根据LED指示灯电路和音响电路所产生的不同颜色光亮及声信号来更方便直接判断高低电平信号。
2.方案论证:根据所设计的原理框图和设计方案,画出电路原理图,设计电路简单明了,各电路部分规划清晰,所涉及元器件简单常用,易于购买。
Ui 采用5V可调电源输入,高电平时,LED指示灯红灯亮,扬声器发出1KHZ声音;低电平时,LED指示灯绿灯亮,扬声器发出500HZ声音。
基于Multisim电子仿真软件的电路设计与研究
基于Multisim电子仿真软件的电路设计与研究黄荷英【摘要】Application of simulation system for measuring and verifying the electronic technologies can reform traditional design pattern, improve experiment efficiency, inspire and broaden developers' idea. The function and features of the software Multisim are introduced. In combination with the instances of electronic circuit. the concrete application of the software Multisim in design, simulation and analysis is described. The analysis demonstrates that the application of Multisim is favourable to innovation of the teaching contents and standards, and to cultivation of students' autonomous learning ability and the joy of learning. It also provs that the software Multisim is powerful in electronic circuit simulation.%应用仿真系统对电子技术方面进行测量和验证,可以改革传统设计模式,提高实验效率,启发和拓宽开发者的思路.在此通过介绍Multisim软件的功能、特点,并结合电子电路实例叙述其设计、仿真与分析的具体运用.通过分析证明其有利于创新课程教学内容与标准,有利于充分激发和培养学生自主学习能力及学习的乐趣,同时也说明Multisim 是一种功能强大的电子电路仿真软件.【期刊名称】《现代电子技术》【年(卷),期】2012(035)016【总页数】4页(P33-36)【关键词】电子设计自动化;电路设计;电子仿真;Multisim软件【作者】黄荷英【作者单位】浙江同济科技职业学院,浙江杭州 311231【正文语种】中文【中图分类】TN919-340 引言随着电子技术的发展,电子元器件的种类越来越多,集成度越来越高,所设计电路的复杂程度也相应提高,而电子产品的更新周期却越来越短,因此,传统的电子电路设计模式就会暴露出许多的局限性:经济与效率的局限性。
multisim逻辑分析仪的使用
multisim逻辑分析仪的使⽤
Multisim 逻辑分析仪的使⽤
相信很多使⽤Multisim逻辑分析仪的朋友都会遇到这样的问题,也就是逻辑分析仪的时序图始终是⼀条直线,如下图所⽰:
怎么解决这个问题呢?笔者以⾃⼰在实际电路中遇到的问题作为例⼦来解决。
笔者的电路图如下:
其中⽰波器能够正常显⽰波形,然⽽逻辑分析仪不能正常显⽰波形。
截图分别如下:
解决这个问题呢的具体步骤如下:
第⼀步:单击上图中的“Set…”()按钮,弹出个名为“Clock Setup”对话框。
第⼆步:选择时钟的来源为“Internal”,并选择频率和外电路时钟的频率⼀致。
笔者这⼉外电路的时钟的频率是“100Hz”,所以在这⼉”Clock rate”也选择
100Hz。
第三歩:把“Threshold volt”使它的值位于⽰波器上⾼低点电平的读数之间。
笔者的⽰波器的⾼低电平的读数分别
为“0.000V”和“2.333V”,我这⼉就将
“Threshold volt”的值调为“2V”。
第四歩:单击“Accept”
如下图所⽰:
经过上⾯的配置后,逻辑分析仪就能正常的显⽰时序图了,截图如下:
相信朋友们都能明⽩笔者所说的吧。
享受仿真带来的乐趣吧!。
电子技术实验与Multisim 12仿真实验3.1 组合逻辑电路的设计与测试
可化简为:
S AB AB A B A' B BB' AB' AA' A( B' A' ) B( A' B' ) A( AB)' B( AB)' (( A( AB)' B( AB)' )' )' (( A( AB)' )' ( B( AB)' )' )' C0 AB (( AB)')'
实验3.1 组合逻辑电路的设计与测试
三、实验原理
5.全加器
