彬县高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彬县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上
的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
近线平行且距离为
2
,则双曲线C 的离心率是( )
A B .2 C D .2
2. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )
A .必要而不充分条件
B .充分而不必要条件
C .充分必要条件
D .既不充分也不必要条件
3. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .250
4. 如果执行如图所示的程序框图,那么输出的a=( )
A .2
B .
C .﹣1
D .以上都不正确
5. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )
A .若x ∉A ,则y ∉A
B .若y ∉A ,则x ∈A
C .若x ∉A ,则y ∈A
D .若y ∈A ,则x ∉A 6. 设集合3|01x A x x -⎧
⎫
=<⎨⎬+⎩⎭
,集合(){}
2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 7. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( )
A .0
B .1
C .
D .3
8. 已知全集U R =,{|239}x
A x =<≤,{|02}
B y y =<≤,则有( ) A .A ØB B .A
B B =
C .()R A B ≠∅ð
D .()R A B R =ð
9. 已知AC ⊥BC ,AC=BC ,D 满足=t
+(1﹣t )
,若∠ACD=60°,则t 的值为( )
A .
B .
﹣
C .
﹣1
D .
10.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =
A 、22
B 、23
C 、24
D 、25
11.已知函数()e sin x
f x x =,其中x ∈R ,e 2.71828
=为自然对数的底数.当[0,
]2
x π
∈时,
函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )
A .(,1)-∞
B .(,1]-∞
C .2
(,e )π
-∞ D .2
(,e ]π-∞
【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.
12.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )
A .
B .
C .
D .
二、填空题
13.已知f (x )
=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .
14.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.
16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .
17.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间
()1k k +,内,则正整数k 的值为________. 三、解答题
19.如图所示的几何体中,EA ⊥平面ABC ,BD ⊥平面ABC ,AC=BC=BD=2AE=,M 是AB 的中点.
(1)求证:CM ⊥EM ;
(2)求MC 与平面EAC 所成的角.
20.已知等差数列{a n },满足a 3=7,a 5+a 7=26. (Ⅰ)求数列{a n }的通项a n ;
(Ⅱ)令b n =(n ∈N *
),求数列{b n }的前n 项和S n .
21.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,
(1)求集合A ,B ; (2)求集合A ∪B ,A ∩B .
22.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.
23.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
24.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
彬县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=的距离为
22=
,得a b =,则为等轴双曲
.故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
2. 【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;
当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;
当m ≠0,2时,两条直线相互垂直,则
×
=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B .
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
3. 【答案】A
【解析】解:分层抽样的抽取比例为=,
总体个数为3500+1500=5000,
∴样本容量n=5000×
=100.
故选:A .
4. 【答案】 B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9
…
由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
5.【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.
与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.
故选D.
6.【答案】A
【解析】
考点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 7.【答案】B
【解析】解:∵指数函数的反函数是对数函数, ∴函数y=3x 的反函数为y=f (x )=log 3x , 所以f (9)=log 33=1. 故选:B .
【点评】本题给出f (x )是函数y=3x (x ∈R )的反函数,求f (3)的值,着重考查了反函数的定义及其性质,属于基础题.
8. 【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 9. 【答案】A
【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;
若设AC=BC=a ,则由
得,CE=ta ,CF=(1﹣t )a ;
根据题意,∠ACD=60°,∠DCF=30°;
∴;
即;
解得.
故选:A .
【点评】考查当满足
时,便说明D ,A ,B 三点共线,以及向量加法的平行四边形法则,
平面向量基本定理,余弦函数的定义.
10.【答案】A
【解析】1237k a a a a a =++++176
72
a d ⨯=+
121(221)d a d ==+-, ∴22k =. 11.【答案】B
【解析】由题意设()()e sin x
g x f x kx x kx =-=-,且()0g x ≥在[0,]2
x π∈时恒成立,而
'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c
o s 0x
h x x =≥,所以()h x 在[0,]2
π上递增,所以2
1()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2
π上递增,()(0)0g x g ≥=,符合题意;当2
e k π
≥时,'()0g x ≤,()g x 在[0,]2
π
上递减,()(0)0g x g ≤=,与题意不合;当21e k π
<<时,()g x '为一个递增
函数,而'(0)10g k =-<,2'()e 02
g k π
π
=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,
当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上
所述:k 的取值范围为(,1]-∞,故选B .
12.【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B .
二、填空题
13.【答案】 .
【解析】解:由题意f 1(x )=f (x )=
.
f 2(x )=f (f 1(x ))=,
f 3(x )=f (f 2(x ))==,
…
f n+1(x )=f (f n (x ))=,
故f 2015(x )=
故答案为:
.
14.【答案】 4+ .
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4,
,
∴
=
,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+
.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
15.【答案】120
【解析】
考
点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
sin :sin :sin 3:5:7
A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 16.【答案】 114 .
【解析】解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.
故答案为:114
【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
17.【答案】24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
18.【答案】2
【解析】
三、解答题
19.【答案】
【解析】(1)证明:∵AC=BC=AB,
∴△ABC为等腰直角三角形,
∵M为AB的中点,
∴AM=BM=CM,CM⊥AB,
∵EA⊥平面ABC,
∴EA⊥AC,
设AM=BM=CM=1,则有AC=,AE=AC=,
在Rt△AEC中,根据勾股定理得:EC==,
在Rt△AEM中,根据勾股定理得:EM==,
∴EM2+MC2=EC2,
∴CM⊥EM;
(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.
20.【答案】
【解析】解:(Ⅰ)设{a n}的首项为a1,公差为d,
∵a5+a7=26
∴a6=13,,
∴a n=a3+(n﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴.
21.【答案】
【解析】解:(1)由x 2﹣5x+6>0,即(x ﹣2)(x ﹣3)>0, 解得:x >3或x <2,即A={x|x >3或x <2}, 由g (x )=
,得到﹣1≥0,
当x >0时,整理得:4﹣x ≥0,即x ≤4; 当x <0时,整理得:4﹣x ≤0,无解,
综上,不等式的解集为0<x ≤4,即B={x|0<x ≤4}; (2)∵A={x|x >3或x <2},B={x|0<x ≤4}, ∴A ∪B=R ,A ∩B={x|0<x <2或3<x ≤4}.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
22.【答案】
【解析】解:(1)∵函数f (x )=log 2(x ﹣3), ∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,
解得:x ∈(3,4]
【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.
23.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-. 【解析】
试
题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 24.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l 的方程; (2)当弦AB 被点P 平分时,求出直线的斜率,即可写出直线l 的方程;
【解答】解:(1)已知圆C :(x ﹣1)2+y 2
=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0. (2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为,即x+2y ﹣6=0.。