2022年湖北省随州市中考数学试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年湖北省随州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)
1.(3分)2022的倒数是()
A.2022B.﹣2022C.D.﹣
2.(3分)如图,直线l1∥l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为()
A.30°B.40°C.50°D.60°
3.(3分)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为()
A.97和99B.97和100C.99和100D.97和101
4.(3分)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()
A.主视图和左视图B.主视图和俯视图
C.左视图和俯视图D.三个视图均相同
5.(3分)我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为()
A.150(12+x)=240x B.240(12+x)=150x
C.150(x﹣12)=240x D.240(x﹣12)=150x
6.(3分)2022年6月5日10时44分07秒,神舟14号飞船成功发射,将陈冬、刘洋、蔡旭哲三位宇航员送入了中国空间站.已知中国空间站绕地球运行的速度约为7.7×103m/s,则中国空间站绕地球运行2×102s走过的路程(m)用科学记数法可表示为()
A.15.4×105B.1.54×106C.15.4×106D.1.54×107 7.(3分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y表示张强离家的距离,则下列结论不正确的是()
A.张强从家到体育场用了15min
B.体育场离文具店1.5km
C.张强在文具店停留了20min
D.张强从文具店回家用了35min
8.(3分)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N 分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()
①图中的三角形都是等腰直角三角形;
②四边形MPEB是菱形;
③四边形PFDM的面积占正方形ABCD面积的.
A.只有①B.①②C.①③D.②③
9.(3分)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为()
A.B.
C.D.
10.(3分)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.则下列结论正确的有()
①abc>0;
②2a+b=0;
③函数y=ax2+bx+c的最大值为﹣4a;
④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.
A.1个B.2个C.3个D.4个
二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)
11.(3分)计算:3×(﹣1)+|﹣3|=.
12.(3分)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.
13.(3分)已知二元一次方程组,则x﹣y的值为.
14.(3分)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为.
15.(3分)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为,最大值为.
16.(3分)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.
三、解答题(本大超共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)
17.(6分)解分式方程:=.
18.(7分)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;
(2)若x1x2=5,求k的值.
19.(8分)如图,在平行四边形ABCD中,点E,F分别在边AB,CD上,且四边形BEDF 为正方形.
(1)求证:AE=CF;
(2)已知平行四边形ABCD的面积为20,AB=5,求CF的长.
20.(10分)为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团、美术社团”活动.该校从全校600名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)参加问卷调查的学生共有人;
(2)条形统计图中m的值为,扇形统计图中α的度数为;
(3)根据调查结果,可估计该校600名学生中最喜欢“音乐社团”的约有人;
(4)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
21.(9分)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若AC=4,sin C=,
①求⊙O的半径;
②求BD的长.
22.(10分)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
第x天12...6...11 (15)
150150+m…150+5m…150+10m…150+14m 供应量y1
(个)
220229...245...220 (164)
需求量y2
(个)
(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
23.(10分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a﹣b)2=a2﹣2ab+b2
公式④:(a+b)2=a2+2ab+b2
图1对应公式,图2对应公式,图3对应公式,图4对应公式.
(2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
(3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC 上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B 作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH 的面积之和为S2.
①若E为边AC的中点,则的值为;
②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若
不成立,请说明理由.
24.(12分)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交
于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;
(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
2022年湖北省随州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)
1.(3分)2022的倒数是()
A.2022B.﹣2022C.D.﹣
【分析】根据倒数的定义即可得出答案.
【解答】解:2022的倒数是.
故选:C.
【点评】本题考查了倒数,掌握乘积为1的两个数互为倒数是解题的关键.
2.(3分)如图,直线l1∥l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为()
A.30°B.40°C.50°D.60°
【分析】根据两直线平行,内错角相等,便可求得结果.
【解答】解:∵l1∥l2,
∴∠1=∠2,
∵∠1=60°,
∴∠2=60°,
故选:D.
【点评】本题考查了平行线的性质,关键是熟记平行线的性质.
3.(3分)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为()
A.97和99B.97和100C.99和100D.97和101
【分析】观察这组数据发现97出现的次数最多,进而得到这组数据的众数为97,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.