S A 'B'Ci A 'BCi ' AB'Ci ' ABCi Ci (A 'B' AB) Ci '(A 'B AB') Ci (A B) ' Ci '(A B) A B Ci
令 则
X A B ((A(AB)')'(B(AB)')')'
S A B Ci X Ci
Co A 'BCi AB'Ci ABCi ' ABCi (A 'B AB')Ci AB(Ci ' Ci ) XCi AB ((XCi AB) ') ' ((XCi ) '(AB) ') '
A—加数;B—被加数; Ci—低位的进位;S—本位和; Co测试
三、实验原理
3. 四2输入与非门74LS00与二4输入与非门74LS20
实验3.1 组合逻辑电路的设计与测试
实验十三 基于Multisim的逻辑电平测试器设计
南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合■设计□创新实验日期:2017.12.30实验成绩:实验十三基于Multisim的逻辑电平测试器设计一、实验目的1、理解逻辑电平测试器的工作原理及应用。
2、掌握用集成运放和555定时器构建逻辑电平测试器的方法。
3、掌握逻辑电平测试器的调整和主要性能指标的测试方法。
二、实验仪器万用表、示波器三、实验原理电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。
原理框图如图所示:Vi图3-1逻辑电平测试器原理框图技术指标要求:测量范围:低电平V L<0.8V,高电平V H>3.5V用1kHz的音响表示被测信号为高电平;用500Hz的音响表示被测信号为低电平;当被测信号在0.8-3.5V之间时,不发出音响;输入电阻大于20KΩ。
输入和逻辑状态判断电路要求用集成运算放大器设计,音响声调产生电路要求用555定时器构成的振荡设计。
图3-2逻辑电平测试器仿真图利用滑动变阻器来改变输入电压,两个比较器的参考电压通过电阻分压产生,分别为0.8V和3.5V。
这种方案里的555采用的是构成多谐振荡器的接法,电阻值固定了,振荡频率也就定了。
所以使用了两个555、两个扬声器,当检测到是低电平时,参考电压为0.8V的比较器连接的二极管导通,555结束复位,开始振荡,产生500Hz矩形波,扬声器发声;当检测到是高电平时,参考电压为3.5V 的比较器连接的二极管导通,555结束复位,开始振荡,产生1000Hz矩形波,扬声器发声;当检测到既不是低电平也不是高电平,即输入电压在0.8-3.5V之间时,两个比较器连接的二极管均截止,555始终处于复位状态,扬声器不发声。
方案一的电路结构较为简单,但是比较浪费元件。
所以有了接下来的方案二,仅仅使用了一个555和一个扬声器。
图3-3逻辑电平测试器仿真图这种方案的输入电路和逻辑判断电路部分和方案一相同,主要是改变了音响声调产生电路。
基于MULTISIM仿真电路的设计与分析
基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。
我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。
通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。
我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。
然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。
接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。
我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。
通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。
本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。
二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。
它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。
本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。
MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。
用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。
工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。
电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。
结果输出区则用于显示仿真结果和数据分析。
multisim 仿真实验报告
multisim 仿真实验报告Multisim 仿真实验报告引言:Multisim是一款功能强大的电子电路仿真软件,它为工程师和学生提供了一个方便、直观的平台,用于设计、分析和测试各种电路。
本文将介绍我在使用Multisim进行仿真实验时的经验和结果。
1. 实验目的本次实验的目的是通过Multisim软件仿真,验证电路设计的正确性和性能。
具体来说,我们将设计一个简单的放大器电路,并使用Multisim进行仿真,以验证电路的增益、频率响应和稳定性。
2. 实验设计我们设计的放大器电路采用了共射极放大器的基本结构。
电路由一个NPN晶体管、输入电阻、输出电阻和耦合电容组成。
我们选择了适当的电阻和电容值,以实现所需的放大倍数和频率响应。
3. 仿真过程在Multisim中,我们首先选择合适的元件并进行连接,然后设置元件的参数。
在本实验中,我们需要设置晶体管的参数,例如其直流放大倍数和频率响应。
接下来,我们将输入信号源连接到电路的输入端,并设置输入信号的幅度和频率。
在仿真过程中,我们可以观察电路的各种性能指标,如电压增益、相位差和输出功率。
我们还可以通过改变电路中的元件值,来分析它们对电路性能的影响。
通过多次仿真实验,我们可以逐步优化电路设计,以达到所需的性能要求。
4. 仿真结果通过Multisim的仿真,我们得到了放大器电路的性能曲线。
我们可以观察到电路的增益随频率的变化情况,以及输出信号的波形和频谱。
通过对比仿真结果和理论预期,我们可以评估电路设计的准确性和可行性。
此外,Multisim还提供了一些实用工具,如示波器和频谱分析仪,用于更详细地分析电路性能。
通过这些工具,我们可以观察到电路中各个节点的电压和电流变化情况,以及信号的频谱特性。
5. 实验总结通过本次实验,我们深入了解了Multisim软件的功能和应用。
它为我们提供了一个方便、直观的平台,用于设计和分析各种电路。
通过仿真实验,我们可以快速评估电路设计的性能,并进行必要的优化和改进。
逻辑电平测试器的课程设计
逻辑信号电平测试器的设计一、课程设计的任务与目的学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用的模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
二、课程设计的基本要求1.掌握电子电路分析和设计的基本方法。
包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。
2.培养一定的自学能力、独立分析问题的能力和解决问题的能力。
包括:学会自己分析解决问题的方法;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、在判断的基本方法解决实验中出现的一般故障;能对实验结果独立的进行分析,进而做出恰当的评价。
3.掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。
4.巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。
5.通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事的科学作风,并逐步建立正确的生产观、经济观和全局观。
三、课设计任务(一)设计目的学习逻辑信号电平测试器的设计方法。
(二)设计要求和技术指标在检修数字集成电路组成的设备时,经常需要使用万用表对电路的故障部位的高低电平进行测量,以便分析故障原因。
使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。
本课题所设计的一起采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无需分神去看万用表的表盘或示波器的荧光屏。
1.技术指标(1)测量围:低电平<0.8V,高电平>3.5V;(2)用1KHz的音响表示被测信号为高电平;(3)用800Hz的音响表示被测信号为低电平;(4)当被测信号在0.8~3.5V之间时,不发出音响;(5)输入电阻大于20kΩ;(6)工作电源为5V;2.设计要求(1)进行方案论证及方案比较;(2)分析电路的组成及工作原理;(3)进行单元电路设计计算;(4)画出整机电路图;(5)写出元件明细表;(6)小结和讨论;(7)写出对本设计的心得体会;3.撰写容要求:(1)设计说明书一份(不少于10页);(2)整机电路图一份(B5纸);(3)元件明细表一份;(4)正文层次分明、客观真实、绘图规、书写工整、语言流畅;(5)设计中引用的参考文献不少于5篇;目录前言 (1)第一章电平绪论 (1)1.1 电平测试仪器及测试技术的发展状况 (2)1.2 本文的主要工作 (4)第二章方案设计及比较 (6)2.1方案一 (6)2.2方案二 (7)2.3 方案三 (8)2.4方案比较 (10)第三章声调提示的逻辑电平测试器的原理介绍 (11)3.1逻辑电平介绍及测试器的工作原理框图 (11)3.2 输入电路及逻辑判断电路原理 (12)3.3 音调产生电路原理 (13)3.4 扬声器原理 (16)第四章各单元电路和整机电路的设计 (17)4.1 输入和逻辑判断电路的设计 (17)4.2 音响产生电路的设计 (19)4.3 扬声器驱动电路的设计 (21)4.4元器件的选择 (21)4.5整机电路的设计 (23)设计总结及心得体会 (24)参考文献 (25)前言在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障的原因。