【解答】解:∵这组数据中,97出现了2次,次数最多,
∴这组数据的众数为97,
这组数据的平均数=×(97+97+99+101+106)=100.
故选:B.
【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.
4.(3分)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()
A.主视图和左视图B.主视图和俯视图
C.左视图和俯视图D.三个视图均相同
【分析】根据三视图的定义判断即可.
【解答】解:该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个圆.
故选:A.
【点评】此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.
5.(3分)我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为()
A.150(12+x)=240x B.240(12+x)=150x
C.150(x﹣12)=240x D.240(x﹣12)=150x
【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.
【解答】解:设快马x天可以追上慢马,
依题意,得:150(x+12)=240x.
故选:A.
【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
6.(3分)2022年6月5日10时44分07秒,神舟14号飞船成功发射,将陈冬、刘洋、蔡旭哲三位宇航员送入了中国空间站.已知中国空间站绕地球运行的速度约为7.7×103m/s,则中国空间站绕地球运行2×102s走过的路程(m)用科学记数法可表示为()A.15.4×105B.1.54×106C.15.4×106D.1.54×107
【分析】根据路程=速度×时间列出代数式,根据单项式乘单项式的法则计算,最后结果写成科学记数法的形式即可.
【解答】解:7.7×103×2×102
=(7.7×2)×(103×102)
=15.4×105
=1.54×106(米),
故选:B.
【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.7.(3分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y表示张强离家的距离,则下列结论不正确的是()
A.张强从家到体育场用了15min
B.体育场离文具店1.5km
C.张强在文具店停留了20min
D.张强从文具店回家用了35min
【分析】由函数图象分别得出选项的结论然后作出判断即可.
【解答】解:由图象知,
A、张强从家到体育场用了15min,故A选项不符合题意;
B、体育场离文具店2.5﹣1.5=1(km),故B选项符合题意;
C、张强在文具店停留了65﹣45=20(min),故C选项不符合题意;
D、张强从文具店回家用了100﹣65=35(min),故D选项不符合题意;
故选:B.
【点评】本题主要考查函数图象的知识,熟练根据函数图象获取相应的信息是解题的关键.
8.(3分)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N 分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()
①图中的三角形都是等腰直角三角形;
②四边形MPEB是菱形;
③四边形PFDM的面积占正方形ABCD面积的.
A.只有①B.①②C.①③D.②③
【分析】①利用正方形的性质和中位线的性质可以解决问题;
②利用①的结论可以证明OM≠MP解决问题;
③如图,过M作MG⊥BC于G,设AB=BC=x,利用正方形的性质与中位线的性质分
别求出BE和MG即可判定是否正确.
【解答】解:①如图,∵E,F分别为BC,CD的中点,
∴EF为△CBD的中位线,
∴EF∥BD,
∵AP⊥EF,
∴AP⊥BD,
∵四边形ABCD为正方形,
∴A、O、P、C在同一条直线上,
∴△ABC、△ACD、△ABD、△BCD、△OAB、△OAD、△OBC、△OCD、△EFC都是等腰直角三角形,
∵M,N分别为BO,DO的中点,
∴MP∥BC,NF∥OC,
∴△DNF、△OMP也是等腰直角三角形.
故①正确;
②根据①得OM=BM=PM,∴BM≠PM
∴四边形MPEB不可能是菱形.故②错误;
③∵E,F分别为BC,CD的中点,
∴EF∥BD,EF=BD,
∵四边形ABCD是正方形,且设AB=BC=x,
∴BD=x,
∵AP⊥EF,
∴AP⊥BD,
∴BO=OD,
∴点P在AC上,
∴PE=EF,
∴PE=BM,
∴四边形BMPE是平行四边形,
∴BO=BD,
∵M为BO的中点,
∴BM=BD=x,
∵E为BC的中点,
∴BE=BC=x,
过M作MG⊥BC于G,
∴MG=BM=x,
∴四边形BMPE的面积=BE•MG=x2,
∴四边形BMPE的面积占正方形ABCD面积的.∵E、F是BC,CD的中点,
∴S△CEF=S△CBD=S四边形ABCD,
∴四边形PFDM的面积占正方形ABCD面积的(1﹣﹣﹣)=.
故③正确.
故选:C.