实验十二4实验十二 基于Multisim的逻辑电平测试器设计
实验十二基于Multisim的逻辑电平测试器设计一、实验目的及要求逻辑电平测试器综合了数字电路和低频电路两门课的知识要求学生自己设计,并在Multisim电子工作平台上进行仿真。
培养学生的综合应用能力。
培养学生利用先进工具进行工程设计的能力。
1)理解逻辑电平测试仪器的工作原理及应用。
2)掌握用集成运放和555定时器构建逻辑电平测试器的方法3)掌握逻辑电平测试器的调整和主要性能指标的测试方法二、实验基本原理:电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。
技术指标要求:(1)测量范围:低电平<0.8V高电平>3.5V(2)用1kHz的音响表示被测信号为高电平(3)用800Hz的音响表示被测信号为低电平(4)当被测信号在0.8V~3.5V之间时,不发出音响(5)输入电阻大于20kΩ(6)工作电源5V输入和逻辑状态判断电路要求用集成运算放大器设计,音响声调产生电路要求用555定时器构成的震荡器设计。
三、主要仪器设备及实验耗材:Multisi虚拟仪器中的数字万用表、示波器、频率计四、实验电路图及原理解析如图所示为音响逻辑电平探头电路。
该探头由电压比较器、多谐振荡器振荡器是收发设备的基础电路,它的作用是产生一定频率的交流信号,是一种能量转换装置——将直流电能转换为具有一定频率的交流电能。
、压电陶瓷片HTD等组成。
其中后两者组成音响电路,以音响频率的高低来判别TTL或C MOS器件电平的高低。
电压比较器LM339(IC1)中的IC1-1、IC1-2各为1/4 LM339。
分压网络R2、R3在VDD=6V时使分压点C的电压为Vc≈1.9V,其低于IC1-1的基准电压,但又高于IC1-1的基准电压,故平时二极管D2、D3均截止,振荡器IC2不工作。
当探针测试针,用于测试PCBA的一种探针。
表面镀金,内部有平均寿命3万~10万次的高性能弹簧。
接触高、低电平或脉冲时,则IC1用于检测高电平,IC2用于检测低电平,输出信号相应驱使D2、D3导通,并通过R9、R10、R11对C1进行充电,使IC2起振,推动HTD发声。
模拟电路 课程设计任务书 逻辑信号电平测试器
摘要在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障的原因。
使用这些仪器能较准确的测出被测点信号的电平的高低和被测电平的周期,但是使用者必须一方面用眼睛看着万用表的表盘或示波器的屏幕,另一方面还要寻找测试点,因此使用起来很不方便。
本文介绍了一个逻辑信号电平测试器,它可以方便快捷的测量某一点的电位的高低,通过声音的有无和声音的频率来判定被测电位的电平范围,从而能解决平常对电路中某点的逻辑电平进行测试其高低电平时,采用很不方便的万用表或示波器等仪器仪表的麻烦。
该测试器采用运算放大器作电压比较器进行电平判断,根据电平高低使音响电路产生不同频率方波驱动扬声器,使扬声器有相应不同的声调输出提示。
从而达到了测试效果。
关键词放大器;逻辑信号;电平测试;高电平;低电平模拟电子技术课程设计任务书一、课程设计的任务和目的学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
二、课程设计的基本要求1、掌握电子电路分析和设计的基本方法。
包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。
2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。
包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。
3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。
4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。
5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。
逻辑电平测试器的课程设计
逻辑信号电平测试器的设计一、课程设计的任务与目的学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用的模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
二、课程设计的基本要求1.掌握电子电路分析和设计的基本方法。
包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。
2.培养一定的自学能力、独立分析问题的能力和解决问题的能力。
包括:学会自己分析解决问题的方法;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、在判断的基本方法解决实验中出现的一般故障;能对实验结果独立的进行分析,进而做出恰当的评价。
3.掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。
4.巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。
5.通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。
三、课设计任务(一)设计目的学习逻辑信号电平测试器的设计方法。
(二)设计要求和技术指标在检修数字集成电路组成的设备时,经常需要使用万用表对电路的故障部位的高低电平进行测量,以便分析故障原因。
使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。
本课题所设计的一起采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无需分神去看万用表的表盘或示波器的荧光屏。
1.技术指标(1)测量范围:低电平<0.8V,高电平>3.5V;(2)用1KHz的音响表示被测信号为高电平;(3)用800Hz的音响表示被测信号为低电平;(4)当被测信号在0.8~3.5V之间时,不发出音响;(5)输入电阻大于20kΩ;(6)工作电源为5V;2.设计要求(1)进行方案论证及方案比较;(2)分析电路的组成及工作原理;(3)进行单元电路设计计算;(4)画出整机电路图;(5)写出元件明细表;(6)小结和讨论;(7)写出对本设计的心得体会;3.撰写内容要求:(1)设计说明书一份(不少于10页);(2)整机电路图一份(B5纸);(3)元件明细表一份;(4)正文层次分明、客观真实、绘图规范、书写工整、语言流畅;(5)设计中引用的参考文献不少于5篇;目录前言 0第一章电平绪论 (1)1.1 电平测试仪器及测试技术的发展状况 (1)1.2 本文的主要工作 (4)第二章方案设计及比较 (4)2.1方案一 (5)2.2方案二 (6)2.3 方案三 (7)2.4方案比较 (8)第三章声调提示的逻辑电平测试器的原理介绍 (9)3.1逻辑电平介绍及测试器的工作原理框图 (9)3.2 输入电路及逻辑判断电路原理 (10)3.3 音调产生电路原理 (12)3.4 扬声器原理 (16)第四章各单元电路和整机电路的设计 (17)4.1 输入和逻辑判断电路的设计 (17)4.2 音响产生电路的设计 (19)4.3 扬声器驱动电路的设计 (21)4.4元器件的选择 (22)4.5整机电路的设计 (23)设计总结及心得体会 (24)参考文献 (26)前言在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障的原因。
逻辑电平测试器
逻辑信号电平测试器的设计1. 技术指标设计、组装、调试逻辑信号电平测试器。
测试器测量范围:低电平小于0.8V,高电平大于3.5V;用1KHz的音响表示被测信号是高电平,用800Hz的音响表示被测信号是低电平,当被测信号在0.8--3.5V之间时,不发出音响; 工作电源为5V。
2. 设计方案及其比较2.1 逻辑信号电平测试器的基本原理电路由输入电路、逻辑判断电路、音响信号产生电路和音响驱动电路,由四部分子电路组成。
电路的输入信号Vi由输入电路输出后,经过逻辑判断电路,在该电路中,通过比较器的比较测试,将该信号区分为高电平和低电平两个信号分别输入音响信号产生电路,在音响信号产生电路中,通过两个电容的充,放电过程,产生不同频率的脉冲信号,在音响驱动电路中,不同频率的脉冲信号使得扬声器发出不同音调的响声,通过音调的不同来区分高低电平的不同。
2.2 方案一图1为方案一的电路原理图。
电路由输入电路、逻辑判断电路、音响信号产生电路和音响驱动电路,由四部分子电路组成。
图1 方案一的原理图2.2.1 输入电路由R1和R2组成,电路的作用是保证测试器输入端悬空时,输入电压既不是高电平,也不是低电平。
一般情况下,在输入端悬空时,输入电压取Vi=1.4V。
根据技术指标要求输入电阻大于20KΩ。
由此可得:1.4V=R2/(R1+R2)5V,R1//R2=20KΩ。
理论值计算得:R1=71.4K Ω,R2=27.8KΩ。
2.2.2 逻辑判断电路R3和R4的作用是给U1的反相输入端提供一个3.5V的电压(高电平的基准平的基准);R5 为二极管D1、D2的限流电阻。