【点评】本题主要考查了正方形的性质,同时也利用了中位线的性质,也考查了正方形的面积公式和三角形的面积公式,综合性比较强,能力要求比较高.
9.(3分)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=α,则建筑物AB的高度为()
A.B.
C.D.
【分析】设AB=x,在Rt△ABD中,tanβ=,可得BD=,则BC=BD+CD =a+,在Rt△ABC中,tanα=,求解x即可.
【解答】解:设AB=x,
在Rt△ABD中,tanβ=,
∴BD=,
∴BC=BD+CD=a+,
在Rt△ABC中,tanα=,
解得x=.
故选:D.
【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键.
10.(3分)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.则下列结论正确的有()
①abc>0;
②2a+b=0;
③函数y=ax2+bx+c的最大值为﹣4a;
④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.
A.1个B.2个C.3个D.4个
【分析】①错误.根据抛物线的位置一一判断即可;
②正确.利用抛物线的对称轴公式求解;
③正确.设抛物线的解析式为y=a(x+1)(x﹣3),当x=1时,y的值最大,最大值为
﹣4a;
④正确.把问题转化为一元二次方程,利用判别式<0,解不等式即可.
【解答】解:∵抛物线开口向下,
∴a<0,
∵抛物线交y轴于正半轴,
∴c>0,
∵﹣>0,
∴b>0,
∴abc<0,故①错误.
∵抛物线的对称轴是直线x=1,
∴﹣=1,
∴2a+b=0,故②正确.
∵抛物线交x轴于点(﹣1,0),(3,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),
当x=1时,y的值最大,最大值为﹣4a,故③正确.
∵ax2+bx+c=a+1无实数根,
∴a(x+1)(x﹣3)=a+1无实数根,
∴ax2﹣2ax﹣4a﹣1=0,Δ<0,
∴4a2﹣4a(﹣4a﹣1)<0,
∴a(5a+1)<0,
∴﹣<a<0,故④正确,
故选:C.
【点评】本题考查二次函数的性质,根的判别式,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型,
二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)
11.(3分)计算:3×(﹣1)+|﹣3|=0.
【分析】根据有理数的乘法和加法运算法则计算即可.
【解答】解:3×(﹣1)+|﹣3|=﹣3+3=0.
故答案为:0.
【点评】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则是解答本题的关键.
12.(3分)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为120°.
【分析】根据圆周角定理解答即可.
【解答】解:由圆周角定理得:∠AOC=2∠ABC,
∵∠ABC=60°,
∴∠AOC=120°,
故答案为:120°.
【点评】本题考查的是圆周角定理,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
13.(3分)已知二元一次方程组,则x﹣y的值为1.
【分析】将第一个方程化为x=4﹣2y,并代入第二个方程中,可得2(4﹣2y)+y=5,解得y=1,将y=1代入第一个方程中,可得x=2,即可求解.
【解答】解:解法一:由x+2y=4可得:
x=4﹣2y,
代入第二个方程中,可得:
2(4﹣2y)+y=5,
解得:y=1,
将y=1代入第一个方程中,可得
x+2×1=4,
解得:x=2,
∴x﹣y=2﹣1=1,
故答案为:1;
解法二:∵,
由②﹣①可得:
x﹣y=1,
故答案为:1.
【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法与代入消元法.
14.(3分)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为2.
【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.
【解答】解:过点C作CH⊥x轴于点H.
∵直线y=x+1与x轴,y轴分别交于点A,B,
∴A(﹣1,0),B(0,1),
∴OA=OB=1,
∵OB∥CH,
∴==1,
∴OA=OH=1,
∴CH=2OB=2,
∴C(1,2),
∵点C在y=上,
∴k=2,
故答案为:2.
【点评】本题考查反比例函数与一次函数的交点,解题的关键是学会添加常用辅助线,利用三角形中位线定理解决问题.
15.(3分)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为3,最大值为75.
【分析】先将化简为10,可得n最小为3,由是大于1的整数可得
越小,越小,则n越大,当=2时,即可求解.
【解答】解:∵==10,且为整数,
∴n最小为3,
∵是大于1的整数,
∴越小,越小,则n越大,
当=2时,
=4,
∴n=75,
故答案为:3;75.
【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.
16.(3分)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为90°,DH的长为.
【分析】如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.证明△DAF∽△BAE,推出∠ADF=∠ABE,可得∠DHO=∠BAO=90°,解直角三角形求出EF,AJ,EJ,再利用平行线分线段成比例定理求出OJ,再根据cos∠ODH=cos∠ABO,可得=,求出DH.
【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.
∵∠EAF=∠BAD=90°,
∴∠DAF=∠BAE,
∵==,
∴=,
∴△DAF∽△BAE,
∴∠ADF=∠ABE,
∵∠DOH=∠AOB,
∴∠DHO=∠BAO=90°,
∴∠BHD=90°,
∵AF=3,AE=4,∠EAF=90°,
∴EF==5,
∵EF⊥AD,
∴•AE•AF=•EF•AJ,
∴AJ=,
∴EJ===,∵EJ∥AB,
∴=,
∴=,
∴OJ=,
∴OA=AJ+OJ=+=4,
∴OB===4,OD=AD﹣AO=6﹣4=2,
∵cos∠ODH=cos∠ABO,
∴=,
∴=,
∴DH=.
故答案为:90°,.
【点评】本题考查矩形的性质,旋转变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
三、解答题(本大超共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)
17.(6分)解分式方程:=.
【分析】把分式方程化为整式方程,解整式方程即可.
【解答】解:左右两边同时乘以(x+3)x得
x+3=4x,
3=3x,
x=1.
检验:把x=1代入原方程得=,等式成立,
所以x=1是原方程的解.
【点评】考查解分式方程,关键是去分母把分式方程变整式方程.
18.(7分)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;
(2)若x1x2=5,求k的值.
【分析】(1)根据判别式的意义得到Δ=(2k+1)2﹣4(k2+1)>0,然后解不等式即可;
(2)根据根与系数的关系得到x1x2=k2+1,再利用x1x2=5得到k2+1=5,然后解关于k 的方程,最后利用k的范围确定k的值.
【解答】解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,
解得k>;
(2)根据题意得x1x2=k2+1,
∵x1x2=5,
∴k2+1=5,
解得k1=﹣2,k2=2,
∵k>,
∴k=2.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1x2=.也考查了根的判别式.
19.(8分)如图,在平行四边形ABCD中,点E,F分别在边AB,CD上,且四边形BEDF 为正方形.
(1)求证:AE=CF;
(2)已知平行四边形ABCD的面积为20,AB=5,求CF的长.
【分析】(1)根据正方形的性质可以得到DF=EB,根据平行四边形的性质可以得到AB =CD,然后即可得到结论成立;
(2)根据平行四边形的面积,可以得到DE的长,然后根据正方形的性质,可以得到BE 的长,从而可以求得AE的长,再根据(1)中的结论,即可得到CF的长.
【解答】(1)证明:∵四边形BEDF为正方形,
∴DF=EB,
∵四边形ABCD是平行四边形,
∴DC=AB,
∴DC﹣DF=AB﹣EB,
∴CF=AE,
即AE=CF;
(2)解:∵平行四边形ABCD的面积为20,AB=5,四边形BEDF为正方形,
∴5DE=20,DE=EB,
∴DE=EB=4,
∴AE=AB﹣EB=5﹣4=1,
由(1)知:AE=CF,
∴CF=1.
【点评】本题考查正方形的性质、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
20.(10分)为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团、美术社团”活动.该校从全校600名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)参加问卷调查的学生共有60人;
(2)条形统计图中m的值为11,扇形统计图中α的度数为90°;
(3)根据调查结果,可估计该校600名学生中最喜欢“音乐社团”的约有100人;
(4)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
【分析】(1)利用24÷40%即可求出参加问卷调查的学生人数.
(2)根据m=60﹣10﹣24﹣15,α=360°×即可得出答案.
(3)用该校总人数乘以样本中最喜欢“音乐社团”的占比即可.
(4)画树状图列出所有等可能的结果,再找出恰好选中甲、乙两名同学的结果,利用概率公式可得出答案.
【解答】解:(1)24÷40%=60(人),
∴参加问卷调查的学生共有60人.
故答案为:60.