D1、D2的作用是提供低电平信号基准具体逻辑判断情况是:当输入是高电平时,Vu1=5V,Vu2=0;当输入是低电平时,Vu1=0V,Vu2=5V; 当输入在0.8~3.5V之间,则Vu1=Vu2=0.由此可得:R4/(R4+R3)·5V=3.5V。
所以理论上,R3:R4=3:7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:学号: 专业班级:
实验类型:□验证□综合□设计□创新实验日期:实验成绩:
实验十二基于Multisim的逻辑电平测试器设计
一、实验目的
逻辑电平测试器综合了数字电路和低频电路两门课的知识要求学生自己设计,并在Multisim电子工作平台上进行仿真。
培养学生的综合应用能力。
培养学生利用先进工具进行工程设计的能力。
1.理解逻辑电平测试仪器的工作原理及应用;
2.掌握用集成运放和555定时器构建逻辑电平测试器的方法;
3.掌握逻辑电平测试器的调整和主要性能指标的测试方法;
二、实验原理
电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。
技术指标要求:
(1)测量范围:
低电平<0.8V
高电平>3.5V
(2)用1kHz的音响表示被测信号为高电平
(3)用800Hz的音响表示被测信号为低电平
(4)当被测信号在0.8V~3.5V之间时,不发出音响
(5)输入电阻大于20kΩ
输入和逻辑状态判断电路要求用集成运算放大器设计,音响声调产生电路要求用555定时器构成的震荡器设计。
三、主要仪器设备及实验耗材
Multisi虚拟仪器中的数字万用表、示波器、频率计等
四、实验内容
1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v )用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v )用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v )用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
2)逻辑电平测试器的被测电压为高电平(VH>3.5v )用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
3)逻辑电平测试器的被测电压(0.8~3.5v )用示波器观察、记录音响声调产生电路输出波形
五、设计原理
1.逻辑状态判断电路
如左图1
(1)通过2个分压电路分别产生2个基准电压3.5v 和0.8v 。
VCC R R R U H 3
11
+=
,因此确定Ω=Ω=K R K R 3,731;
同理确定94R R 、的电阻阻值。
(2)通过三个开关分别控制输入3个状态量
当输入VL<0.8v 时U1输出低电平信号断路,U2输出高电平信号导通;
当输入VH>3.5v 时U1输出高电平信号断路,U2输出低电平信号导通;
当输入0.8<U<3.5v 时U1输出低电平信号断路,U2输出低电 平信号断路。
2.音响声调电路
如图2 ,555振荡电路构成
二极管D1、D2为防止R8、R11在对方工作是并联干扰,可用三极管代替; 根据频率公式,C
R R T f )2(7.01121+==
实验要求当V U H 7.3>U1导通时产生1kHz,因此固定
图1
7
R=4.7KΩ,
因此理论计算值R5=4.7kΩ由于D1二极管也有一定的阻值,实际R8<4.7kΩ,但是
Ω
=K R4.3
5,同理计算值
Ω
=K
R8.
15
6。
3.实验总电路图
图3
六、实验步骤及结果
1.按上图3连接电路
2.逻辑低电平状态判断电路输出
关闭逻辑电平测试开关S1,打开S2、S3使得电路输入低电平电压(输入直流电压)为低电平(取地)用数字万用表测逻辑状态判断电路输出电平并通过观察发光二极管和听蜂鸣器的声响判断输出电平。
此时蜂鸣器响低音,发光二极管持续闪烁。
图4
3.逻辑高电平状态判断电路输出
关闭逻辑电平测试开关S3,打开S1、S2使得电路输入高电平电压(输入直流电压)为高电平(取5V)用数字万用表测逻辑状态判断电路输出电平并通过观察发光二极管和听蜂鸣器的声响判断输出电平。
此时蜂鸣器响高音,发光二极管持续闪烁。
图5
4.非逻辑电平状态判断电路输出
关闭逻辑电平测试开关S2,打开S1、S3使得电路输入2V电压(输入直流电压),用数字万用表测逻辑状态判断电路输出电平并通过观察发光二极管和听蜂鸣器的声响判断输出电平。
此时蜂鸣器响不响,发光二极管不闪烁。
图7
5.音响声调产生电路输出
1)低电平输入时(接地),频率计和示波器的下图形如图8所示
2)输入高电平时(取5V),频率计和示波器的图形如图所示
3)输入中间电平时(取1.5V),频率计和示波器的图形如图所示图8
图9
图10
七、实验总结:
通过本次软件仿真实验使得我对multisim的运用更加熟练,能够更加深入的进行电路设计,这个实验使我结合数字电路和低频电子线路2们学科的知识,让我对数字电路和低频电子线路的结合使用有了一点概念,我觉得还需要掌握AD和DA转换让数字电路和低频电子线路搭起一个桥梁。