(2)m=60﹣10﹣24﹣15=11,
α=360°×=90°,
故答案为:11;90°.
(3)600×=100(人),
∴估计该校600名学生中最喜欢“音乐社团”的约有100人.
故答案为:100.
(4)画树状图如图:
∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,
∴恰好选中甲、乙两名同学的概率为.
【点评】本题考查条形统计图、扇形统计图、用样本估计总体、列表法与树状图法,熟练掌握条形统计图与扇形统计图、用样本估计总体以及列表法与树状图法求概率是解答本题的关键.
21.(9分)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若AC=4,sin C=,
①求⊙O的半径;
②求BD的长.
【分析】(1)结论:CD是⊙O的切线;只要证明OD⊥CD即可;
(2)①根据sin C=,构建方程求解即可;
②证明△CDA∽△CBD,推出===,设AD=k,BD=2k,利用勾股定理求解即可.
【解答】解:(1)结论:CD是⊙O的切线;
理由:如图,连接OD.
∵EB=ED,OB=OD,
∴∠EBD=∠EDB,∠OBD=∠ODB,
∵BE是⊙O的切线,OB是半径,
∴OB⊥BE,
∴∠OBE=90°,
∴∠EBD+∠OBD=90°,
∴∠EDB+∠ODB=90°,
∴OD⊥DE,
∵OD是半径,
∴CD是⊙O的切线;
(2)①设OD=OA=r,
∵OD⊥CD,
∴sin C==,
∴=,
∴r=2,
∴⊙O的半径为2;
②在Rt△COD中,CD===4,
∵AB是直径,
∴∠ADB=90°,
∴∠DBA+∠BAD=90°,
∵OD=OA,
∴∠OAD=∠ODA,
∵∠ADC+∠ODA=90°,
∴∠ADC=∠CBD,
∵∠C=∠C,
∴△CDA∽△CBD,
∴===,
设AD=k,BD=2k,
∵AD2+BD2=AB2,
∴(k)2+(2k)2=42,
∴k=(负根已经舍去),
∴BD=2k=.
【点评】本题考查作切线的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22.(10分)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客
第二天都会购买,当天的需求量不包括前一天的预约数)
第x天12...6...11 (15)
150150+m…150+5m…150+10m…150+14m 供应量y1
(个)
220229...245...220 (164)
需求量y2
(个)
(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
【分析】(1)由已知直接可得y1=150+(x﹣1)m=mx+150﹣m,设y2=ax2+bx+c,用待定系数法可得y2=﹣x2+12x+209;
(2)求出前9天的总供应量为(1350+36m)个,前10天的供应量为(1500+45m)个,根据前9天的总需求量为2136个,前10天的总需求量为2136+229=2365(个),可得,而m为正整数,即可解得m的值为20或21;
(3)m最小值为20,从而第4天的销售量即供应量为y1=210,销售额为21000元,第12天的销售量即需求量为y2=209,销售额为20900元.
【解答】解:(1)根据题意得:y1=150+(x﹣1)m=mx+150﹣m,
设y2=ax2+bx+c,将(1,220),(2,229),(6,245)代入得:
,
解得,
∴y2=﹣x2+12x+209;
(2)前9天的总供应量为150+(150+m)+(150+2m)+......+(150+8m)=(1350+36m)个,
前10天的供应量为1350+36m+(150+9m)=(1500+45m)个,
在y2=﹣x2+12x+209中,令x=10得y=﹣102+12×10+209=229,
∵前9天的总需求量为2136个,
∴前10天的总需求量为2136+229=2365(个),
∵前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量,
∴,
解得19≤m<21,
∵m为正整数,
∴m的值为20或21;
(3)由(2)知,m最小值为20,
∴第4天的销售量即供应量为y1=4×20+150﹣20=210,
∴第4天的销售额为210×100=21000(元),
而第12天的销售量即需求量为y2=﹣122+12×12+209=209,
∴第12天的销售额为209×100=20900(元),
答:第4天的销售额为21000元,第12天的销售额为20900元.
【点评】本题考查二次函数,一次函数的应用,解题的关键是读懂题意,列出函数关系式和不等式组解决问题.
23.(10分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a﹣b)2=a2﹣2ab+b2。